ON SEMIGROUPS WITH PSPACE-COMPLETE SUBPOWER MEMBERSHIP PROBLEM

MARKUS STEINDL
(Received 11 May 2016; accepted 19 November 2017; first published online 30 May 2018)

Communicated by M. Jackson

Abstract

Fix a finite semigroup S and let a_{1}, \ldots, a_{k}, b be tuples in a direct power S^{n}. The subpower membership problem (SMP) for S asks whether b can be generated by a_{1}, \ldots, a_{k}. For combinatorial Rees matrix semigroups we establish a dichotomy result: if the corresponding matrix is of a certain form, then the SMP is in P; otherwise it is NP-complete. For combinatorial Rees matrix semigroups with adjoined identity, we obtain a trichotomy: the SMP is either in P, NP-complete, or PSPACE-complete. This result yields various semigroups with PSPACE-complete SMP including the six-element Brandt monoid, the full transformation semigroup on three or more letters, and semigroups of all n by n matrices over a field for $n \geq 2$.

2010 Mathematics subject classification: primary 20M99; secondary 68Q25.
Keywords and phrases: subalgebras of powers, membership test, computational complexity, PSPACEcomplete, NP-complete.

1. Introduction

In this paper we continue the investigation of the subpower membership problem (SMP) for semigroups started in [1] and [11]. At the Conference on Order, Algebra, and Logics in Nashville, 2007, Ross Willard proposed the SMP as follows [12]: fix a finite algebraic structure S with finitely many basic operations. Then the subpower membership problem for S is the following decision problem:

SMP(S)
Input: $\quad\left\{a_{1}, \ldots, a_{k}\right\} \subseteq S^{n}, b \in S^{n}$
Problem: Is b in the subalgebra of S^{n} generated by a_{1}, \ldots, a_{k} ?
The SMP occurs in connection with the constraint satisfaction problem (CSP) [5]. In the algebraic approach to the CSP, each constraint relation is considered to be a subalgebra of a power (subpower) of a certain finite algebra whose operations are

[^0]the polymorphisms of the constraint language. Instead of storing all elements of a constraint relation, we can store a set of generators. Checking whether a given tuple belongs to a constraint relation represented by its generators is precisely the SMP for the polymorphism algebra.

The input size of $\operatorname{SMP}(S)$ is essentially $(k+1) n$. Since the size of the subalgebra generated by a_{1}, \ldots, a_{k} is limited by $|S|^{n}$, one can enumerate all elements in time exponential in n using a straightforward closure algorithm. Thus $\operatorname{SMP}(S)$ is in EXPTIME for every algebra S. However, the following questions arise.

- How does the algebra S affect the computational complexity of $\operatorname{SMP}(S)$?
- For which algebras S can $\operatorname{SMP}(S)$ be solved in time polynomial in k and n ?
- When is the problem complete in NP, PSPACE, or EXPTIME? Can it also be complete in a class other than these?

Mayr [8] proved that the SMP for Mal'cev algebras is in NP. He also showed that for certain generalizations of groups and quasigroups the SMP is in Kozik [7] constructed a finite algebra with EXPTIME-complete SMP.

For semigroups the SMP is in PSPACE. This was shown in [1] by Bulatov, Kozik, Mayr, and the author of the present paper. We also proved that the SMP of the full transformation semigroup on three letters is PSPACE-complete. It was the first algebra known to have a PSPACE-complete SMP. In the same paper a dichotomy result for commutative semigroups was established: if a commutative semigroup S embeds into a direct product of a Clifford semigroup and a nilpotent semigroup, then $\operatorname{SMP}(S)$ is in P; otherwise it is NP-complete.

Another dichotomy for idempotent semigroups was established in [11]: if an idempotent semigroup S satisfies a certain pair of quasiidentities, then $\operatorname{SMP}(S)$ is in P ; otherwise it is NP-complete.

The first result of the current work is a condition for semigroups S under which $\operatorname{SMP}(S)$ is NP-hard.

Theorem 1.1. Let r, s, t be elements of a finite semigroup S such that s does not generate a group and $r s=s t=s$. Then $\operatorname{SMP}(S)$ is NP -hard.

We will prove this result in Section 2 by reducing the Boolean satisfiability problem SAT to $\operatorname{SMP}(S)$.

