AVERAGING OPERATORS IN NON COMMUTATIVE L^{p} SPACES II

by C. BARNETT and I. F. WILDE

(Received 26 November, 1982)

1. Introduction. This paper is the sequel to [1]. Briefly, the context in which we shall work is as follows. Let \mathcal{A} be a finite von Neumann algebra acting on a Hilbert space \mathcal{H} . Let ϕ be a faithful normal finite trace on \mathcal{A} with $\phi(I) = 1$, where I is the identity of \mathcal{A} . For $1 \le p < \infty$, let $L^p(\mathcal{A})$ denote the non commutative Lebsegue spaces associated with (\mathcal{A}, ϕ) [9]. We note that $L^p(\mathcal{A})$ is a linear space of (possibly unbounded) operators X, affiliated to \mathcal{A} , for which $\phi(|X|^p) < \infty$, where $|X| = (X^*X)^{1/2}$. $L^p(\mathcal{A})$ is a Banach space under the norm $||X||_p = \phi(|X|^p)^{1/p}$. The following facts will be used freely. For $1 \le p \le \infty$, let q be defined by 1/p + 1/q = 1 with $q = \infty$ if p = 1. Then the dual of $L^p(\mathcal{A})$ is $L^q(\mathcal{A})$ under the bilinear form $\langle x, y \rangle = \phi(xy)$, where $x \in L^p(\mathcal{A})$ and $y \in L^q(\mathcal{A})$, with the convention that $L^{\infty}(\mathcal{A}) \equiv \mathcal{A}$. If $1 \le r \le s \le \infty$, then $L^s(\mathcal{A}) \subseteq L^r(\mathcal{A}) \subseteq L^1(\mathcal{A})$. The L^1 norm may be defined as

$$\|\mathbf{x}\|_1 = \boldsymbol{\phi}(|\mathbf{x}|) = \sup_{B \in \mathcal{A}_1} |\boldsymbol{\phi}(\mathbf{x}B)|.$$

If $x \in L^{p}(\mathcal{A})$ then x^{*} , the (Hilbert space) adjoint of x, is in $L^{p}(\mathcal{A})$ too. For a fixed $p \in [1, \infty)$ we define an *average* to be a linear contraction A of $L^{p}(\mathcal{A})$ satisfying

$$A(x^*) = A(x)^* \qquad (x \in L^p(\mathscr{A})),$$

$$A(xA(y)) = A(x)A(y) \qquad (x \in \mathscr{A}, y \in L^p(\mathscr{A})).$$

In [1] it was shown that an average which preserves the identity of \mathscr{A} is the conditional expectation onto its range, which has the form $L^{p}(\mathscr{B})$ for some von Neumann subalgebra \mathscr{B} of \mathscr{A} . In this paper we shall characterise those averages that do not necessarily map I to I.

2. Characterisation of adjoint preserving averages. We begin by characterising those subspaces of $L^{p}(\mathcal{A})$, which are $L^{p}(\mathcal{B})$ for some von Neumann subalgebra \mathcal{B} of \mathcal{A} .

THEOREM 2.1. Let $p \in [1, \infty)$ be fixed and let M be a closed subspace of $L^{p}(\mathcal{A})$ which contains a *-subalgebra \mathcal{B}^{0} of \mathcal{A} with $I \in \mathcal{B}^{0}$ and such that \mathcal{B}^{0} is $\|\cdot\|_{p}$ -dense in M. Then $M = L^{p}(\mathcal{B}, \phi)$, where \mathcal{B} is the von Neumann algebra generated by \mathcal{B}^{0} .

Proof. The idea is that the $\|\cdot\|_p$ closure picks up the strong operator closure too. The algebra \mathscr{B}^0 is dense in \mathscr{B} in the strong operator topology (hereafter denoted τ_s). By Kaplansky's density theorem, the self adjoint part of \mathscr{B}_1^0 , the unit ball of \mathscr{B}^0 , is τ_s -dense in the self adjoint part of \mathscr{B}_1 , the unit ball of \mathscr{B} . Given $x = x^* \in \mathscr{B}_1$ there is a net (x_α) of self-adjoint operators in \mathscr{B}_1^0 converging strongly to x. Let $0 \neq n$ be a natural number and

Glasgow Math. J. 25 (1984) 121-126.

