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Abstract

Fix a finite semigroup S and let a1, . . . , ak, b be tuples in a direct power S n. The subpower membership
problem (SMP) for S asks whether b can be generated by a1, . . . , ak. For combinatorial Rees matrix
semigroups we establish a dichotomy result: if the corresponding matrix is of a certain form, then the
SMP is in P; otherwise it is NP-complete. For combinatorial Rees matrix semigroups with adjoined
identity, we obtain a trichotomy: the SMP is either in P, NP-complete, or PSPACE-complete. This result
yields various semigroups with PSPACE-complete SMP including the six-element Brandt monoid, the
full transformation semigroup on three or more letters, and semigroups of all n by n matrices over a field
for n ≥ 2.
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1. Introduction

In this paper we continue the investigation of the subpower membership problem
(SMP) for semigroups started in [1] and [11]. At the Conference on Order, Algebra,
and Logics in Nashville, 2007, Ross Willard proposed the SMP as follows [12]: fix
a finite algebraic structure S with finitely many basic operations. Then the subpower
membership problem for S is the following decision problem:

SMP(S)
Input: {a1, . . . , ak} ⊆ S n, b ∈ S n

Problem: Is b in the subalgebra of S n generated by a1, . . . , ak?

The SMP occurs in connection with the constraint satisfaction problem (CSP) [5].
In the algebraic approach to the CSP, each constraint relation is considered to be a
subalgebra of a power (subpower) of a certain finite algebra whose operations are

The author was supported by the Austrian Science Fund (FWF): P24285.
c© 2018 Australian Mathematical Publishing Association Inc.

127

https://doi.org/10.1017/S1446788718000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000010


128 M. Steindl [2]

the polymorphisms of the constraint language. Instead of storing all elements of a
constraint relation, we can store a set of generators. Checking whether a given tuple
belongs to a constraint relation represented by its generators is precisely the SMP for
the polymorphism algebra.

The input size of SMP(S ) is essentially (k + 1)n. Since the size of the subalgebra
generated by a1, . . . , ak is limited by |S |n, one can enumerate all elements in time
exponential in n using a straightforward closure algorithm. Thus SMP(S ) is in
EXPTIME for every algebra S . However, the following questions arise.

• How does the algebra S affect the computational complexity of SMP(S )?
• For which algebras S can SMP(S ) be solved in time polynomial in k and n?
• When is the problem complete in NP, PSPACE, or EXPTIME? Can it also be

complete in a class other than these?

Mayr [8] proved that the SMP for Mal’cev algebras is in NP. He also showed that for
certain generalizations of groups and quasigroups the SMP is in Kozik [7] constructed
a finite algebra with EXPTIME-complete SMP.

For semigroups the SMP is in PSPACE. This was shown in [1] by Bulatov, Kozik,
Mayr, and the author of the present paper. We also proved that the SMP of the full
transformation semigroup on three letters is PSPACE-complete. It was the first algebra
known to have a PSPACE-complete SMP. In the same paper a dichotomy result for
commutative semigroups was established: if a commutative semigroup S embeds into
a direct product of a Clifford semigroup and a nilpotent semigroup, then SMP(S ) is in
P; otherwise it is NP-complete.

Another dichotomy for idempotent semigroups was established in [11]: if an
idempotent semigroup S satisfies a certain pair of quasiidentities, then SMP(S ) is in
P; otherwise it is NP-complete.

The first result of the current work is a condition for semigroups S under which
SMP(S ) is NP-hard.

Theorem 1.1. Let r, s, t be elements of a finite semigroup S such that s does not
generate a group and rs = st = s. Then SMP(S ) is NP-hard.

We will prove this result in Section 2 by reducing the Boolean satisfiability problem
SAT to SMP(S ).

A semigroup is called combinatorial if every subgroup has one element.
Combinatorial Rees matrix semigroups are of the form M0({1}, I,Λ, P) (see [4,
Theorem 3.2.3]). We give the following alternative notation: for nonempty sets I,Λ
and a matrix P ∈ {0, 1}Λ×I we let SP := (I × Λ) ∪ {0} and define a multiplication on SP

by

[i, λ] · [ j, µ] :=

[i, µ] if P(λ, j) = 1,
0 if P(λ, j) = 0,

0 · [i, λ] := [i, λ] · 0 := 0 · 0 := 0.
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In this paper we allow the matrix P to have zero rows and zero columns. It is easy to
see that SP is indeed a combinatorial semigroup. We say the matrix P ∈ {0, 1}Λ×I has
one block if there exist J ⊆ I, ∆ ⊆ Λ such that for i ∈ I, λ ∈ Λ,

P(λ, i) = 1 if and only if (λ, i) ∈ ∆ × J.