A semigroup is called combinatorial if every subgroup has one element. Combinatorial Rees matrix semigroups are of the form $\mathcal{M}^{0}(\{1\}, I, \Lambda, P)$ (see [4, Theorem 3.2.3]). We give the following alternative notation: for nonempty sets I, Λ and a matrix $P \in\{0,1\}^{\Lambda \times I}$ we let $S_{P}:=(I \times \Lambda) \cup\{0\}$ and define a multiplication on S_{P} by

$$
\begin{aligned}
{[i, \lambda] \cdot[j, \mu]: } & = \begin{cases}{[i, \mu]} & \text { if } P(\lambda, j)=1, \\
0 & \text { if } P(\lambda, j)=0,\end{cases} \\
0 \cdot[i, \lambda]: & =[i, \lambda] \cdot 0:=0 \cdot 0:=0 .
\end{aligned}
$$

In this paper we allow the matrix P to have zero rows and zero columns. It is easy to see that S_{P} is indeed a combinatorial semigroup. We say the matrix $P \in\{0,1\}^{\Lambda \times I}$ has one block if there exist $J \subseteq I, \Delta \subseteq \Lambda$ such that for $i \in I, \lambda \in \Lambda$,

$$
P(\lambda, i)=1 \quad \text { if and only if }(\lambda, i) \in \Delta \times J .
$$

For $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ we call $B_{2}:=S_{P}$ the Brandt semigroup, and for $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ we denote S_{P} by A_{2}.

In Section 3 we establish the following two results.
Theorem 1.2. Let S_{P} be a finite combinatorial Rees matrix semigroup. If the matrix P has one block, then $\operatorname{SMP}\left(S_{P}\right)$ is in P . Otherwise $\operatorname{SMP}\left(S_{P}\right)$ is NP -complete.

Corollary 1.3. The SMP for the Brandt semigroup B_{2} and for the semigroup A_{2} is NP-complete.

In Section 4 we state a condition for semigroups S under which $\operatorname{SMP}(S)$ is PSPACEcomplete.

Theorem 1.4. Let S be a finite semigroup and $s, t, u \in S$ such that:
(a) $s t s=s$;
(b) s does not generate a group;
(c) $s u=s$ and $t u=t$.

Then $\operatorname{SMP}(S)$ is PSPACE-complete.
In the proof we will reduce a PSPACE-complete function composition problem to $\operatorname{SMP}(S)$. It follows that adjoining an identity to B_{2} or A_{2} already results in a PSPACEcomplete SMP.

Theorem 1.5. The SMP for the Brandt monoid B_{2}^{1} and for the monoid A_{2}^{1} is PSPACEcomplete.

This result is part of Corollary 4.3. Both B_{2}^{1} and A_{2}^{1} embed into T_{3}, the full transformation semigroup on three letters. So Theorem 1.5 generalizes the result from [1] that $\operatorname{SMP}\left(T_{3}\right)$ is PSPACE-complete. In addition, B_{2} and A_{2} are the first groupoids known to have an NP-complete SMP where adjoining an identity yields a groupoid with PSPACE-complete SMP. Further examples of semigroups with PSPACE-complete SMP are listed in Section 4.

In Section 5 we will consider Rees matrix semigroups with adjoined identity and prove the following trichotomy result.

Theorem 1.6. Let S_{P} be a finite combinatorial Rees matrix semigroup.
(a) If all entries of the matrix P are 1, then $\operatorname{SMP}\left(S_{P}^{1}\right)$ is in P .
(b) If P has one block and some entries are 0 , then $\operatorname{SMP}\left(S_{P}^{1}\right)$ is NP-complete.
(c) Otherwise $\operatorname{SMP}\left(S_{P}^{1}\right)$ is PSPACE-complete.

2. Semigroups with NP-hard SMP

In this section we will prove Theorem 1.1 by reducing the Boolean satisfiability problem SAT to $\operatorname{SMP}(S)$. It follows that the SMP for a semigroup S is already NPhard if S has a \mathcal{J}-class that contains both group and nongroup \mathcal{H}-classes. Here \mathcal{J} and \mathcal{H} denote two of Green's equivalences. We give the following definitions. For a semigroup S let

$$
S^{1}:= \begin{cases}S \cup\{1\} & \text { if } S \text { has no identity } \\ S & \text { otherwise }\end{cases}
$$

