WEAKLY CONFLUENT MAPPINGS AND ATRIODIG SUSLINIAN CURVES

H. COOK AND A. LELEK

There are theorems in which some classes of topological spaces are characterized by means of properties of mappings of these spaces into a single space. For example, it is well known that a compactum X is at most n-dimensional if and only if no mapping of X irto an $(n+1)$-cube has a stable value [$\mathbf{5}$, Theorems VI.1-2, pp. 75-77]. Also, a curve X is tree-like if and only if no mapping of X into a figure eight is homotopically essential [1, Theorem $1, \mathrm{pp} .74-75$; 8, p. 91]. By a curve we mean any at most 1 -dimensional continuum; a continuum is a connected compactum; a compactum is a compact metric space, and a mapping is a continuous function. The aim of the present paper is to prove another theorem of this type. We distinguish a class of curves and show that it is characterized by imposing the condition that no weakly confluent mapping [13] can transform the given curve onto a simple triod (see 2.4). A related result is applied to a generalized branch-point covering theorem (see 3.2). In addition, two results are obtained in which we establish some characterizations of weakly confluent images and preimages of the product of the Cantor set and an arc (see 1.1 and 2.2). Continua that are such images turn out to be identical with regular curves (see 1.3).

1. Paths in regular curves. Let X be a compactum. We denote by $C(X)$ the collection of all non-empty continua contained in X. We say that X has property S uniformly provided, for each number $\epsilon>0$, there exists a positive integer $k=k(\epsilon)$ such that if $K \in C(X)$, then K is the union of a finite sequence of k non-empty continua each of diameter less than ϵ. Thus, if a continuum has property S uniformly, it is hereditarily locally connected [23, (15.1), p. 20]. There exist, however, hereditarily locally connected continua which do not have property S uniformly; such as, by 1.2 below, any hereditarily locally connected continuum which is not a regular curve [11, pp. 283-284]. By a regular curve we understand a continuum possessing a basis of open sets whose boundaries are finite. In particular, each dendrite is a regular curve [11, Theorem 4, p. 301].

We denote by $I=[0,1]$ the unit closed interval of the real line. A path in a metric space X is a mapping $\varphi: I \rightarrow X$. We say that a family Φ of paths in X is equicontinuous provided, for each number $\epsilon>0$, there exists a number $\delta=$ $\delta(\epsilon)>0$ such that if $\varphi \in \Phi, t_{1}, t_{2} \in I$ and $\left|t_{1}-t_{2}\right|<\delta$, then dist $\left(\varphi\left(t_{1}\right), \varphi\left(t_{2}\right)\right)$

[^0]$<\epsilon$. If X and Y are compacta, we say that a mapping $f: X \rightarrow Y$ is weakly confluent [13, p. 98] provided it induces a surjective function $f_{C}: C(X) \rightarrow$ $C(Y)$, that is, for each continuum $L \in C(Y)$, there exists a continuum $K \in$ $C(X)$ such that $f(K)=L$. Compositions of weakly confluent mappings are weakly confluent $[\mathbf{1 5}, 1.5$, p. 1337]. By C we denote the Cantor set in I.
1.1. Theorem. Let X be a compactum. The following conditions are equivalent:
(i) X has property S uniformly,
(ii) there exists an equicontinuous family Φ of paths in X such that $C(X)=$ $\{\varphi(I): \varphi \in \Phi\}$, and
(iii) there exists a weakly confluent mapping of $C \times I$ onto X.

Proof. The fact that (i) implies (ii) has been stated implicitly in [9, Theorem 3.7 , p. 323]. A classical theorem characterizes locally connected continua as those which are images of some paths. The proof of this theorem given by Sierpiński [22] can be adapted here to get an equicontinuous family of paths in a compactum X under the assumption that X has property S uniformly. Indeed, for $n=1,2, \ldots$, let $k_{n}=k\left(n^{-1}\right)>1$ be an integer such that each non-empty continuum contained in X can be represented as the union of a finite sequence of k_{n} non-empty continua each of diameter less than n^{-1}. Put

$$
\begin{equation*}
h_{0}=1, \quad h_{n}=\left(k_{1} \cdot \ldots \cdot k_{n}\right)^{2} \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

and consider a continuum $K \in C(X)$. We shall define, by induction on n, a finite sequence $\beta_{n}(n=0,1, \ldots)$ of h_{n} non-empty continua such that each pair of adjacent terms in β_{n} has a non-empty intersection and the union of all terms in β_{n} is K. Moreover, for $n=1,2, \ldots$, the terms in β_{n} will be continua of diameters less than n^{-1}. Let $\beta_{0}=(K)$ and suppose β_{n-1} is defined, where $n>0$. Then we have

$$
\beta_{n-1}=\left(B_{1}, \ldots, B_{h_{n-1}}\right), \quad B_{i-1} \cap B_{i} \neq \emptyset \quad\left(i=2, \ldots, h_{n-1}\right)
$$

and $K=B_{1} \cup \ldots \cup B_{h_{n-1}}$. We select points $b_{0} \in B_{1}, b_{i-1} \in B_{i-1} \cap B_{i}(i=$ $\left.2, \ldots, h_{n-1}\right)$ and $b_{h_{n-1}} \in B_{h n-1}$. Since $B_{i} \in C(X)\left(i=1, \ldots, h_{n-1}\right)$, the continuum B_{i} can be represented as the union $B_{i}=B_{i 1} \cup \ldots \cup B_{i k_{n}}$ of a finite sequence of k_{n} non-empty continua $B_{i j}$ each of diameter less than n^{-1}. Without loss of generality, we can assume that $b_{i-1} \in B_{i 1}$ and $b_{i} \in B_{i k_{n}}$. Let i be fixed for a while. Since B_{i} is connected, each two of the continua $B_{i j}$ can be joined together by means of a finite chain of different $B_{i j}$'s in which any two adjacent links intersect. The number of links in such a chain does not exceed k_{n}, and the number of chains needed to connect all the continua in the sequence ($B_{i 1}, \ldots$, $B_{i k_{n}}$) is $k_{n}-1$. Thus we can rearrange $B_{i j}$'s, allowing some repetitions, to obtain a representation of B_{i} as the union

$$
B_{i}={B^{\prime}}_{i 1} \cup \ldots \cup{B^{\prime}}_{i k^{2}{ }_{n}},
$$

where $B^{\prime}{ }_{i 1}=B_{i 1}, B^{\prime}{ }_{i k^{2}}{ }_{n}=B_{i k_{n}}$, any two adjacent terms in this new sequence intersect, each $B_{i j}{ }^{\prime}$ is one of $B_{i j}{ }^{\prime}$ s, and each $B_{i j}$ is taken at least once as one of
$B^{\prime}{ }_{i j}$'s. We define

$$
\beta_{n}=\left(B^{\prime}{ }_{11}, \ldots, B^{\prime}{ }_{1 k_{n} 2}, \ldots, B^{\prime}{ }_{11}, \ldots, B^{\prime}{ }_{1 k_{n}^{2}}, \ldots, B_{k_{n-1} 1}^{\prime}, \ldots, B_{{ }_{n n-1} k^{2} n}^{\prime}\right) .
$$