For P =
(

1 0
0 1

)
we call B2 := SP the Brandt semigroup, and for P =

(
1 1
1 0

)
we denote SP

by A2.
In Section 3 we establish the following two results.

Theorem 1.2. Let SP be a finite combinatorial Rees matrix semigroup. If the matrix P
has one block, then SMP(SP) is in P. Otherwise SMP(SP) is NP-complete.

Corollary 1.3. The SMP for the Brandt semigroup B2 and for the semigroup A2 is
NP-complete.

In Section 4 we state a condition for semigroups S under which SMP(S ) is PSPACE-
complete.

Theorem 1.4. Let S be a finite semigroup and s, t, u ∈ S such that:

(a) sts = s;
(b) s does not generate a group;
(c) su = s and tu = t.

Then SMP(S ) is PSPACE-complete.

In the proof we will reduce a PSPACE-complete function composition problem to
SMP(S ). It follows that adjoining an identity to B2 or A2 already results in a PSPACE-
complete SMP.

Theorem 1.5. The SMP for the Brandt monoid B1
2 and for the monoid A1

2 is PSPACE-
complete.

This result is part of Corollary 4.3. Both B1
2 and A1

2 embed into T3, the full
transformation semigroup on three letters. So Theorem 1.5 generalizes the result
from [1] that SMP(T3) is PSPACE-complete. In addition, B2 and A2 are the first
groupoids known to have an NP-complete SMP where adjoining an identity yields
a groupoid with PSPACE-complete SMP. Further examples of semigroups with
PSPACE-complete SMP are listed in Section 4.

In Section 5 we will consider Rees matrix semigroups with adjoined identity and
prove the following trichotomy result.

Theorem 1.6. Let SP be a finite combinatorial Rees matrix semigroup.

(a) If all entries of the matrix P are 1, then SMP(S1
P) is in P.

(b) If P has one block and some entries are 0, then SMP(S1
P) is NP-complete.

(c) Otherwise SMP(S1
P) is PSPACE-complete.

https://doi.org/10.1017/S1446788718000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000010


130 M. Steindl [4]

2. Semigroups with NP-hard SMP

In this section we will prove Theorem 1.1 by reducing the Boolean satisfiability
problem SAT to SMP(S ). It follows that the SMP for a semigroup S is already NP-
hard if S has a J-class that contains both group and nongroup H-classes. Here J
and H denote two of Green’s equivalences. We give the following definitions. For a
semigroup S let

S1 :=

S ∪ {1} if S has no identity,
S otherwise.

For a, b ∈ S let

a J b if S1aS1 = S1bS1,

a ≤J b if S1aS1 ⊆ S1bS1,

a <J b if S1aS1 ⊂ S1bS1,

aH b if S1a = S1b and aS1 = bS1.

Note that S1aS1 = S aS ∪ S a ∪ aS ∪ {a}. The equivalence classes of a with respect to
J andH are denoted by Ja and Ha, respectively.

We write [n] := {1, . . . , n} for n ∈ N and set [0] := ∅. We consider a tuple b in a
direct power S n to be a function b : [n]→ S . This means the ith coordinate of b is
denoted by b(i) rather than bi. The subsemigroup generated by a set A = {a1, . . . , ak} is
denoted by 〈A〉 or 〈a1, . . . , ak〉.

Lemma 2.1. Let s belong to a finite semigroup S . Then s generates a group if and only
if s2 J s.

Proof. If s generates a group, then sk = s for some k ≥ 2. Thus s2 J s.
For the converse let s2 J s. First assume the J-class Js is the minimal ideal of

S . Then Js is a finite simple semigroup by [4, Proposition 3.1.4]. Thus J0
s is a finite

0-simple semigroup. By [2, Theorem 2.52(i)] s generates a group.
Now assume Js is not the minimal ideal of S . Let

J(s) := {r ∈ S | r ≤J s}, I(s) := {r ∈ S | r <J s}.

By [4, Proposition 3.1.4] the principal factor J(s)/I(s) is either null or 0-simple. Since
s2 J s, the second case applies. By [2, Theorem 2.52(i)] s generates a group. �

Lemma 2.2. Let r, s, t be elements of a finite semigroup S such that s does not generate
a group and rs = st = s. Then there are idempotents e, f ∈ S such that es = s f = s and
every product a1 · · · ak in s, e, f in which s occurs at least twice does not yield s.