For $a, b \in S$ let

$$
\begin{aligned}
a \mathcal{J} b & \text { if } S^{1} a S^{1}=S^{1} b S^{1}, \\
a \leq \mathcal{J} b & \text { if } S^{1} a S^{1} \subseteq S^{1} b S^{1}, \\
a<\mathcal{J} b & \text { if } S^{1} a S^{1} \subset S^{1} b S^{1}, \\
a \mathcal{H} b & \text { if } S^{1} a=S^{1} b \text { and } a S^{1}=b S^{1} .
\end{aligned}
$$

Note that $S^{1} a S^{1}=S a S \cup S a \cup a S \cup\{a\}$. The equivalence classes of a with respect to \mathcal{J} and \mathcal{H} are denoted by J_{a} and H_{a}, respectively.

We write $[n]:=\{1, \ldots, n\}$ for $n \in \mathbb{N}$ and set $[0]:=\varnothing$. We consider a tuple b in a direct power S^{n} to be a function $b:[n] \rightarrow S$. This means the i th coordinate of b is denoted by $b(i)$ rather than b_{i}. The subsemigroup generated by a set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is denoted by $\langle A\rangle$ or $\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

Lemma 2.1. Let s belong to a finite semigroup S. Then s generates a group if and only if $s^{2} \mathcal{J} s$.

Proof. If s generates a group, then $s^{k}=s$ for some $k \geq 2$. Thus $s^{2} \mathcal{J} s$.
For the converse let $s^{2} \mathcal{J} s$. First assume the \mathcal{J}-class J_{s} is the minimal ideal of S. Then J_{s} is a finite simple semigroup by [4, Proposition 3.1.4]. Thus J_{s}^{0} is a finite 0 -simple semigroup. By [2, Theorem 2.52(i)] s generates a group.

Now assume J_{s} is not the minimal ideal of S. Let

$$
J(s):=\left\{r \in S \mid r \leq_{\mathcal{J}} s\right\}, \quad I(s):=\left\{r \in S \mid r<_{\mathcal{J}} s\right\} .
$$

By [4, Proposition 3.1.4] the principal factor $J(s) / I(s)$ is either null or 0 -simple. Since $s^{2} \mathcal{J} s$, the second case applies. By [2, Theorem 2.52(i)] s generates a group.
Lemma 2.2. Let r, s, t be elements of a finite semigroup S such that s does not generate a group and $r s=s t=s$. Then there are idempotents $e, f \in S$ such that es $=s f=s$ and every product $a_{1} \cdots a_{k}$ in s, e, f in which s occurs at least twice does not yield s.

Proof. First assume s is regular, that is, sus $=s$ for some $u \in S$. Let e and f be the idempotent powers of $s u$ and $u s$ respectively. Clearly es $=s f=s$. Let $a_{1} \cdots a_{k}$ be a product in s, e, f, and $i<j$ such that $a_{i}=a_{j}=s$. Let $\ell \in\{i+1, \ldots, j\}$ be maximal such that $a_{i+1}=\ldots=a_{\ell-1}=f$. Then $a_{i} \cdots a_{\ell-1}=s$, and thus $a_{i} \cdots a_{\ell} \in\left\{s^{2}, s e\right\}$. Note that
$s e=s(s u)^{m}$ for some $m \in \mathbb{N}$. Now a factor s^{2} occurs in the product $a_{i} \cdots a_{\ell}$. Since s does not generate a group, Lemma 2.1 implies that $s^{2}<_{\mathcal{J}} s$. Thus $a_{1} \cdots a_{\ell}<_{\mathcal{J}} s$, and the result follows.

Now assume s is not regular. By [4, Theorem 3.1.6] the principal factor $J(s) / I(s)$ is null. Let e and f be the idempotent powers of r and t respectively. Let $a_{1} \cdots a_{k}$ be a product in s, e, f, and let $i<j$ such that $a_{i}=a_{j}=s$. Then $a_{1} \cdots a_{i} \leq_{\mathcal{J}} s$ and $a_{i+1} \cdots a_{k} \leq \mathcal{J} s$. Since $J(s) / I(s)$ is null, it follows that $a_{1} \cdots a_{k}<\mathcal{J} s$.
Proof of Theorem 1.1. Let S satisfy the assumptions. We reduce the Boolean satisfiability problem SAT to $\operatorname{SMP}(S)$. SAT is NP-complete [3], and we give the following definition:

SAT
Input: \quad Clauses $C_{1}, \ldots, C_{m} \subseteq\left\{x_{1}, \ldots, x_{k}, \neg x_{1}, \ldots, \neg x_{k}\right\}$.
Problem: Do truth values for x_{1}, \ldots, x_{k} exist for which the Boolean formula $\Phi\left(x_{1}, \ldots, x_{k}\right):=\left(\bigvee C_{1}\right) \wedge \ldots \wedge\left(\bigvee C_{m}\right)$ is true ?
For all $j \in[k]$ we may assume that x_{j} or $\neg x_{j}$ occurs in some clause C_{i}. We define an $\operatorname{SMP}(S)$ instance

$$
A:=\left\{a_{1}^{0}, \ldots, a_{k}^{0}, a_{1}^{1}, \ldots, a_{k}^{1}\right\} \subseteq S^{k+m}, b \in S^{k+m}
$$

Let $e, f \in S$ be idempotents with the properties from Lemma 2.2. Let g be the idempotent power of $s e$. Observe that e and g form a two-element semilattice with $g<e$.

Let $j \in[k]$ and $z \in\{0,1\}$. For $i \in[k]$ let

$$
a_{j}^{z}(i):= \begin{cases}f & \text { if } i<j, \\ s & \text { if } i=j, \\ e & \text { if } i>j,\end{cases}
$$

and for $i \in[m]$ let

$$
\begin{aligned}
& a_{j}^{0}(k+i):= \begin{cases}g & \text { if } \neg x_{j} \in C_{i}, \\
e & \text { otherwise },\end{cases} \\
& a_{j}^{1}(k+i):= \begin{cases}g & \text { if } x_{j} \in C_{i}, \\
e & \text { otherwise }\end{cases}
\end{aligned}
$$

Let

$$
\begin{aligned}
b(i):=s & \text { for } i \in[k], \\
b(k+i):=g & \text { for } i \in[m] .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
\text { the Boolean formula } \Phi \text { is satisfiable if and only if } b \in\langle A\rangle \text {. } \tag{2.1}
\end{equation*}
$$

For the (\Rightarrow) direction let $z_{1}, \ldots, z_{k} \in\{0,1\}$ such that $\Phi\left(z_{1}, \ldots, z_{k}\right)=1$. We show that

$$
\begin{equation*}
b=a_{1}^{z_{1}} \cdots a_{k}^{z_{k}} \tag{2.2}
\end{equation*}
$$

For $i \in[k]$ we have $a_{1}^{z_{1}} \cdots a_{k}^{z_{k}}(i)=e^{i-1} s f^{k-i}=s=b(i)$. For $i \in[m]$ the clause $\bigvee C_{i}$ is satisfied under the assignment $x_{1} \mapsto z_{1}, \ldots, x_{k} \mapsto z_{k}$. Thus there is a $j \in[k]$ such that $x_{j} \in C_{i}$ and $z_{j}=1$, or $\neg x_{j} \in C_{i}$ and $z_{j}=0$. In both cases $a_{j}^{z_{j}}(k+i)=g$, and thus $a_{1}^{z_{1}} \cdots a_{k}^{z_{k}}(k+i)=g=b(k+i)$. This proves (2.2) and the (\Rightarrow) direction of (2.1).

For the (\Leftarrow) direction of (2.1) assume $b=a_{j_{1}}^{z_{1}} \cdots a_{j_{\ell}}^{z_{\ell}}$ for some $\ell \in \mathbb{N}, j_{1}, \ldots, j_{\ell} \in[k]$, and $z_{1}, \ldots, z_{\ell} \in\{0,1\}$. We show that j_{1}, \ldots, j_{ℓ} are distinct. Suppose $j_{p}=j_{q}$ for $p<q$. The factors of the product $a_{j_{1}}^{z_{1}} \cdots a_{j_{\ell}}^{z_{\ell}}\left(j_{p}\right)$ are given by s, e, f. The factor s occurs at least twice since $a_{j_{p}}\left(j_{p}\right)=a_{j_{q}}\left(j_{p}\right)=s$. By Lemma 2.2 this product does not yield s, contradicting our assumption. We define an assignment

$$
\begin{aligned}
\theta: x_{j_{1}} & \mapsto z_{1}, \ldots, x_{j_{\ell}} \mapsto z_{\ell}, \\
x_{j} & \mapsto 0 \text { for } j \in[k] \backslash\left\{j_{1}, \ldots, j_{\ell}\right\},
\end{aligned}
$$