 $y \in \mathcal{H}$; since $|x - x_{\alpha}|^2 = (x - x_{\alpha})^2$ we have

$$\| |x - x_{\alpha}|^{2n}(y)\| = \| (x - x_{\alpha})^{2n}(y)\| \le \| x - x_{\alpha}\|_{\infty}^{2n-1} \cdot \| (x - x_{\alpha})(y)\|$$

$$\le 2^{2n} \| (x - x_{\alpha})(y)\| \to 0 \quad \text{as} \quad \alpha \uparrow ,$$

where $\|\cdot\|_{\infty}$ denotes the operator norm. So $|x-x_{\alpha}|^{2n} \to 0 - \tau_s$ as $\alpha \uparrow$. It follows that $\|x-x_{\alpha}\|_{2n} \to 0$ as $\alpha \uparrow$ because ϕ is weak operator continuous on bounded sets in \mathscr{A} . For $1 \leq p < \infty$ we can choose *n* sufficiently large so that $p \leq 2n$. We then have

$$\|x-x_{\alpha}\|_{p} \leq \|x-x_{\alpha}\|_{2n} \qquad (n \geq p/2).$$

This relation follows from the corresponding relation for real valued functions from 2.4 of [9]. So $||x - x_{\alpha}||_{p} \to 0$ as $\alpha \uparrow$. Hence $\overline{\mathscr{B}}^{\|\cdot\|_{p}} = L^{p}(\mathscr{B}) \subseteq M$. The reverse inclusion is obvious.

In connection with the next result, see [6].

THEOREM 2.2. Let $A: L^{p}(\mathcal{A}) \to L^{p}(\mathcal{A})$ be an average. Then $A(x) = M_{\mathfrak{B}}(ux)$, where $M_{\mathfrak{B}}(\cdot)$ is the conditional expectation with respect to a von Neumann subalgebra \mathfrak{B} of \mathcal{A} and $u = A^{+}(I)$. (A^{+} is the L^{p} -adjoint of A.)

Proof. Let $\mathfrak{B}^0 = \{x \in \mathcal{A} : A(yx) = A(y)x, A(xy) = xA(y) \forall y \in \mathcal{A}\}$. Then \mathfrak{B}^0 is a *subalgebra of \mathcal{A} containing *I*. By Theorem 2.1, $\mathfrak{B}^{0||\cdot||_p} = L^p(\mathfrak{B})$, where \mathfrak{B} denotes the von Neumann algebra generated by \mathfrak{B}^0 . Hence for $y \in L^p(\mathfrak{B})$ there is a sequence $(y_n) \subseteq \mathfrak{B}^0$ such that $y_n \to y$ in $\|\cdot\|_p$. If $x \in \mathcal{A}$ we have

$$||xy_n - xy||_p \le ||x||_{\infty} ||y_n - y||_p \to 0 \quad \text{as} \quad n \to \infty.$$

Hence $A(xy_n) \rightarrow A(xy)$ in $\|\cdot\|_p$. From [1], we know that $x \in \mathcal{A} \Rightarrow A(x) \in \mathcal{A}$. It follows for $x \in \mathcal{A}$ and $y \in L^p(\mathfrak{B})$ that

$$A(xy) = \lim_{n} A(xy_n) = \lim_{n} A(x)y_n = A(x)y.$$

Now let $x \in \mathcal{A}$, $y \in \mathcal{B}$. Both $M_{\mathfrak{B}}(A^+(I)x)$ and A(x) are in $L^1(\mathfrak{B})$; the latter because $A(x) \in \mathfrak{B}^0$. Since

$$\phi(M_{\mathfrak{B}}(A^+(I)x)y) = \phi(A^+(I)xy) = \phi(A(xy)) = \phi(A(x)y)$$