Proof. First assume s is regular, that is, sus = s for some u ∈ S . Let e and f be the
idempotent powers of su and us respectively. Clearly es = s f = s. Let a1 · · · ak be a
product in s, e, f , and i < j such that ai = a j = s. Let ` ∈ {i + 1, . . . , j} be maximal such
that ai+1 = . . . = a`−1 = f . Then ai · · · a`−1 = s, and thus ai · · · a` ∈ {s2, se}. Note that
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se = s(su)m for some m ∈ N. Now a factor s2 occurs in the product ai · · · a`. Since s
does not generate a group, Lemma 2.1 implies that s2 <J s. Thus a1 · · · a` <J s, and
the result follows.

Now assume s is not regular. By [4, Theorem 3.1.6] the principal factor J(s)/I(s)
is null. Let e and f be the idempotent powers of r and t respectively. Let a1 · · · ak

be a product in s, e, f , and let i < j such that ai = a j = s. Then a1 · · · ai ≤J s and
ai+1 · · · ak ≤J s. Since J(s)/I(s) is null, it follows that a1 · · · ak <J s. �

Proof of Theorem 1.1. Let S satisfy the assumptions. We reduce the Boolean
satisfiability problem SAT to SMP(S ). SAT is NP-complete [3], and we give the
following definition:

SAT
Input: Clauses C1, . . . ,Cm ⊆ {x1, . . . , xk,¬x1, . . . ,¬xk}.
Problem: Do truth values for x1, . . . , xk exist for which the Boolean formula

Φ(x1, . . . , xk) := (
∨

C1) ∧ . . . ∧ (
∨

Cm) is true?

For all j ∈ [k] we may assume that x j or ¬x j occurs in some clause Ci. We define
an SMP(S ) instance

A := {a0
1, . . . , a

0
k , a

1
1, . . . , a

1
k} ⊆ S k+m, b ∈ S k+m.

Let e, f ∈ S be idempotents with the properties from Lemma 2.2. Let g be the
idempotent power of se. Observe that e and g form a two-element semilattice with
g < e.

Let j ∈ [k] and z ∈ {0, 1}. For i ∈ [k] let

az
j(i) :=


f if i < j,
s if i = j,
e if i > j,

and for i ∈ [m] let

a0
j(k + i) :=

g if ¬x j ∈ Ci,

e otherwise,

a1
j(k + i) :=

g if x j ∈ Ci,

e otherwise.

Let

b(i) := s for i ∈ [k],
b(k + i) := g for i ∈ [m].

We claim that

the Boolean formula Φ is satisfiable if and only if b ∈ 〈A〉. (2.1)
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For the (⇒) direction let z1, . . . , zk ∈ {0, 1} such that Φ(z1, . . . , zk) = 1. We show that

b = az1
1 · · · a

zk
k . (2.2)

For i ∈ [k] we have az1
1 · · · a

zk
k (i) = ei−1s f k−i = s = b(i). For i ∈ [m] the clause

∨
Ci

is satisfied under the assignment x1 7→ z1, . . . , xk 7→ zk. Thus there is a j ∈ [k] such
that x j ∈ Ci and z j = 1, or ¬x j ∈ Ci and z j = 0. In both cases az j

j (k + i) = g, and thus
az1

1 · · · a
zk
k (k + i) = g = b(k + i). This proves (2.2) and the (⇒) direction of (2.1).

For the (⇐) direction of (2.1) assume b = az1
j1
· · · az`

j`
for some ` ∈ N, j1, . . . , j` ∈ [k],

and z1, . . . , z` ∈ {0, 1}. We show that j1, . . . , j` are distinct. Suppose jp = jq for p < q.
The factors of the product az1

j1
· · · az`

j`
( jp) are given by s, e, f . The factor s occurs at

least twice since a jp ( jp) = a jq ( jp) = s. By Lemma 2.2 this product does not yield s,
contradicting our assumption. We define an assignment

θ : x j1 7→ z1, . . . , x j` 7→ z`,
x j 7→ 0 for j ∈ [k]\{ j1, . . . , j`},

and show that θ satisfies the formula Φ. Let i ∈ [m]. Since az1
j1
. . . az`

j`
(k + i) is a product

in e, g that yields g, some factor azp

jp
(k + i) must be g. From the definition of azp

jp
we

see that either zp = 0 and ¬x jp ∈ Ci, or zp = 1 and x jp ∈ Ci. This means the formula∨
Ci is satisfied under the assignment θ. Since i was arbitrary, Φ is also satisfied. The

equivalence (2.1) and the theorem are proved. �

Corollary 2.3. If aJ-class of a finite semigroup S contains both group and nongroup
H-classes, then SMP(S ) is NP-hard.