The number of terms in β_{n} is $h_{n-1} \cdot k_{n}{ }^{2}=h_{n}$, by (1), and we also have

$$
b_{i-1} \in B_{i-1, k_{n}} \cap B_{i, 1}={B^{\prime}}_{i-1, k^{2} n}^{\prime} \cap B_{i, 1}^{\prime} \quad\left(i=2, \ldots, h_{n-1}\right),
$$

which implies that each pair of adjacent terms in β_{n} has a non-empty intersection. The union of all $B^{\prime}{ }_{i j}$'s is the same as the union of all $B_{i j}$'s; hence it is K. The diameters of the continua $B^{\prime}{ }_{i j}$ from β_{n} are all less than n^{-1}, since so were the diameters of the continua $B_{i j}$.

Now, take the partition of the unit closed interval I into h_{n} congruent closed subintervals, and denote by $\alpha_{n}(n=0,1, \ldots)$ the finite sequence of all these closed intervals of length $h_{n}{ }^{-1}$ ordered by the natural ordering of the real line. Let the i th term in α_{n} correspond to the i th term in $\beta_{n}\left(i=1, \ldots, h_{n}\right)$. For $t \in I$, denote by $B_{n}(t)$ the union of all terms in β_{n} corresponding to those terms of α_{n} which contain t. There is only one such term in α_{n} or two adjacent ones. Consequently, $B_{n}(t)$ is a continuum of diameter less than $2 / n(n=1,2, \ldots)$. We notice that α_{n} is a refinement of α_{n-1}, and if $B \in \beta_{n-1}$ and $B^{\prime} \in \beta_{n}$ correspond to $A \in \alpha_{n-1}$ and $A^{\prime} \in \alpha_{n}$, respectively, then $A^{\prime} \subset A$ implies $B^{\prime} \subset B$. It follows that

$$
B_{n}(t) \subset B_{n-1}(t) \quad(n=1,2, \ldots ; t \in I)
$$

and, as a result, the intersection $B_{0}(t) \cap B_{1}(t) \cap \ldots$ is a single point. We set this point to be $\varphi(t)$. Clearly, $\varphi(I)=K$. Let Φ be the family of all functions φ so obtained, one for each $K \in C(X)$. We show that Φ is an equicontinuous family of paths. In fact, if $\epsilon>0$, there exists a positive integer m such that $4 / m<\epsilon$. We put $\delta=h_{m}{ }^{-1}$ and observe that if $t_{1}, t_{2} \in I$ and $\left|t_{1}-t_{2}\right|<\delta$, then the points t_{1} and t_{2} are not separated by any interval of the sequence α_{m}, as these intervals have all lengths equal to δ. Thus there exist $A^{*}, A^{* *} \in \alpha_{m}$ such that $t_{1} \in A^{*}, t_{2} \in A^{* *}$ and either $A^{*}=A^{* *}$ or $A^{*}, A^{* *}$ are adjacent terms in α_{m}. In any case, for each $K \in C(X)$, if β_{m} is the sequence constructed for K, then the corresponding terms $B^{*}, B^{* *}$ in β_{m} have a non-empty intersection, whence $B_{m}\left(t_{1}\right) \cap B_{m}\left(t_{2}\right) \neq \emptyset$. Therefore the diameter of $B_{m}\left(t_{1}\right) \cup B_{m}\left(t_{2}\right)$ is less than $4 / m$. But $\varphi\left(t_{1}\right) \in B_{m}\left(t_{1}\right)$ and $\varphi\left(t_{2}\right) \in B_{m}\left(t_{2}\right)$, which yields

$$
\operatorname{dist}\left(\varphi\left(t_{1}\right), \varphi\left(t_{2}\right)\right)<4 / m<\epsilon
$$

and we conclude that the compactum X satisfies condition (ii).
To prove that (ii) implies (iii), we follow an idea due to Kelley [6]. Consider an equicontinuous family Φ of paths in X such that $C(X)=\{\varphi(I): \varphi \in \Phi\}$. Take Φ with the pointwise convergence topology, that is, interpret Φ as a subspace of the Cartesian product Π, where

$$
\Pi=\underset{t \in I}{\mathbf{P}} X_{t}, \quad X_{t}=X \quad(t \in I)
$$

Let F be the closure of Φ in Π. Since Π is a compact Hausdorff space, so is F. Also, F is contained in the space X^{I} of all paths and F is equicontinuous [3, Lemma 3, p. 332], whence the pointwise convergence topology in F coincides with the compact-open topology [3, Lemma 2, p. 332]. The space F with the compact-open topology is metrizable [3, Theorem 6, p. 182] which means that F is a compactum. Let $g: C \rightarrow F$ be a mapping of the Cantor set C onto F. Then the function f defined by the formula

$$
\begin{equation*}
f(c, t)=[g(c)](t) \quad(c \in C, t \in I) \tag{2}
\end{equation*}
$$

is continuous [11, Theorem 1, p. 77]. Hence it is a mapping $f: C \times I \rightarrow X$. If $L \in C(X)$, there exists a path $\varphi \in \Phi$ such that $\varphi(I)=L$. We have $\varphi \in F$ and there is a point $c \in C$ with $g(c)=\varphi$. Setting $K=\{c\} \times I$, we obtain $f(K)=[g(c)](I)=\varphi(I)=L$, by (2). Consequently, f is a weakly confluent mapping of $C \times I$ onto X.