it follows (from the definition of the $L^{1}(\mathcal{B})$ norm) that $A(x) = M_{\mathfrak{B}}(A^{+}(I)x)$ for $x \in \mathcal{A}$. Now suppose that $x \in L^{p}(\mathcal{A})$. We can choose $x_{n} \in \mathcal{A}$ with $x = \lim_{n} x_{n}$ and $A(x) = \lim_{n} A(x_{n})$ in $\|\cdot\|_{p}$. But $M_{\mathfrak{B}}(A^{+}(I) \cdot): L^{p}(\mathcal{A}) \to L^{1}(\mathfrak{B})$ is continuous, and so $(M_{\mathfrak{B}}(A^{+}(I)x_{n}))$ converges to $M_{\mathfrak{B}}(A^{+}(I)x)$ in $L^{1}(\mathfrak{B})$ norm. But $\|\cdot\|_{1} \leq \|\cdot\|_{p}$ for a finite algebra so for $x \in L^{p}(\mathcal{A})$,

$$A(x) = \|\cdot\|_{p} - \lim_{n} A(x_{n}) = \|\cdot\|_{1} - \lim_{n} M_{\mathscr{B}}(A^{+}(I)x_{n}) = M_{\mathscr{B}}(A^{+}(I)x).$$

Remarks

(i) An average is a translation followed by a conditional expectation.

(ii) Theorem 2.2 shows A to be a left translation followed by an expectation.

122

AVERAGING OPERATORS IN NON COMMUTATIVE L^p SPACES II 123

Why not a right translation? In fact it makes no difference for if $y \in \mathcal{B}_1$, then

$$\phi(M_{\mathfrak{B}}(A^+(I)x)y) = \phi(A^+(I)xy) = \phi(A(xy));$$

but $y \in \mathcal{B}$ so that

$$\phi(A(xy)) = \phi(A(x)y) = \phi(yA(x))$$
$$= \phi(A(yx)) = \phi(A^+(I)yx)$$
$$= \phi(xA^+(I)y) = \phi(M_{\mathfrak{B}}(xA^+(I))y)$$

3. Fixed points of averages. Let \mathscr{B} be a von Neumann subalgebra of \mathscr{A} that does not (necessarily) contain *I*. We shall denote the $\|\cdot\|_p$ closure of \mathscr{B} in $L^p(\mathscr{A})$ by $L^p(\mathscr{B})$.

The next result shows that there is a projection onto the fixed points of an average $A: L^{p}(\mathcal{A}) \to L^{p}(\mathcal{A})$ with some nice properties. In particular the fixed points of A are a closed subspace of $L^{p}(\mathcal{A})$ of the form $L^{p}(\mathcal{B})$, where \mathcal{B} is a von Neumann subalgebra of \mathcal{A} .

THEOREM 3.1. Let $A : L^{p}(\mathcal{A}) \to L^{p}(\mathcal{A})$ be an average. Then there is a projection F from $L^{p}(\mathcal{A})$ onto the fixed points of A with the following properties.

- (i) $F(x) = F(I)A(x) = A(x)F(I) \ (x \in L^{p}(\mathcal{A})).$
- (ii) F(I) is a projection.
- (iii) F is normal on \mathcal{A} .
- (iv) $F(\mathcal{A})$ is a von Neumann subalgebra of \mathcal{A} .
- (v) F maps the centre of \mathcal{A} into the centre of $F(\mathcal{A})$.
- (vi) $F(L^{p}(\mathcal{A})) = L^{p}(F(\mathcal{A})).$
- (vii) F is an average.

Proof. We deal with the cases 1 first and then deduce the case of <math>p = 1 from these.