Proof. Let s ∈ S such that Hs is not a group and Js contains group H-classes. From
Green’s theorem [4, Theorem 2.2.5] we know that s does not generate a group.
Since S is finite and Js contains an idempotent, the element s is regular by [4,
Proposition 2.3.1]. That is, there is a u ∈ S such that sus = s. Now su, s, and us fulfill
the hypothesis of Theorem 1.1. �

3. Combinatorial Rees matrix semigroups

In this section we will establish a P/NP-complete dichotomy for the SMP for
combinatorial Rees matrix semigroups by proving Theorem 1.2. After that we apply
this result to combinatorial 0-simple semigroups.

Combinatorial Rees matrix semigroups have the following property.

Lemma 3.1 (see [10, Lemma 2.2]). Let k ≥ 2 and a1, . . . , ak be elements of a
combinatorial Rees matrix semigroup SP.

(a) We have a1 · · · ak = 0 if and only if a ja j+1 = 0 for some j ∈ [k − 1].
(b) If a1 · · · ak , 0, then there are i, j ∈ I and λ, µ ∈ Λ such that a1 = [i, λ], ak = [ j, µ],

and a1 · · · ak = [i, µ].

Proof. Straightforward. �
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The next two results will allow us to show that the SMP for a combinatorial Rees
matrix semigroup is in NP. Both lemmas have a digraph-theoretic interpretation. For
a word w over an alphabet X one can associate a digraph Γw with vertex set X
and directed edges a→ b for every two-letter subword ab of w. The word w then
corresponds to a directed path which starts at the first letter of w, ends at the last letter
of w, and traverses every edge of Γw at least once. In this interpretation, Lemma 3.3
states that there is a short version of such a path. Finding the shortest path is referred
to as the Chinese postman problem.

Let v,w be words over variables x1, . . . , xk. For a semigroup S , wS denotes the k-ary
term function induced by w. An expression of the form v ≈ w is called an identity over
x1, . . . , xk. A semigroup S satisfies the identity v ≈ w if vS = wS .

Lemma 3.2 (see [10, Theorem 4.3]). Let f := y1 · · · yk and g := z1 · · · z` be words over
an alphabet X such that:

(a) {yiyi+1 | i ∈ [k − 1]} = {z jz j+1 | j ∈ [` − 1]};
(b) y1 = z1 and yk = z`.

Then every combinatorial Rees matrix semigroup SP satisfies f ≈ g.

Proof. Let SP be a combinatorial Rees matrix semigroup, and let α : X+ → SP be
a homomorphism from the free semigroup over X to SP. By item (a) we have
{y1, . . . , yk} = {z1, . . . , z`}. We claim that

α(y1 · · · yk) = 0 if and only if α(z1 · · · z`) = 0. (3.1)

Assume α(y1 · · · yk) = 0. Then α(yi)α(yi+1) = 0 for some i ∈ [k − 1] by Lemma 3.1(a).
By item (a) yiyi+1 = z jz j+1 for some j ∈ [` − 1]. Thus α(z j)α(z j+1) = 0, and hence
α(z1 · · · z`) = 0. This proves (3.1).

If α(y1 · · · yk) = 0, then α(y1 · · · yk) = α(z1 · · · z`) by (3.1). Assume α(y1 · · · yk) , 0.
Then also α(z1 · · · z`) , 0, and Lemma 3.1(b) implies

α(y1) · · ·α(yk) = α(z1) · · ·α(z`).

This proves the lemma. �

Lemma 3.3. Let f be a word over x1, . . . , xk. Then there is a word g such that:

(a) the length of g is at most k(k2 + 1);
(b) every combinatorial Rees matrix semigroup satisfies f ≈ g.

Proof. Let f = y1 · · · y` for y1, . . . , y` ∈ {x1, . . . , xk}. We show that there is a word g
such that item (b) holds and in which each variable xi occurs at most k2 + 1 times. Fix
i ∈ [k]. Let j1, . . . , jm ∈ [`] be the positions of xi in y1 · · · y`. Let

v1 := y1 · · · y j1 ,

vr := y jr−1+1 · · · y jr for r ∈ {2, . . . ,m},
vm+1 := y jm+1 · · · y`.
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Note that f = v1 · · · vm+1. Now for every word h := z1 · · · zn over x1, . . . , xk let

E(h) := {z jz j+1 | j ∈ [n − 1]}.

It is not hard to see that

E(v1 · · · vr) = E(v1) ∪ E(xiv2) ∪ . . . ∪ E(xivr) for r ∈ {2, . . . ,m + 1}.

We define
R := {r ∈ {2, . . . ,m} | E(xivr) * E(v1 · · · vr−1)}

and let

g := v1

(∏
r∈R

vr

)
vm+1.