Finally, (iii) implies (i). To this end, assume that $f: C \times I \rightarrow X$ is a weakly confluent mapping and $\epsilon>0$ is a number. Let \mathbf{G} denote the collection of all open subsets of X of diameters less than ϵ. Let $\lambda>0$ be a Lebesgue number of the open cover of $C \times I$ consisting of the sets $f^{-1}(G)$, where $G \in \mathbf{G}$. There exists a positive integer k such that $k^{-1}<\lambda$. Suppose $L \in C(X)$ is a nondegenerate continuum. Since f is weakly confluent, there exists a continuum K contained in $C \times I$ such that $f(K)=L$. Thus $K=\left\{c_{0}\right\} \times I_{0}$, where $c_{0} \in C$ and I_{0} is a closed subinterval of I. We take the partition

$$
\begin{equation*}
I_{0}=I_{1} \cup \ldots \cup I_{k} \tag{3}
\end{equation*}
$$

of I_{0} into k congruent closed subintervals. The diameter of each set $\left\{c_{0}\right\} \times I_{i}$ ($i=1, \ldots, k$) does not exceed k^{-1}, so it is less than λ and, consequently, the image $L_{i}=f\left(\left\{c_{0}\right\} \times I_{i}\right)$ is a subset of an element of \mathbf{G}. Hence each $L_{i}(i=1$, \ldots, k) is a non-empty continuum of diameter less than ϵ, and (3) implies that

$$
L=f(K)=f\left(\left\{c_{0}\right\} \times I_{0}\right)=f\left(\left\{c_{0}\right\} \times\left(I_{1} \cup \ldots \cup I_{k}\right)\right)=L_{1} \cup \ldots \cup L_{k} .
$$

This completes the proof of Theorem 1.1.

1.2. A continuum X is a regular curve if and only if X has property S uniformly.

Proof. Let X be a non-degenerate regular curve and let $\epsilon>0$ be a number. There exist open sets $G_{i} \subset X(i=1, \ldots, n)$, each of diameter less than ϵ, such that the boundary $\bar{G}_{i} \backslash G_{i}$ consists of exactly k_{i} points, where k_{i} is a positive integer, and $X=G_{1} \cup \ldots \cup G_{n}$. We show that $k=k_{1}+\ldots+k_{n}$ can serve as an integer needed to have X possess property S uniformly. Let $K \in$ $C(X)$. It is enough to prove that each set $\bar{G}_{i} \cap K(i=1, \ldots, n)$ has a finite number, h_{i}, of components and $0 \leqq h_{i} \leqq k_{i}$. If $K \subset \bar{G}_{i}$, then $h_{i}=1$. If $K \not \subset \bar{G}_{i}$, then $\bar{G}_{i} \cap K$ is a closed proper subset of the continuum K and, consequently, the number of components of $\bar{G}_{i} \cap K$ does not exceed the number of components of the set $\operatorname{Fr}\left(\bar{G}_{i} \cap K\right)\left[\mathbf{1 1}\right.$, Theorem 3, p. 173]. Thus $h_{i} \leqq k_{i}$,
since we have

$$
\begin{aligned}
& \operatorname{Fr}\left(\bar{G}_{i} \cap K\right)=\left(\bar{G}_{i} \cap K\right) \cap \overline{K \backslash\left(\bar{G}_{i} \cap K\right)} \\
& \quad=\bar{G}_{i} \cap{\overline{K \backslash \bar{G}_{i}}}_{i} \subset \bar{G}_{i} \cap{\overline{X \backslash G_{i}}}=\bar{G}_{i} \backslash G_{i} .
\end{aligned}
$$

Assume now that X is a continuum and X has property S uniformly. Then X is locally connected. Let $\epsilon>0, p \in X$, and let U be the open ball in X having radius ϵ and center p. To prove the regularity of X, it is sufficient to show that a finite set separates p from $X \backslash U$ in X. Let k be a positive integer such that each continuum in $C(X)$ is the union of a finite sequence of k non-empty continua of diameters less than $\epsilon / 2$. We show that a ($k-1$)-point set separates p from $X \backslash U$. Suppose, on the contrary, that such a set does not exist. It follows [19, p. 216] that there exist k arcs in X each joining the point p and a point of $X \backslash U$ such that by removing the end-points one obtains pairwise disjoint sets. The distance between p and any point of $X \backslash U$ is at least ϵ. Cutting off small parts of these arcs at the end-points in $X \backslash U$, we can get $\operatorname{arcs} A_{i}(i=1, \ldots, k)$ with end-points p and p_{i}, respectively, such that

$$
\begin{equation*}
\epsilon / 2<\operatorname{dist}\left(p, p_{i}\right), \quad A_{i} \cap A_{j}=\{p\} \quad(i, j=1, \ldots, k ; i \neq j) \tag{4}
\end{equation*}
$$

The set $B=A_{1} \cup \ldots \cup A_{k}$ is a continuum and $p \in B$. Let $B=B_{1} \cup \ldots$. $\cup B_{k}$, where B_{i} 's are continua of diameters less than $\epsilon / 2$. For $i=1, \ldots, k$, let m_{i} be a subscript such that $p_{i} \in B_{m_{i}}$. We have $p \notin B_{m_{i}}$ and $A_{i} \backslash\{p\}$ is a component of $B \backslash\{p\}$, by (4). Hence $B_{m_{i}} \subset A_{i} \backslash\{p\}$ and $m_{i} \neq m_{j}$ for $i \neq j$. As a result, (m_{1}, \ldots, m_{k}) is a permutation of $(1, \ldots, k)$ and

$$
B=B_{m_{1}} \cup \ldots \cup B_{m_{k}} \subset B \backslash\{p\}
$$

which contradicts the fact that $p \in B$. We have shown that X is a regular curve.
Remarks. The present paper was referred to in $[\mathbf{1 4}, 2.8$, p. 53$]$ as containing another theorem on weakly confluent mappings. Specifically, our "Theorem $1.2^{\prime \prime}$ was supposed to be the following result: each weakly confluent image of an acyclic curve is a curve. This result was obtained by the first author right after the Oklahoma Topology Conference, in April, 1972 (see [13, p. 102]). Its stronger version, however, was published in [15, Theorem 5.5, p. 1347]. In the meantime, the original result with exactly the same proof was obtained independently by Krasinkiewicz [7, Theorem 2, p. 481]. Also in April, 1972, we established some results which are included in the present paper (in particular, a part of Theorem 2.4 of the next section).
1.3. Corollary. A continuum X is a regular curve if and only if X satisfies (any) one of conditions (i)-(iii).