and show that θ satisfies the formula Φ. Let $i \in[m]$. Since $a_{j_{1}}^{z_{1}} \ldots a_{j_{\epsilon}}^{z_{\ell}}(k+i)$ is a product in e, g that yields g, some factor $a_{j_{p}}^{z_{p}}(k+i)$ must be g. From the definition of $a_{j_{p}}^{z_{p}}$ we see that either $z_{p}=0$ and $\neg x_{j_{p}} \in C_{i}$, or $z_{p}=1$ and $x_{j_{p}} \in C_{i}$. This means the formula $\bigvee C_{i}$ is satisfied under the assignment θ. Since i was arbitrary, Φ is also satisfied. The equivalence (2.1) and the theorem are proved.

Corollary 2.3. If a \mathcal{J}-class of a finite semigroup S contains both group and nongroup \mathcal{H}-classes, then $\operatorname{SMP}(S)$ is NP -hard.

Proof. Let $s \in S$ such that H_{s} is not a group and J_{s} contains group \mathcal{H}-classes. From Green's theorem [4, Theorem 2.2.5] we know that s does not generate a group. Since S is finite and J_{s} contains an idempotent, the element s is regular by [4, Proposition 2.3.1]. That is, there is a $u \in S$ such that $s u s=s$. Now $s u, s$, and $u s$ fulfill the hypothesis of Theorem 1.1.

3. Combinatorial Rees matrix semigroups

In this section we will establish a P/NP-complete dichotomy for the SMP for combinatorial Rees matrix semigroups by proving Theorem 1.2. After that we apply this result to combinatorial 0 -simple semigroups.

Combinatorial Rees matrix semigroups have the following property.
Lemma 3.1 (see [10, Lemma 2.2]). Let $k \geq 2$ and a_{1}, \ldots, a_{k} be elements of a combinatorial Rees matrix semigroup S_{P}.
(a) We have $a_{1} \cdots a_{k}=0$ if and only if $a_{j} a_{j+1}=0$ for some $j \in[k-1]$.
(b) If $a_{1} \cdots a_{k} \neq 0$, then there are $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that $a_{1}=[i, \lambda], a_{k}=[j, \mu]$, and $a_{1} \cdots a_{k}=[i, \mu]$.

Proof. Straightforward.

The next two results will allow us to show that the SMP for a combinatorial Rees matrix semigroup is in NP. Both lemmas have a digraph-theoretic interpretation. For a word w over an alphabet X one can associate a digraph Γ_{w} with vertex set X and directed edges $a \rightarrow b$ for every two-letter subword $a b$ of w. The word w then corresponds to a directed path which starts at the first letter of w, ends at the last letter of w, and traverses every edge of Γ_{w} at least once. In this interpretation, Lemma 3.3 states that there is a short version of such a path. Finding the shortest path is referred to as the Chinese postman problem.

Let v, w be words over variables x_{1}, \ldots, x_{k}. For a semigroup S, w^{S} denotes the k-ary term function induced by w. An expression of the form $v \approx w$ is called an identity over x_{1}, \ldots, x_{k}. A semigroup S satisfies the identity $v \approx w$ if $v^{S}=w^{S}$.

Lemma 3.2 (see [10, Theorem 4.3]). Let $f:=y_{1} \cdots y_{k}$ and $g:=z_{1} \cdots z_{\ell}$ be words over an alphabet X such that:
(a) $\left\{y_{i} y_{i+1} \mid i \in[k-1]\right\}=\left\{z_{j} z_{j+1} \mid j \in[\ell-1]\right\}$;
(b) $y_{1}=z_{1}$ and $y_{k}=z_{\ell}$.