Clearly g is a concatenation of subwords of f , and f and g start with the same letter.
We show that

f and g also end with the same letter. (3.2)

If vm+1 is nonempty, then (3.2) is clear. If vm+1 is empty, then y` = xi, and g ends with a
subword vr for some r ∈ [m]. Since vr and f both end with xi, (3.2) is proved. We have

E( f ) = E(v1 · · · vm+1) = E(v1) ∪
m⋃

r=2

E(xivr) ∪ E(xivm+1)

= E(v1) ∪
⋃
r∈R

E(xivr) ∪ E(xivm+1) = E(g).

Now Lemma 3.2 implies item (b).
Next observe that |R| ≤ k2 by the definitions of R and E. This means xi occurs at most

k2 + 1 times in g. Since xi was arbitrary, we can reduce the number of occurrences of
each variable in f to at most k2 + 1. Item (a) is proved. �

Lemma 3.4. The SMP for a finite combinatorial Rees matrix semigroup is in NP.

Proof. Let S be such a semigroup, and let {a1, . . . , ak} ⊆ S n, b ∈ S n be an instance of
SMP(S ). If b ∈ 〈a1, . . . , ak〉, then there is a term function f such that f (a1, . . . , ak) = b.
By Lemma 3.3 there is a word g which induces f and whose length is polynomial in
k. Now g witnesses the positive answer. �

For the following lemma note that the all-0 matrix has one block. We may assume
that the first m positions of the input tuple b of Algorithm 1 are the nonzero ones.

Lemma 3.5. Let SP be a finite combinatorial Rees matrix semigroup such that P ∈
{0, 1}Λ×I has one block. Then Algorithm 1 decides SMP(SP) in polynomial time.
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Algorithm 1 Decides SMP(SP) in polynomial time if P has one block.

Input: A ⊆ SP
n, b ∈ SP

n,
m ∈ {0, . . . , n} such that b(i) , 0 if and only if i ∈ [m],
J ⊆ I, ∆ ⊆ Λ such that P(λ, i) = 1 if and only if (λ, i) ∈ ∆ × J for i ∈ I, λ ∈ Λ.

Output: true if b ∈ 〈A〉, false otherwise.
1: if b ∈ A then
2: return true
3: end if
4: d :=

∏
{a ∈ A | a([m]) ⊆ J × ∆} (some order)

5: return ∃a1, a2 ∈ A : a1da2 = b

Proof. Correctness of Algorithm 1. Fix A ⊆ SP
n, b ∈ SP

n. If Algorithm 1 returns true,
then clearly b ∈ 〈A〉. Conversely assume b ∈ 〈A〉. We show that true is returned. Let
g1, . . . , gk ∈ A such that b = g1 · · · gk. If k = 1 then true is returned in line 2. Assume
k ≥ 2. We have

g1(i) ∈ I × ∆, gk(i) ∈ J × Λ, and
g2(i), . . . , gk−1(i) ∈ J × ∆ for all i ∈ [m]; (3.3)

otherwise we obtain the contradiction g1 · · · gk(i) = 0 for some i ∈ [m]. Let d have a
value assigned by line 4. We claim that

g1dgk = b. (3.4)

For i ∈ [m] we have d(i) ∈ J × ∆. The multiplication rule and (3.3) imply

b(i) = g1 · · · gk(i) = g1dgk(i).

Now let i ∈ {m + 1, . . . , n}. Since b(i) = 0, there are three cases: g1(i) < I × ∆, gk(i) <
J ×Λ, or g j(i) < J × ∆ for some j ∈ {2, . . . , k − 1}. In the first two cases g1dgk(i) = 0 =

b(i) holds. In the third case a := g j occurs as a factor in line 4. Thus d(i) < J × ∆, and
hence g1dgk(i) = 0. This proves (3.4). So the algorithm returns true in line 5.

Complexity of Algorithm 1. The product in line 4 can be computed in O(|A|n) time.
Checking the condition in line 5 requires O(|A|2n) time. Altogether Algorithm 1 runs
in O(|A|2n) time. �

Now we prove Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. Assume P ∈ {0, 1}Λ×I . If P has one block, then SMP(SP) is in P
by Lemma 3.5. Assume P does not have one block. Then there are i, j ∈ I and λ, µ ∈ Λ

such that
P(λ, i) = P(µ, j) = 1 and P(µ, i) = 0.

Let r := [i, λ], s := [i, µ], and t := [ j, µ]. Then rs = st = s, and s does not
generate a group. By Theorem 1.1 SMP(SP) is NP-hard. NP-easiness follows from
Lemma 3.4. �
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Proof of Corollary 1.3. The result is immediate from Theorem 1.2. �

Next we restate the Rees theorem (see [4, Theorem 3.2.3]) for the case of finite
combinatorial 0-simple semigroups.

Theorem 3.6 (Rees theorem). Let P be a finite 0-1 matrix such that each row and each
column has at least one 1. Then SP is a finite combinatorial 0-simple semigroup.