1.4. Corollary. Each dendrite is a weakly confluent image of $C \times I$.

2. Subsets of non-Suslinian compacta. We say that a continuum T is a triod $[\mathbf{2 0}, \mathrm{p} .218]$ provided there exists a continuum C_{0}, called a core of T,
and three continua C_{1}, C_{2}, C_{3} such that C_{0} is a proper subcontinuum of C_{i} ($i=1,2,3$) and

$$
C_{0}=C_{1} \cap C_{2}=C_{1} \cap C_{3}=C_{2} \cap C_{3}, \quad T=C_{1} \cup C_{2} \cup C_{3}
$$

If, in addition, the continua C_{1}, C_{2}, C_{3} are arcs and C_{0} is a one-point set, $C_{0}=\left\{v_{0}\right\}$, such that v_{0} is an end-point of $C_{i}(i=1,2,3)$, then the triod T is said to be a simple triod and v_{0} is the vertex of T. A compactum X is called atriodic provided X contains no triod. We say that a compactum X is Suslinian [12, p. 131] provided each collection of pairwise disjoint non-degenerate continua contained in X is countable. We shall give several characterizations of atriodic Suslinian compacta (see 2.4). Before doing so, we need to establish some facts concerning the structure of non-Suslinian compacta.
2.1. A compactum X is non-Suslinian if and only if there exist a closed subset $A \subset X$ and a number $\epsilon_{0}>0$ such that the components of A are all of diameters greater than or equal to ϵ_{0}, the space of components of A is a Cantor set, and the decomposition of A into components is continuous.

Proof. The condition is obviously sufficient for X to be non-Suslinian. We prove it is also necessary. Let X be a non-Suslinian compactum, and let $\mathbf{C} \subset C(X)$ be an uncountable collection of pairwise disjoint non-degenerate continua. The elements of \mathbf{C} have positive diameters. Thus there exist a number $\epsilon_{0}>0$ and an uncountable sub-collection $\mathrm{C}_{0} \subset \mathbf{C}$ such that $\epsilon_{0} \leqq$ $\operatorname{diam} K$ for $K \in \mathbf{C}_{0}$.

We consider $C(X)$ (and also the collection of all non-empty closed subsets of X) to be space equipped with the Hausdorff distance [10, p. 214]. So metrized, $C(X)$ is a compactum [11, Theorem 1, p. 45, p. 47, Theorem 14, p. 139]. Hence there exists a uncountable subcollection $\mathbf{C}_{1} \subset \mathbf{C}_{0}$ such that \mathbf{C}_{1} as a subspace of $C(X)$ is dense in itself [10, p. 253]. For each finite sequence $\left(k_{1}, \ldots, k_{n}\right)$, where $k_{i}=0,1(i=1, \ldots, n)$, we shall define, by induction on n, a continuum $K_{k_{1} \ldots k_{n}} \in \mathbf{C}_{1}$ and open set $W_{k_{1} \ldots k_{n}} \subset X$ such that
(5) $\quad \operatorname{dist}\left(K_{k_{1} \ldots k_{n} l}, K_{k_{1} \ldots k_{n}}\right)<2^{-n} \quad(l=0,1 ; n=1,2, \ldots)$,
(6) $\quad \operatorname{dist}\left(K_{k_{1} \ldots k_{n}}, \bar{W}_{k_{1} \ldots k_{n}}\right)<2^{-n} \quad(n=1,2, \ldots)$,
(7) $\quad K_{k_{1} \ldots k_{n}} \subset W_{k_{1} \ldots k_{n}} \quad(n=1,2, \ldots)$,
(8) $\quad \bar{W}_{k_{1} \ldots k_{n} l} \subset W_{k_{1} \ldots k_{n}} \quad(l=0,1 ; n=1,2, \ldots)$,
(9) $\quad \bar{W}_{0} \cap \bar{W}_{1}=\emptyset=\bar{W}_{k_{1} \ldots k_{0} 0} \cap \bar{W}_{k_{1} \ldots k_{n} 1} \quad(n=1,2, \ldots)$.

Let $K_{0}, K_{1} \in \mathbf{C}_{1}$ be two distinct continua and let $W_{0}, W_{1} \subset X$ be open sets such that $K_{j} \subset W_{j}$, dist $\left(K_{j}, \bar{W}_{j}\right)<2^{-1}(j=0,1)$ and $\bar{W}_{0} \cap \bar{W}_{1}=\emptyset$. The existence of such W_{j} 's follows from the fact that K_{j} 's being elements of $\mathbf{C}_{1} \subset \mathbf{C}$ are disjoint. Suppose that $K_{k_{1} \ldots k_{n}}$ and $W_{k_{1} \ldots k_{n}}$ are defined, where $n>0$, and that each of conditions (5)-(9) is satisfied whenever applicable. Since \mathbf{C}_{1} is dense in itself, there exist, by (7), distinct continua $K_{k_{1} \ldots k_{n} 0}, K_{k_{1} \ldots k_{n} 1} \in \mathbf{C}_{1}$
such that condition (5) holds and

$$
K_{k_{1} \ldots k_{n} l} \subset W_{k_{1} \ldots k_{n}}
$$

for $l=0,1$. Again, since these two continua are disjoint, it is possible to find open neighborhoods $W_{k_{1} \ldots k_{n} 0}$ and $W_{k_{1} \ldots k_{n} 1}$ of them in X, respectively, such that conditions (8) and (9) hold, and

$$
\operatorname{dist}\left(K_{k_{1} \ldots k_{n} l}, \bar{W}_{k_{1} \ldots k_{n} l}\right)<2^{-n-1}
$$

for $l=0,1$. Therefore conditions (6) and (7) are also satisfied.
We claim that the set A defined by the formula