(i) For $1 , <math>L^{p}(\mathcal{A})$ is reflexive **[9]**. The ergodic averages $S_{n}(\cdot) = \frac{1}{n} \sum_{k=0}^{n-1} A^{k}(\cdot)$ are uniformly bounded as maps $L^{p}(\mathcal{A}) \rightarrow L^{p}(\mathcal{A})$ and, for $x \in L^{p}(\mathcal{A})$, $A^{k}(x)/k$ converges to 0 in $L^{p}(\mathcal{A})$ as $k \rightarrow \infty$. It follows from Corollaries 2 and 4 of VIII.5 of **[2]** that for $x \in L^{p}(\mathcal{A})$,

$$F(x) = \lim_{n} S_{n}(x) \quad \text{in} \quad \|\cdot\|_{p}$$

exists and the map $x \to F(x)$ is a $\| \|_p$ contractive projection onto the fixed points of A. The averaging property indicates that $A^k(x) = A^{k-1}(I)A(x)$; therefore,

$$S_{n}(x) = \frac{1}{n} (x + A(x) + A(I)A(x) + A(I)^{2}A(x) + \ldots + A^{n-2}(I)A(x))$$

= $\frac{x}{n} + \frac{(I + A(I) + \ldots + A^{n-1}(I))A(x)}{n} - \frac{A^{n-1}(I)A(x)}{n}$
= $\frac{x}{n} + S_{n}(I)A(x) - \frac{A^{n-1}(I)A(x)}{n}$.

Since $A(\mathscr{A}_1) \subseteq \mathscr{A}_1$ (2.2 of [1]) we have for $x \in \mathscr{A}$ that $S_n(I)A(x) \xrightarrow{} F(I)A(x)$ in $\|\cdot\|_p$ and hence F(x) = F(I)A(x) for $x \in \mathscr{A}$. Moreover $\|S_n(I)\|_{\infty} \leq 1$ for n = 1, 2, 3, ... We claim that $F(I) \in \mathscr{A}_1$ too. To see this, note that \mathscr{A}_1 is compact in the weak operator topology τ_{ω} and hence $(S_n(I))$ has a subnet $(S_{n_{\omega}}(I))$ converging in τ_{ω} to some $T \in \mathscr{A}_1$. Since $(S_n(I))$ is convergent in $\|\cdot\|_p$ to F(I) the subnet converges in $\|\cdot\|_p$ —and hence weakly in $L^p(\mathscr{A})$ to F(I) too. Now on \mathscr{A}_1 the weak and ultraweak topologies coincide, and so every weak operator continuous linear functional on \mathscr{A}_1 is given by an element of $L^1(\mathscr{A})$. But $L^q(\mathscr{A}) \subseteq L^1(\mathscr{A})$; hence for every $X \in L^q(\mathscr{A})$, where 1/p + 1/q = 1,

$$\phi(XT) = \lim_{\alpha} \phi(XS_n(I)) = \phi(XF(I))$$

and so $F(I) = T \in \mathcal{A}_1$. It follows that F(x) = F(I)A(x) for each $x \in L^p(\mathcal{A})$. To see that F(x) = A(x)F(I) note that $A^k(x) = A(x)A^{k-1}(I)$, and proceed as above.

(ii) We now use (i) noting that x = F(I) is a fixed point in \mathcal{A}_1 . F(I) is self adjoint because A preserves adjoints.

(iii) Using (i) and the averaging property with the fact that A is *-preserving we see that $F \upharpoonright \mathcal{A}$ is a projection of norm one onto $F(\mathcal{A})$ which is a C*-algebra. Hence F is positive [7]. Let $x_{\alpha} \uparrow x$ in \mathcal{A} . By scaling if necessary we can take $0 \le x - x_{\alpha} \le I$. Using the normality of ϕ we conclude that $x_{\alpha} \to x$ in $L^{1}(\mathcal{A})$. Now for 1

$$0 \leq |x - x_{\alpha}|^{p} \leq |x - x_{\alpha}| = x - x_{\alpha} \leq I.$$

So for 1 ,

124

$$\phi(|x-x_{\alpha}|^{p}) \leq \phi(x-x_{\alpha}) = ||x-x_{\alpha}||_{1} \to 0 \quad \text{as} \quad \alpha \uparrow .$$