Conversely, every finite combinatorial 0-simple semigroup is isomorphic to one
constructed in this way.

Proof. See [4]. �

A semigroup S is said to have no zero divisors if for s, t ∈ S , st = 0 implies that
s = 0 or t = 0.

Lemma 3.7. Let SP be a finite combinatorial 0-simple semigroup. Then the matrix P
has one block if and only if SP has no zero divisors.

Proof. Assume P ∈ {0, 1}Λ×I . If P has one block, then all entries of P are 1. Thus SP

has no zero divisors. If P does not have one block, then P(λ, i) = 0 for some λ ∈ Λ,
i ∈ I. Now [i, λ] is a zero divisor since [i, λ]2 = 0. �

Corollary 3.8. If a finite combinatorial 0-simple semigroup S has no zero divisors,
then SMP(S ) is in P. Otherwise SMP(S ) is NP-complete.

Proof. The result is immediate from Theorem 1.2 and Lemma 3.7. �

4. Semigroups with PSPACE-complete SMP

There is an upper bound on the complexity of the SMP for semigroups.

Theorem 4.1 [1, Theorem 2.1]. The SMP for a finite semigroup is in PSPACE.

In [1] it has been shown that the SMP for T3, the full transformation semigroup
on three letters, is PSPACE-complete by reducing Kozen’s function composition
problem [6] to SMP(T3). We adapt this proof to show that under the following
conditions the SMP for a semigroup is PSPACE-complete.

Lemma 4.2. Let S be a finite semigroup and s, t, u ∈ S such that:

(a) sts = s, tst = t;
(b) s2, t2 <J s;
(c) su = s and tu = t.

Then SMP(S ) is PSPACE-complete.

Proof. Kozen [6] showed that the following decision problem is PSPACE-complete:
given n ≥ 1 and functions f1, . . . , fm, g : [n]→ [n], we have to decide whether g can
be obtained by composing the fi’s. The input size for this problem is (m + 1)n log n.
We will assume that the identity function can be obtained even from an empty set of
functions. This does not change the complexity of the problem.
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We encode Kozen’s composition problem into SMP(S ). By (a) s, t, st, ts are in the
same J-class. Observe that s , st; otherwise s2 = sts = s, which is impossible. By
similar arguments we obtain that u, s, t, st, ts are distinct. Also note that st and ts are
idempotent while s and t are not.

We rename the following elements:

0 := s, 1 := st, 0→ 0 := ts, 0→ 1 := t, 1→ 0 := s.

We regard 0 and 1 as states and let u, 0→ 0, 0→ 1, 1→ 0 act on these states by right
multiplication. This yields the partial multiplication table

S u 0→ 0 0→ 1 1→ 0
0 0 0 1 bad
1 1 bad bad 0

(4.1)

where bad means an element <J 0 (or equivalently, <J 1). Note that if x, y ∈ S and x
is bad, then xy is also bad by the definition of <J . We say a tuple is bad if it contains
a bad element.

Let n and f1, . . . , fm, g be an input to Kozen’s composition problem. We will encode
it as SMP on n2 + mn + 1 positions. For i ∈ [n] and h : [n]→ [n] we write ih instead of
h(i). We encode h by a mapping tuple mh ∈ S n2+mn+1 as follows:

mh(x) :=

1 if x ∈ {1h, n + 2h, . . . , (n − 1)n + nh},

0 otherwise.

Hence the first n positions encode the image of 1, the next n positions the image of
2, and so on. The final mn + 1 positions are used to distinguish mapping tuples from
other tuples that we will define shortly.

We introduce the generators of the subalgebra of S n2+mn+1 gradually. The first
generator is the mapping tuple m1 for the identity on [n].

Next, for each fi we add the choice tuple ci defined as

ci(x) :=


u if x ∈ [n2],
0→ 1 if x ∈ {n2 + (i − 1)n + 1, . . . , n2 + (i − 1)n + n},
0→ 0 otherwise.

Multiplying the mapping tuple for some h on the right by the choice tuple for fi
corresponds to deciding that h will be composed with fi.

Finally, for each fi and j, k ∈ [n] we add the application tuple ai jk with the semantics

apply fi on coordinate j to k,

that is, in a mapping tuple mh with h( j) = k the encoded k is replaced by fi(k). If k , k fi ,
then

ai jk(x) :=


1→ 0 if x ∈ {( j − 1)n + k, n2 + (i − 1)n + j},
0→ 1 if x = ( j − 1)n + k fi ,

0→ 0 if x = mn + 1,
u otherwise.
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If k = k fi , then

ai jk(x) :=


1→ 0 if x = n2 + (i − 1)n + j,
0→ 0 if x = mn + 1,
u otherwise.