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{k i} \bar{W}_{k_{1} \ldots k_{n}}
$$

has all the properties required in 2.1. Clearly, A is a closed subset of X. To check the components of A, we first interpret the Cantor set C as the Cartesian product

$$
C={\underset{i=1}{\infty}\{0,1\}_{i}, ~}_{i}
$$

of countably many copies of the discrete 2 -point space $\{0,1\}$. Then, for each point $c \in C$, where $c=\left(k_{1}, k_{2}, \ldots\right)$ and $k_{i}=0,1(i=1,2, \ldots)$, we define a set $F(c) \subset A$ by

$$
F(c)=\bigcap_{n=1}^{\infty} \bar{W}_{k_{1} \ldots k_{n}} .
$$

It will be shown that the collection of the sets $F(c)(c \in C)$ is that of components of A. Since

$$
\begin{equation*}
F(c)=\operatorname{Lim}_{n \rightarrow \infty} \bar{W}_{k_{1} \ldots k_{n}}=\operatorname{Lim}_{n \rightarrow \infty} K_{k_{1} \ldots k_{n}} \quad\left(c=\left(k_{1}, k_{2}, \ldots\right)\right) \tag{10}
\end{equation*}
$$

by (6) and (8) [10, (8), p. $339 ; \mathbf{1 1}$, p. 49], it follows that $F(c)$ is a non-empty continuum [11, Theorem 6, p. 171]. The continua $K_{k_{1} \ldots k_{n}}$ being elements of $\mathbf{C}_{1} \subset \mathbf{C}_{0}$ have diameters greater than or equal to ϵ_{0}, and so does their limit $F(c)$. The definitions of A and $F(c)$ imply, by (8) and (9), that every point of A is a point of some $F(c)(c \in C)$. Thus A is the union of the continua $F(c)$ $(c \in C)$. If $c, c^{\prime} \in C$ and $c \neq c^{\prime}$, the points c and c^{\prime} differ on at least one coordinate, say $k_{m} \neq k^{\prime}{ }_{m}$, where $c^{\prime}=\left(k^{\prime}{ }_{1}, k^{\prime}{ }_{2}, \ldots\right)$. Then

$$
F(c) \subset \bar{W}_{k_{1} \ldots k_{m}}, \quad F\left(c^{\prime}\right) \subset \bar{W}_{k^{\prime} 1 \ldots k^{\prime} m}
$$

and these \bar{W} 's are disjoint sets, by (9). Hence $F(c) \cap F\left(c^{\prime}\right)=\emptyset$. Moreover, the common part of A with each of these \bar{W} 's is a closed-open subset of A, by (8) and (9). This means that the compactum A is not connected between $F(c)$ and $F\left(c^{\prime}\right)$. Consequently, the continua $F(c)(c \in C)$ do, indeed, coincide with the components of A.

Let f be the function defined on A by setting $f(x)=c$ if and only if $x \in F(c)$. In other words, we have $f^{-1}(c)=F(c)$ for $c \in C$, and $f(A)=C$. Let the points $x \in A$ and $c \in C$, with $f(x)=c=\left(k_{1}, k_{2}, \ldots\right)$, be fixed for a while. We denote by $V_{n}(n=1,2, \ldots)$ the subset of C consisting of all the points of C whose first n coordinates coincide with those of c, that is, are equal to k_{1}, \ldots, k_{n}, respectively. Suppose $x^{\prime} \in A$ is an arbitrary point and $f\left(x^{\prime}\right)=c^{\prime}=\left(k^{\prime}{ }_{1}, k^{\prime}{ }_{2}\right.$, \ldots. .). If $k_{i} \neq k^{\prime}{ }_{i}$ for at least one subscript $i \leqq n$, then we have

$$
x^{\prime} \in f^{-1}\left(c^{\prime}\right)=F\left(c^{\prime}\right) \subset \bar{W}_{k^{\prime} 1 \ldots k^{\prime} n} \subset X \backslash \bar{W}_{k_{1} \ldots k_{n}} \subset X \backslash W_{k_{1} \ldots k_{n}}
$$

by (8) and (9). Hence $x^{\prime} \notin W_{k_{1} \ldots k_{n}}$. Thus if $x^{\prime} \in W_{k_{1} \ldots k_{n}}$, then $k_{i}=k^{\prime}{ }_{t}$ for $i=1, \ldots, n$, which means that $c^{\prime} \in V_{n}$. Put $U_{n}=A \cap W_{k_{1} \ldots k_{n}}$. We have just proved that $f\left(U_{n}\right) \subset V_{n}(n=1,2, \ldots)$. Moreover, the sets U_{n} are open in A and

$$
x \in f^{-1}(c)=F(c) \subset A \cap \bar{W}_{k_{1} \ldots k_{n}+1} \subset A \cap W_{k_{1} \ldots k_{n}}=U_{n}
$$

by (8). This implies that the function f is continuous at x, since the sets $V_{n}(n=1,2, \ldots)$ constitute standard basic neighborhoods of c in C. On the other hand, the function F transforms the Cantor set C into the compactum $C(X)$ metrized by the Hausdorff distance. If $c^{\prime}=\left(k_{1}{ }^{\prime}, k_{2}{ }^{\prime}, \ldots\right)$ is any point of V_{n}, then $k_{i}{ }^{\prime}=k_{i}$ for $i=1, \ldots, n$, and we obtain

$$
F\left(c^{\prime}\right)=\operatorname{Lim}_{m \rightarrow \infty} K_{k^{\prime} 1 \ldots k^{\prime} m}=\operatorname{Lim}_{m \rightarrow \infty} K_{k_{1} \ldots k_{n k} k_{n}+1 \ldots k_{n}^{\prime}+m}
$$

by (10). It follows from (5) that

$$
\operatorname{dist}\left(K_{k_{1} \ldots k_{n} k^{\prime} n+1 \ldots k^{\prime} n+m}, K_{k_{1} \ldots k_{n}}\right)<2^{-(n+m-1)}+\ldots+2^{-n}<2^{1-n}
$$

for $m=1,2, \ldots$ We conclude that

$$
\operatorname{dist}\left(F\left(c^{\prime}\right), K_{k_{1} \ldots k_{n}}\right) \leqq 2^{1-n} \quad\left(c^{\prime} \in V_{n}\right)
$$

and, in particular, the latter inequality holds for $c^{\prime}=c$ as $c \in V_{n}$. Thus

$$
\operatorname{dist}\left(F(c), F\left(c^{\prime}\right)\right) \leqq 2^{2-n}<2^{3-n} \quad\left(c^{\prime} \in V_{n}\right)
$$

which means that F transforms the set $V_{n}(n=1,2, \ldots)$ into the open ball in $C(X)$ with center $F(c)$ and radius 2^{3-n}. Since these balls form basic neighborhoods of $F(c)$ in $C(X)$, and the sets V_{n} are open in C, the function F is continuous at c.