Then every combinatorial Rees matrix semigroup S_{P} satisfies $f \approx g$.
Proof. Let S_{P} be a combinatorial Rees matrix semigroup, and let $\alpha: X^{+} \rightarrow S_{P}$ be a homomorphism from the free semigroup over X to S_{P}. By item (a) we have $\left\{y_{1}, \ldots, y_{k}\right\}=\left\{z_{1}, \ldots, z_{\ell}\right\}$. We claim that

$$
\begin{equation*}
\alpha\left(y_{1} \cdots y_{k}\right)=0 \quad \text { if and only if } \alpha\left(z_{1} \cdots z_{\ell}\right)=0 \tag{3.1}
\end{equation*}
$$

Assume $\alpha\left(y_{1} \cdots y_{k}\right)=0$. Then $\alpha\left(y_{i}\right) \alpha\left(y_{i+1}\right)=0$ for some $i \in[k-1]$ by Lemma 3.1(a). By item (a) $y_{i} y_{i+1}=z_{j} z_{j+1}$ for some $j \in[\ell-1]$. Thus $\alpha\left(z_{j}\right) \alpha\left(z_{j+1}\right)=0$, and hence $\alpha\left(z_{1} \cdots z_{\ell}\right)=0$. This proves (3.1).

If $\alpha\left(y_{1} \cdots y_{k}\right)=0$, then $\alpha\left(y_{1} \cdots y_{k}\right)=\alpha\left(z_{1} \cdots z_{\ell}\right)$ by (3.1). Assume $\alpha\left(y_{1} \cdots y_{k}\right) \neq 0$. Then also $\alpha\left(z_{1} \cdots z_{\ell}\right) \neq 0$, and Lemma 3.1(b) implies

$$
\alpha\left(y_{1}\right) \cdots \alpha\left(y_{k}\right)=\alpha\left(z_{1}\right) \cdots \alpha\left(z_{\ell}\right)
$$

This proves the lemma.
Lemma 3.3. Let f be a word over x_{1}, \ldots, x_{k}. Then there is a word g such that:
(a) the length of g is at most $k\left(k^{2}+1\right)$;
(b) every combinatorial Rees matrix semigroup satisfies $f \approx g$.

Proof. Let $f=y_{1} \cdots y_{\ell}$ for $y_{1}, \ldots, y_{\ell} \in\left\{x_{1}, \ldots, x_{k}\right\}$. We show that there is a word g such that item (b) holds and in which each variable x_{i} occurs at most $k^{2}+1$ times. Fix $i \in[k]$. Let $j_{1}, \ldots, j_{m} \in[\ell]$ be the positions of x_{i} in $y_{1} \cdots y_{\ell}$. Let

$$
\begin{aligned}
v_{1} & :=y_{1} \cdots y_{j_{1}}, \\
v_{r} & :=y_{j_{r-1}+1} \cdots y_{j_{r}} \quad \text { for } r \in\{2, \ldots, m\}, \\
v_{m+1} & :=y_{j_{m}+1} \cdots y_{\ell} .
\end{aligned}
$$

Note that $f=v_{1} \cdots v_{m+1}$. Now for every word $h:=z_{1} \cdots z_{n}$ over x_{1}, \ldots, x_{k} let

$$
E(h):=\left\{z_{j} z_{j+1} \mid j \in[n-1]\right\} .
$$

It is not hard to see that

$$
E\left(v_{1} \cdots v_{r}\right)=E\left(v_{1}\right) \cup E\left(x_{i} v_{2}\right) \cup \ldots \cup E\left(x_{i} v_{r}\right) \quad \text { for } r \in\{2, \ldots, m+1\} .
$$

We define

$$
R:=\left\{r \in\{2, \ldots, m\} \mid E\left(x_{i} v_{r}\right) \nsubseteq E\left(v_{1} \cdots v_{r-1}\right)\right\}
$$

and let

$$
g:=v_{1}\left(\prod_{r \in R} v_{r}\right) v_{m+1}
$$

Clearly g is a concatenation of subwords of f, and f and g start with the same letter. We show that

$$
\begin{equation*}
f \text { and } g \text { also end with the same letter. } \tag{3.2}
\end{equation*}
$$

If v_{m+1} is nonempty, then (3.2) is clear. If v_{m+1} is empty, then $y_{\ell}=x_{i}$, and g ends with a subword v_{r} for some $r \in[m]$. Since v_{r} and f both end with $x_{i},(3.2)$ is proved. We have

$$
\begin{aligned}
E(f)=E\left(v_{1} \cdots v_{m+1}\right) & =E\left(v_{1}\right) \cup \bigcup_{r=2}^{m} E\left(x_{i} v_{r}\right) \cup E\left(x_{i} v_{m+1}\right) \\
& =E\left(v_{1}\right) \cup \bigcup_{r \in R} E\left(x_{i} v_{r}\right) \cup E\left(x_{i} v_{m+1}\right)=E(g) .
\end{aligned}
$$

Now Lemma 3.2 implies item (b).
Next observe that $|R| \leq k^{2}$ by the definitions of R and E. This means x_{i} occurs at most $k^{2}+1$ times in g. Since x_{i} was arbitrary, we can reduce the number of occurrences of each variable in f to at most $k^{2}+1$. Item (a) is proved.