Multiplication by the application tuples computes the composition decided by the
choice tuples. More precisely, for any h : [n]→ [n] and fi,

mh fi = mhciai11h · · · ainnh . (4.2)

We refer to positions n2 + 1, . . . , n2 + mn as the middle mn positions. Multiplying mh

by ci turns the ith block of n positions among the middle mn positions of mh to 1. The
following multiplication with ai11h · · · ainnh resets these n positions to 0. At the same
time, in the first n positions of mhci the 1 gets moved from position 1h to (1h) fi , in the
next n positions the 1 gets moved from n + 2h to n + (2h) fi , and so on. The last position
remains 0. Hence we obtain the mapping tuple of h fi, and (4.2) is proved.

It remains to choose an element which will be generated by all these tuples if and
only if g is a composition of fi’s. This final element is the mapping tuple for g. We
claim

g ∈ 〈 f1, . . . , fm〉 if and only if mg ∈ 〈m1, c1, . . . , cm, a111, . . . , amnn〉. (4.3)

The implication from left to right is immediate from our observation (4.2). For the
converse we fix a product of generator tuples which yields mg and show that it
essentially follows the pattern from (4.2).

The last position of every mapping tuple is 0 = s, whereas the last position of the
choice and application tuples is 0→ 0 = ts. By (a) and (b) the only products of s and ts
that are equal to s are those of the form s · ts · · · ts. This means in the product yielding
mg, the generator m1 must occur at the beginning and nowhere else.

The second element from the left cannot be an application tuple as the 1→ 0 in one
of the middle mn positions would turn the result bad by (4.1). Thus the only option is
the choice tuple for some function fi. Multiplying m1 by ci turns n positions (among
the middle mn positions) of m1 to 1.

The third element from the left cannot be a choice tuple: since n of the middle mn
positions are 1’s, a multiplication by another choice tuple would produce a bad result.
So before any more choice tuples can occur in our product, all n 1’s in the middle
mn positions have to be reset to 0. This can only be achieved by multiplying with n
application tuples of the form ai jk j for j ∈ [n]. Focusing on the first n2 positions of m1ci,
we see that necessarily k j = j for all j. Hence the first n + 2 factors of our product are

m1ciai11 · · · ainn = m fi .

Note that the order of the application tuples does not matter.
Continuing this reasoning with the mapping tuple for fi (instead of the identity), we

see that the next n + 1 factors of our product are some c j followed by n application
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tuples a j11 fi , . . . , a jnn fi . Invoking (4.2) we then get the mapping tuple for fi f j. In the
end we get a mapping tuple for g if and only if g can be obtained as a composition of
the fi’s and the identity. This proves (4.3).

The number of tuples we input into SMP is mn2 + m + 2, so the total size of
the input is O((mn2 + m + 2)(n2 + mn + 1)), that is, polynomial with respect to the
size of the input of the original problem. Thus Kozen’s composition problem has a
polynomial time reduction to SMP(S ) and the latter is PSPACE-hard as well. Together
with Theorem 4.1 this yields the result. �

Proof of Theorem 1.4. Let s′ := (s, tst), t′ := (tst, s), and u′ := (u, u) be elements of
S 2 := S × S . Clearly s′t′s′ = s′ and t′s′t′ = t′. Both s′ and t′ do not generate groups.
By Lemma 2.1 s′2 <J s′ and t′2 <J t′. Since t′ J s′, we have t′2 <J s′. Now s′, t′, u′

fulfill the hypothesis of Lemma 4.2. Thus SMP(S 2) is PSPACE-complete. As SMP(S 2)
reduces to SMP(S ) and vice versa, the result follows. �

Now we are able to list several ‘naturally occuring’ semigroups (with semigroup
signature) that have a PSPACE-complete SMP.

Corollary 4.3. The SMP for the following semigroups is PSPACE-complete:

(a) the Brandt monoid B1
2 and the monoid A1

2;
(b) for n ≥ 2 and a finite ring R with identity 1 , 0, the semigroup of all n × n

matrices over R;
(c) the full transformation semigroup Tn on n ≥ 3 letters;
(d) the symmetric inverse semigroup In on n ≥ 2 letters.

Proof. We apply Theorem 1.4.
(a) For B1

2 let s := [1, 2] and t := [2, 1]. For A1
2 let s := [2, 2] and t := [1, 1].

(b) Define n × n matrices s, t over R by

si j :=

1 if (i, j) = (1, 2),
0 otherwise,

ti j :=

1 if (i, j) = (2, 1),
0 otherwise

for i, j ∈ [n]. Let u be the identity matrix.
(c) Let u be the identity mapping on [n], and s, t : [n]→ [n],

s(x) :=

2 if x = 1,
3 otherwise,

t(x) :=

1 if x = 2,
3 otherwise.