As a result, the functions $f: A \rightarrow C$ and $F: C \rightarrow C(X)$ are continuous. The components of A are the sets $F(c)=f^{-1}(c)(c \in C)$. The continuity of f implies that the (quotient) space of components of A is homeomorphic to $f(A)=C$ [3, Theorem 3, p. 84]. The continuity of $F=f^{-1}$ implies that the decomposition of the compactum A into its components is continuous [10, Theorem 2, p. 173, Theorem 4, p. 174; 11, Theorem 1, p. 68]. The proof of 2.1 is now complete.
2.2. Theorem. A compactum X is non-Suslinian if and only if there exist a closed subset $A \subset X$ and a weakly confluent mapping of A onto $C \times I$.

Proof. Let $A \subset X$ be a closed subset such that a weakly confluent mapping transforms A onto $C \times I$. Then, for each point $c \in C$, a continuum contained in A is mapped onto $\{c\} \times I$. These continua are non-degenerate and pairwise disjoint, whence X is non-Suslinian.

Let us assume that X is non-Suslinian, and let $A \subset X$ be a closed subset which satisfies the conditions from 2.1. Let $p: A \rightarrow p(A)$ denote the natural projection of A onto the (quotient) space $p(A)$ of components of A. Then $p(A)$ is a Cantor set. Let us take a point $y_{0} \in p(A)$ and observe that $p^{-1}\left(y_{0}\right)$ is nondegenerate. Select two points $x_{0}, x_{1} \in p^{-1}\left(y_{0}\right), x_{0} \neq x_{1}$. There exists a continuous real-valued function $g: A \rightarrow R$ such that $g\left(x_{0}\right)=-1$ and $g\left(x_{1}\right)=2$. The sets

$$
\begin{equation*}
U_{0}=g^{-1}(\{t: t<0\}), \quad U_{1}=g^{-1}(\{t: t>1\}) \tag{11}
\end{equation*}
$$

are open subsets of A and $x_{i} \in U_{i}(i=0,1)$. Hence $y_{0}=p\left(x_{i}\right) \in p\left(U_{i}\right)$ ($i=0,1$). Because the decomposition of A into its components $p^{-1}(y)$ is continuous, the mapping p is open [11, Theorem 1, p. 68]. Thus the sets $p\left(U_{0}\right)$ and $p\left(U_{1}\right)$ are open subsets of $p(A)$. Their common part is non-empty since it contains y_{0}. Consequently, there exists a topological copy C^{\prime} of the Cantor set C such that $C^{\prime} \subset p\left(U_{0}\right) \cap p\left(U_{1}\right)$. Let $h: C^{\prime} \rightarrow C$ be a homeomorphism of C^{\prime} onto C. Since $p(A)$ is also a Cantor set, there exists a retraction $r_{1}: p(A) \rightarrow C^{\prime}$ of $p(A)$ onto C^{\prime}. Let $r_{2}: R \rightarrow I$ be the retraction of the real line R onto I defined by the formula

$$
r_{2}(t)=\left\{\begin{array}{lc}
0 & t \leqq 0, \\
t & t \in I, \\
1 & t \geqq 1 .
\end{array}\right.
$$

A mapping $f: A \rightarrow C \times I$ is now defined by

$$
\begin{equation*}
f(x)=\left(h r_{1} p(x), r_{2} g(x)\right) \quad(x \in A) \tag{12}
\end{equation*}
$$

and we prove that f is weakly confluent. If $L \subset C \times I$ is a non-empty continuum, there is a point $c \in C$ such that $L \subset\{c\} \times I$. Then the point $y=h^{-1}(c)$ belongs to C^{\prime}, whence $y \in p\left(U_{0}\right) \cap p\left(U_{1}\right)$. Let $a_{i} \in U_{i}(i=0,1)$ be points such that $p\left(a_{i}\right)=y$. We have $g\left(a_{0}\right)<0$ and $g\left(a_{1}\right)>1$, by (11), and thus $r_{2} g\left(a_{0}\right)=0$ and $r_{2} g\left(a_{1}\right)=1$. If $x \in p^{-1}(y)$, then $h r_{1} p(x)=h r_{1}(y)=h(y)=c$. Therefore $f\left(p^{-1}(y)\right) \subset\{c\} \times I$, by (12). Since the continuum $p^{-1}(y)$ contains both points a_{0} and a_{1}, its image under f contains the end-points $f\left(a_{0}\right)=(c, 0)$ and $f\left(a_{1}\right)=(c, 1)$ of the arc $\{c\} \times I$, by (12). We get $f\left(p^{-1}(y)\right)=\{c\} \times I$, so that $f \mid p^{-1}(y)$ is a weakly confluent mapping of $p^{-1}(y)$ onto $\{c\} \times I[\mathbf{2 1}, \mathrm{p} .236]$. It means there exists a continuum $K \subset p^{-1}(y)$ such that $f(K)=L$, i.e., f is weakly confluent, and 2.2 is proved.
2.3. If X is a non-Suslinian compactum and D is a dendrite, then there exists a weakly confluent mapping of X onto D.

Proof. By 2.2, we have a closed subset $A \subset X$ and a weakly confluent mapping $f: A \rightarrow C \times I$ of A onto $C \times I$. By 1.4, there exists a weakly confluent mapping $g: C \times I \rightarrow D$ of $C \times I$ onto D. The composite $g f$ is a weakly confluent mapping of A onto D. Let $f^{*}: X \rightarrow D$ be a continuous extension of $g f$ over X [11, Theorem 16, p. 344]. Clearly, f^{*} is also weakly confluent.

Remark. Several earlier results of other authors [4, Examples 1-2; 18, Example (5.20)] are jointly generalized in 2.3 , since the compacta considered by them are all non-Suslinian.
2.4. Theorem. Let X be a compactum. The following conditions are equivalent:
(I) X is atriodic and Suslinian,
(II) each weakly confluent image of X is atriodic and Suslinian,
(III) each weakly confluent image of X is atriodic, and
(IV) no mapping of X onto a simple triod is weakly confluent.

Consequently, a continuum is an atriodic Suslinian curve if and only if no mapping of it onto a simple triod is weakly confluent.