That is, $||x - x_{\alpha}||_{p} \to 0$ as $n \to \infty$. By continuity $F(x_{\alpha}) \to F(x)$ in $|| \cdot ||_{p}$ and hence in $|| \cdot ||_{1}$, and as F is positive and $x \ge x_{\alpha} \forall \alpha$ we have, by §2 of [9],

$$S = \sup_{\alpha} F(x_{\alpha}) = \|\cdot\|_1 - \lim F(x_{\alpha}) = F(x) = F\left(\sup_{\alpha} x\right).$$

So F is normal.

(iv) As we noted in (iii), $F(\mathcal{A})$ is a C^{*}-algebra. Again by (iii), $F(\mathcal{A})$ is monotone closed. Finally, because it has a trace defined on it, it has sufficiently many positive linear functions. We use 3.16 of [7] to get the result.

(v) This follows directly from the averaging property.

(vi) Because $F(\mathcal{A})$ is dense in the range of F.

Now we consider the case p = 1. Since, in this case A contracts $\|\cdot\|_1$ and also $\|\cdot\|_\infty$ by [1], it follows from [5] that it contracts $\|\cdot\|_p$, $1 . For <math>x \in L^p(\mathcal{A})$ (where p is fixed) the relation (i) holds and (ii)–(vi) follow. Since A is an L^1 contraction and $L^p(\mathcal{A})$ is dense in $L^1(\mathcal{A})$ we can extend the map $F(\cdot)$ from $L^p(\mathcal{A})$ to $L^1(\mathcal{A})$ by using (i). We note that (i) then holds (obviously) for $x \in L^1(\mathcal{A})$ and that F(x) is a fixed point of A, so that F is an idempotent.

(vii) This follows from (i), (ii) and the fact that A is an average.

It would be useful to know what conditions a contraction of $L^{p}(\mathcal{A})$ should satisfy in order for it to be an average. Kelley [4] has shown that a positive idempotent operator on

 $C_{\infty}(X)$ is averaging if and only if its range is a subalgebra. The following result is along these lines.

LEMMA 3.2. For a fixed $p \in [1, \infty)$ let $T : L^p(\mathcal{A}) \to L^p(\mathcal{A})$ be a positive linear mapping that preserves the identity operator. Then T preserves the trace.

Proof. See 2.4 of [1]. The result is proved for an average, but the proof works just as well for the T of the hypothesis.

THEOREM 3.3. Let $p \in [1, \infty)$ be fixed and $T : L^p(\mathcal{A}) \to L^p(\mathcal{A})$ be a positive contractive idempotent linear mapping with T(I) = I and $T(\mathcal{A})$ an algebra. Then T is the conditional expectation onto $L^p(\mathcal{B})$, where \mathcal{B} is a von Neumann subalgebra of \mathcal{A} .

Proof. By the lemma, T preserves the trace and so for each projection $E \in \mathcal{A}$ we have $0 \leq T(E) \leq I$ and $\phi(T(E)) \leq \phi(E)$. These are the conditions of Proposition 1 of [10]. This shows that T extends to a map of $L^{p'}(\mathcal{A})$ into itself for $1 \leq p' \leq \infty$, and $T(\mathcal{A}) \subseteq \mathcal{A}$; moreover if $x = x^*$, then $||T(x)||_{p'} \leq ||x||_{p'}$. We shall use the extension of T to $L^2(A)$ below.