(d) Let u be the identity mapping, s : 1 7→ 2, and t : 2 7→ 1. �

In [9] Schützenberger introduced the pseudovariety DS which comprises all finite
monoids each of whose regular J-classes is a subsemigroup. Besides studying the
structure of these monoids, he determined the languages recognized by various
subpseudovarieties of DS. We can now generalize Corollary 2.3 for the case of
monoids.
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Corollary 4.4. If a finite monoid is not in DS, then its SMP is PSPACE-complete.

Proof. Let S be a monoid which does not belong to DS. Then S has a J-class which
contains both group and nongroup H-classes. Similar to the proof of Corollary 2.3,
there is a t ∈ S such that sts = s. Now s, t, and the identity fulfill the hypothesis of
Theorem 1.4. �

5. Proof of Theorem 1.6

Lemma 5.1. If the 0-1 matrix P of a finite combinatorial Rees matrix semigroup SP has
one block, then SMP(S1

P) is in NP.

Proof. Assume P ∈ {0, 1}Λ×I , and let J ⊆ I and ∆ ⊆ Λ such that P(λ, i) = 1 if and only
if (λ, i) ∈ ∆ × J for i ∈ I, λ ∈ Λ. Let T := S1

P and A ⊆ T n, b ∈ T n be an instance of
SMP(T ) such that b ∈ 〈A〉. Let a1, . . . , ak ∈ A such that b = a1 · · · ak. If b = (1, . . . , 1) or
k = 1, then clearly b ∈ A. In this case the position of b in the list A is a witness. Assume
b , (1, . . . , 1) and k ≥ 2.

We claim that for i ∈ [n] with b(i) = 0 there are `i, ri ∈ [k], `i < ri such that

a`i ari (i) = 0 and a`i+1(i) = . . . = ari−1(i) = 1. (5.1)

This follows from Lemma 3.1(a). For i ∈ [n] with b(i) ∈ I × Λ let

`i := min{ j ∈ [k] | a j(i) , 1},
ri := max{ j ∈ [k] | a j(i) , 1}.

Now define an index set N ⊆ [k] by

N := {`i | i ∈ [n], b(i) , 1} ∪ {ri | i ∈ [n], b(i) , 1}.

Note that N , ∅; otherwise b = (1, . . . , 1) which contradicts our assumption.
For i ∈ [n] we claim that ∏

j∈N

a j(i) = b(i), (5.2)

where the indexes j of the factors are in ascending order. If b(i) = 1, then a j(i) = 1 for
all j ∈ [k], and (5.2) follows. Assume b(i) = 0. We have `i, ri ∈ N. By (5.1) all factors
in (5.2) between a`i (i) and ari (i) are equal to 1. This and (5.1) imply (5.2). Finally
assume b(i) ∈ I × Λ. For `i < j < ri we have a j(i) ∈ {1} ∪ (J × ∆); otherwise we obtain
the contradiction b(i) = 0. Thus ∏

j∈N
`i≤ j≤ri

a j(i) =
∏
`i≤ j≤ri

a j(i).

Since a j(i) = 1 for j < `i and j > ri, (5.2) follows.
The length of the product in (5.2) is |N| and thus at most 2n. Thus this product is a

valid witness for b ∈ 〈A〉, and the lemma is proved. �
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Proof of Theorem 1.6. Assume P ∈ {0, 1}Λ×I .
(a) If P is the all-1 matrix, then S1

P is a band (idempotent semigroup) withJ-classes
{0}, I × Λ, and {1}. We show that S1

P is a regular band, that is, S1
P satisfies the identity

xyxzx ≈ xyzx. (5.3)

Let x, y, z ∈ S1
P. If one of the variables is 0 or 1, then (5.3) clearly holds. If x, y, z ∈ I ×Λ,

then xyxzx = x = xyzx by the definition of the multiplication. Thus S1
P is a regular band.

By [11, Corollary 1.7] the SMP for every regular band is in P.
(b) Assume P has one block and some entries are 0. Let i ∈ I and λ ∈ Λ such that

P(λ, i) = 0. Let s := [i, λ] and r := t := 1. Since s does not generate a group, SMP(S1
P)

is NP-hard by Theorem 1.1. NP-easiness follows from Lemma 5.1.
(c) In this case P does not have one block. Thus there are i, j ∈ I and λ, µ ∈ Λ such

that
P(λ, i) = P(µ, j) = 1 and P(λ, j) = 0.

Let s := [ j, λ] and t := [i, µ]. Then s does not generate a group, sts = s, s1 = s, and
t1 = t. By Theorem 1.4 SMP(S ) is PSPACE-complete. �
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