Proof. Let X satisfy (I) and let f be a weakly confluent mapping of X. Evidently, $f(X)$ is Suslinian. That $f(X)$ is atriodic has been proved in $[4$, Theorem 5$]$ under the assumption of X being a continuum. The connectedness of X, however, has not been used there, and the identical proof works in our slightly more general situation with X being a compactum. Thus (I) implies (II). Furthermore, (II) implies (III), and (III) implies (IV) trivially.

The following argument proves that (IV) implies (I). Suppose condition (I) is violated, i.e., X is either non-atriodic or non-Suslinian. If X is non-Suslinian, the existence of a weakly confluent mapping of X onto a simple triod is guaranteed by 2.3 , so that condition (IV) does not hold. We can then assume that X is non-atriodic, and let $T \subset X$ be a triod with a core C_{0}. Let S be a simple triod with a vertex v_{0}. We have three arcs A_{1}, A_{2}, A_{3} which form this simple triod, i.e., S is their union, and v_{0} is the only common point of any two of them and an end-point of each. Let $a_{i}(i=1,2,3)$ denote the end-point of the $\operatorname{arc} A_{i}$ different from v_{0}. We also have three continua C_{1}, C_{2}, C_{3} which form the triod T, i.e., T is their union, and C_{0} is the common part of any two of them and a proper subcontinuum of each. For $i=1,2,3$, let $x_{i} \in C_{i} \backslash C_{0}$ be a point and let $f_{i}: C_{i} \rightarrow A_{i}$ be a mapping such that $f_{i}\left(x_{i}\right)=a_{i}$ and $f_{i}^{-1}\left(v_{0}\right)=C_{0}$. We define a mapping $f: T \rightarrow S$ by setting $f(x)=f_{i}(x)$ for $x \in C_{i}(i=1,2,3)$. Since f_{i} and f_{j} coincide on $C_{0}=C_{i} \cap C_{j}(i \neq j)$, the mapping f is well-defined. Since C_{i} is a continuum and $f\left(C_{i}\right)$ contains both end-points of the $\operatorname{arc} A_{i}$, we obtain $f\left(C_{i}\right)=A_{i}(i=1,2,3)$, and thus f_{i} is a weakly confluent mapping of C_{i} onto $A_{i}[\mathbf{2 1}, \mathrm{p} .236]$. We show that f is a weakly confluent mapping of T onto S. Let $L \subset S$ be a non-empty continuum. If $v_{0} \notin L$, then $L \subset A_{i}$ for some $i=1,2,3$, and because f_{i} is weakly confluent, there exists a continuum $K \subset$
$C_{i} \subset T$ such that $f(K)=f_{i}(K)=L$. If $v_{0} \in L$, then $L_{i}=A_{i} \cap L(i=1,2,3)$ is a non-empty subcontinuum of A_{i}, and again there exists a continuum $K_{i} \subset$ C_{i} such that $f_{i}\left(K_{i}\right)=L_{i}$. In this case, define

$$
K=C_{0} \cup K_{1} \cup K_{2} \cup K_{3}
$$

and observe that $C_{0}=f_{i}^{-1}\left(v_{0}\right)$ meets $K_{i}(i=1,2,3)$, since $v_{0} \in f_{i}\left(K_{i}\right)$. Therefore K is a continuum and

$$
f(K)=f\left(C_{0}\right) \cup f\left(K_{1}\right) \cup f\left(K_{2}\right) \cup f\left(K_{3}\right)=\left\{v_{0}\right\} \cup L_{1} \cup L_{2} \cup L_{3}=L
$$

Hence $f: T \rightarrow S$ is a weakly confluent mapping. Let $f^{*}: X \rightarrow S$ be a continuous extension of f over X. Obviously, f^{*} is also weakly confluent and $f^{*}(X)=S$, which means that condition (IV) does not hold, completing the proof of 2.4.

Remarks. According to Theorem 2.4, an arc cannot be mapped by a weakly confluent mapping onto a simple triod [2, Corollary II.3]. Also, there is an analogue of the implication (I) \Rightarrow (II) for hereditarily decomposable continua instead of Suslinian ones [18, Theorem (5.16)].
3. Approaching branch-continua and branch-points. A core of any triod contained in a compactum X is called a branch-continuum of X. Similarly, the vertex of any simple triod contained in X is called a branch-point of X.
3.1. If X is a compacium, X_{0} is a branch-continuum of X, and $U \subset X$ is an open subset such that $X_{0} \subset U$, then there exists a triod contained in U whose core is X_{0}.

Proof. Without loss of generality, it can be assumed that X is a triod with a core X_{0}. Let X_{1}, X_{2}, X_{3} be the remaining three continua which form the triod X. We take an open subset $V \subset X$ such that $X_{0} \subset V$ and $\bar{V} \subset U$. Let C_{1} ($i=1,2,3$) be the component of $\bar{V} \cap X_{i}$ which contains the continuum X_{0}. If $X_{i} \subset \bar{V}$, then $C_{i}=X_{i}$. If $X_{i} \not \subset \bar{V}$, then $\bar{V} \cap X_{i}$ is a closed proper subset of the continuum X_{i} and, consequently, C_{i} contains a point of the set

$$
\overline{X_{i} \backslash\left(\bar{V} \cap X_{i}\right)}=\overline{X_{i} \backslash \bar{V}} \subset \overline{X_{i} \backslash V}=X_{i} \backslash V \subset X_{i} \backslash X_{0}
$$

[11, Theorem 1, p. 172]. In both cases, X_{0} is a proper subcontinuum of C_{i} ($i=1,2,3$). Since

$$
\begin{aligned}
C_{i} \cap C_{j} \subset\left(\bar{V} \cap X_{i}\right) \cap\left(\bar{V} \cap X_{j}\right) \subset X_{i} & \cap X_{j} \\
& =X_{0} \quad(i, j=1,2,3 ; i \neq j)
\end{aligned}
$$

we get $C_{i} \cap C_{j}=X_{0}$ for $i, j=1,2,3$ and $i \neq j$. Thus the union $C_{1} \cup C_{2} \cup C_{3}$ is a triod contained in $\bar{V} \subset U$ whose core is X_{0}.
3.2. Theorem. Let $f: X \rightarrow Y$ be a weakly confluent mapping of a Suslinian compactum X onto a compactum Y. If Y_{0} is a branch-continuum of Y and
$U \subset Y$ is an open set containing Y_{0}, then there exists a triod $T \subset X$ such that $f(T) \subset U$.