So $T(\mathcal{A})$ is a *-subalgebra of \mathcal{A} containing *I*. By Theorem 2.1 above, the range of *T* is $L^{p}(T(\mathcal{A})'')$, where $T(\mathcal{A})''$ denotes the von Neumann algebra generated by $T(\mathcal{A})$. Let *M* be the conditional expectation $L^{p}(\mathcal{A}) \xrightarrow{\text{onto}} L^{p}(T(\mathcal{A})'')$. Suppose that for each $y \in T(\mathcal{A})$, $z \in L^{p}(\mathcal{A})$,

$$\phi(M(z)y) = \phi(T(z)y). \tag{(*)}$$

Then by ultraweak continuity we have (*) for $y \in T(\mathcal{A})''$. This shows that M(z) = T(z); (consider the L^1 norm). So it remains to show that (*) holds. What we shall show is that if $y \in \mathcal{A}$ is a fixed point of T then it is a fixed point of T^+ (the " L^q " adjoint of T). We then get, for $y \in T(\mathcal{A})$,

$$\phi(M(z)\mathbf{y}) = \phi(z\mathbf{y}) = \phi(zT^+(\mathbf{y})) = \phi(T(z)\mathbf{y}),$$

which finishes the proof.

Consider $x \in \mathcal{A}$; we know that $T(x) \in L^2(\mathcal{A})$ but only that $T^+(x) \in L^q(\mathcal{A})$, where 1/p + 1/q = 1. However it is clear that on \mathcal{A} the L^q adjoint of T agrees with the L^2 adjoint of T. So for $z \in L^2(\mathcal{A})$ we have

$$\sup_{\mathbf{y}\in\mathcal{A}_{1}} |\phi(T^{+}(\mathbf{x})z\mathbf{y})| = \sup_{\mathbf{y}\in\mathcal{A}_{1}} |\phi(\mathbf{x}T(z\mathbf{y}))| \qquad (z\mathbf{y}\in L^{2}(\mathcal{A}))$$
$$\leq \sup_{\mathbf{y}\in\mathcal{A}_{1}} 2\{||\mathbf{x}||_{2}||\mathbf{y}||_{\infty}||z||_{2}\},$$

so that $T^+(x)z \in L^1(\mathcal{A})$ and hence $T^+(x) \in L^2(\mathcal{A})$. Suppose now that $x = x^* \in \mathcal{A}$ and T(x) = x. We note first that, since T preserves positivity so does T^+ , and hence they both preserve adjoints. Thus

$$0 \le ||T^{+}(x) - x||_{2}^{2} = \phi((T^{+}(x) - x)(T^{+}(x) - x)))$$

= $\phi(T^{+}(x)T^{+}(x)) - \phi(T^{+}(x)x) - \phi(xT^{+}(x)) + \phi(xx)$
= $\phi(T^{+}(x)T^{+}(x)) - \phi(xx).$

But by Proposition 1(iii) of [10] we can see that T^+ is $\|\cdot\|_2$ contractive on self adjoint elements in \mathcal{A} just as T is. Hence $T^+(x) = x$. It follows that T and T^+ have the same fixed points in \mathcal{A} .

REFERENCES

1. C. Barnett. Averaging operators in non commutative L^{p} spaces I Glasgow Math. J. **24** (1983), 71–74.

2. N. Dunford and J. T. Schwartz, Linear operators Part 1 (Interscience, 1958).

3. N. Dunford and J. T. Schwartz, *Linear operators Part* 2 (Interscience, 1963).

4. J. L. Kelley. Averaging operators in $C_{\infty}(X)$, Illinois J. Math. 2 (1958), 214-223.

5. R. A. Kunze. L^p Fourier transforms on locally compact unimodular groups, *Trans. Amer.* Math. Soc. **89** (1958), 519-540.

6. J. Neveu. Discrete parameter martingales. (North Holland, 1975).

7. M. Takesaki. Theory of operator algebras I. (Springer-Verlag, 1979).

8. H. Umegaki. Conditional expectation in an operator algebra Tôhoku Math. J. 6 (1954), 177-181.

9. F. J. Yeadon. Non commutative L^{p} Spaces, Math. Proc. Cambridge Philos. Soc. **77** (1975), 91-102.

10. F. J. Yeadon. Ergodic theorems for semifinite von Neumann algebras I. J. London Math. Soc. (2) 16 (1977), 326-332.

DEPARTMENT OF MATHEMATICS BEDFORD COLLEGE LONDON NW1 4NS

126