Consequently, if y_{0} is a branch-point of Y, then there exists an infinite sequence T_{1}, T_{2}, \ldots of triods in X such that

$$
\operatorname{Lim}_{n \rightarrow \infty} f\left(T_{n}\right)=\left\{y_{0}\right\} .
$$

Proof. Let $V \subset Y$ be an open subset such that $Y_{0} \subset V$ and $\bar{V} \subset U$. Then $f \mid f^{-1}(\bar{V}): f^{-1}(\bar{V}) \rightarrow \bar{V}$ is a weakly confluent mapping of the Suslinian compactum $f^{-1}(\bar{V})$ onto \bar{V}. By 3.1, \bar{V} contains a triod, whence $f^{-1}(\bar{V})$ is not atriodic, by 2.4. We conclude that $f^{-1}(\bar{V})$ contains a triod T, and $f(T) \subset \bar{V} \subset U$. This completes the proof of 3.2 .

By a hereditarily arcwise connected compactum we mean any compactum such that each continuum contained in it is arcwise connected.
3.3. If T is a hereditarily arcwise connected triod, then there exists a simple triod $T^{\prime} \subset T$ such that the vertex of T^{\prime} belongs to a core of T.

Proof. Denote by C_{0} a core of T and by C_{1}, C_{2}, C_{3} the other three continua which form the triod T. Select points $c_{i} \in C_{i} \backslash C_{0}(i=1,2,3)$. Since $C_{1} \cup C_{2}$ is a subcontinuum of T, it is arcwise connected, and let $A \subset C_{1} \cup C_{2}$ be an arc with end-points c_{1} and c_{2}. Then A must meet the set $C_{1} \cap C_{2}=C_{0}$, and let $c_{0} \in A \cap C_{6}$ be a point. Hence $c_{0} \neq c_{3}$ and $c_{0} \in C_{3}$. Let $B \subset C_{3}$ be an arc with end-points c_{0} and c_{3}. Since $c_{0} \in A \cap B$, the closed set $A \cap B$ is nonempty. Let v_{0} be the last point of the set $A \cap B$ on the $\operatorname{arc} B$ linearly ordered from c_{0} to c_{3}. Since

$$
v_{0} \in A \cap B \subset\left(C_{1} \cup C_{2}\right) \cap C_{3}=\left(C_{1} \cap C_{3}\right) \cup\left(C_{2} \cap C_{3}\right)=C_{0}
$$

we have $v_{0} \neq c_{i}(i=1,2,3)$. Let B^{\prime} be the subarc of B with end-points v_{0} and c_{3}. The set $T^{\prime}=A \cup B^{\prime}$ is a simple triod and v_{0} is the vertex of T^{\prime}, proving 3.3.
3.4. Corollary. If $f: X \rightarrow Y$ is a weakly confluent mapping of a Suslinian hereditarily arcwise connected compactum X onto a compactum Y, then Y is Suslinian and hereditarily arcwise connected, and the set of branch-points of Y is contained in the closure of the image under f of the set of branch-points of X.

Remarks. Because all hereditarily locally connected continua are Suslinian and hereditarily arcwise connected (although not conversely), a previous result [$\mathbf{2}$, Theorem II.1] is generalized in 3.4. The property of being a point of the closure of a set is a local one, and thus locally weakly confluent mappings [17] could be taken in 3.4 instead of weakly confluent mappings. A result concerning such mappings of hereditarily locally connected continua [17, Theorem (3.2), p. 232] also follows from 3.4. Since all dendroids are hereditarily arcwise connected compacta, the conclusion of 3.4 holds for weakly confluent mappings of Suslinian dendroids (cf. [16, Theorem 5.6, p. 263]). We note that, by 1.4, the condition of X being Suslinian cannot be removed from either 3.2 or 3.4 (cf. [2, Example III.1, p. 413]).

References

1. J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73-84.
2. C. A. Eberhart, J. B. Fugate and G. R. Gordh, Jr., Branchpoint coiering theorems for confluent and weakly confluent maps, Proc. Amer. Math. Soc. 55 (1976), 409-415.
3. R. Engelking, Outline of general topology (North-Holland, 1968).
4. E. E. Grace and Eldon J. Vought, Semi-confluent and weakly confluent images of tree-like and atriodic continua, Fund. Math., to appear.
5. W. Hurewicz and H. Wallman, Dimension theory (Princeton University Press 1948).
6. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
7. J. Krasinkiewicz, Remark on mappings not raising dimension of curves, Pacific J. Math. 55 (1974), 479-481.
8. - On one-point union of two circles, Houston J. Math. 2 (1976), 91-95.
9. W. Kuperberg, Uniformly pathwise connected continua, Proc. Univ. North Carolina Charlotte Topology Conference 1974; Studies in Topology (Academic Press, 1975), 315-324.
10. K. Kuratowski, Topology, vol. I (Academic Press, 1966).
11. - Topology, vol. II (Academic Press, 1968).
12. A. Lelek, On the topology of curves II, Fund. Math. 70 (1971), 131-138.
13. - A classification of mappings pertinent to curve theory, Proc. Univ. Oklahoma Topology Conference 1972, 97-103.
14. - Properties of mappings and continua theory, Rocky Mountain J. Math. 6 (1976), 47-59.
15. A. Lelek and E. D. Tymchatyn, Pseudo-confluent mappings and a classification of continua, Can. J. Math. 27 (1975), 1336-1348.
16. T. Maćkowiak, Semi-confluent mappings and their invariants, Fund. Math. 79 (1973), 251-264.
17. -_Locally weakly confluent mappings on hereditarily locally connected continua, Fund. Math. 88 (1975), 225-240.
18. - The hereditary classes of mappings, Fund. Math. 97 (1977), 123-150.
19. K. Menger, Kurventheorie (Chelsea, 1967).
20. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, 1962.
21. D. R. Read, Confluent and related mappings, Colloq. Math. 29 (1974), 233-239.
22. W. Sierpiński, Sur une condition pour qu'un continu soit une courbe jordanienne, Fund. Math. 1 (1920), 44-60.
23. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1963.

> University of Houston,
> Houston, Texas;
> Wayne State University,
> Detroit, Michigan

[^0]: Received July 19, 1976 and in revised form, July 27, 1977.