Lemma 3.4. The SMP for a finite combinatorial Rees matrix semigroup is in NP.
Proof. Let S be such a semigroup, and let $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq S^{n}, b \in S^{n}$ be an instance of $\operatorname{SMP}(S)$. If $b \in\left\langle a_{1}, \ldots, a_{k}\right\rangle$, then there is a term function f such that $f\left(a_{1}, \ldots, a_{k}\right)=b$. By Lemma 3.3 there is a word g which induces f and whose length is polynomial in k. Now g witnesses the positive answer.

For the following lemma note that the all-0 matrix has one block. We may assume that the first m positions of the input tuple b of Algorithm 1 are the nonzero ones.

Lemma 3.5. Let S_{P} be a finite combinatorial Rees matrix semigroup such that $P \in$ $\{0,1\}^{\Lambda \times I}$ has one block. Then Algorithm 1 decides $\operatorname{SMP}\left(S_{P}\right)$ in polynomial time.

```
Algorithm 1 Decides \(\operatorname{SMP}\left(S_{P}\right)\) in polynomial time if \(P\) has one block.
Input: \(A \subseteq S_{P}{ }^{n}, b \in S_{P}{ }^{n}\),
\(m \in\{0, \ldots, n\}\) such that \(b(i) \neq 0\) if and only if \(i \in[m]\),
\(J \subseteq I, \Delta \subseteq \Lambda\) such that \(P(\lambda, i)=1\) if and only if \((\lambda, i) \in \Delta \times J\) for \(i \in I, \lambda \in \Lambda\).
Output: true if \(b \in\langle A\rangle\), false otherwise.
    if \(b \in A\) then
        return true
    end if
    \(d:=\prod\{a \in A \mid a([m]) \subseteq J \times \Delta\} \quad\) (some order)
    return \(\exists a_{1}, a_{2} \in A: a_{1} d a_{2}=b\)
```

Proof. Correctness of Algorithm 1. Fix $A \subseteq S_{P}{ }^{n}, b \in S_{P}{ }^{n}$. If Algorithm 1 returns true, then clearly $b \in\langle A\rangle$. Conversely assume $b \in\langle A\rangle$. We show that true is returned. Let $g_{1}, \ldots, g_{k} \in A$ such that $b=g_{1} \cdots g_{k}$. If $k=1$ then true is returned in line 2. Assume $k \geq 2$. We have

$$
\begin{gather*}
g_{1}(i) \in I \times \Delta, \quad g_{k}(i) \in J \times \Lambda, \text { and } \\
g_{2}(i), \ldots, g_{k-1}(i) \in J \times \Delta \text { for all } i \in[m] ; \tag{3.3}
\end{gather*}
$$

otherwise we obtain the contradiction $g_{1} \cdots g_{k}(i)=0$ for some $i \in[m]$. Let d have a value assigned by line 4 . We claim that

$$
\begin{equation*}
g_{1} d g_{k}=b \tag{3.4}
\end{equation*}
$$

For $i \in[m]$ we have $d(i) \in J \times \Delta$. The multiplication rule and (3.3) imply

$$
b(i)=g_{1} \cdots g_{k}(i)=g_{1} d g_{k}(i) .
$$

Now let $i \in\{m+1, \ldots, n\}$. Since $b(i)=0$, there are three cases: $g_{1}(i) \notin I \times \Delta, g_{k}(i) \notin$ $J \times \Lambda$, or $g_{j}(i) \notin J \times \Delta$ for some $j \in\{2, \ldots, k-1\}$. In the first two cases $g_{1} d g_{k}(i)=0=$ $b(i)$ holds. In the third case $a:=g_{j}$ occurs as a factor in line 4 . Thus $d(i) \notin J \times \Delta$, and hence $g_{1} d g_{k}(i)=0$. This proves (3.4). So the algorithm returns true in line 5 .

Complexity of Algorithm 1. The product in line 4 can be computed in $O(|A| n)$ time. Checking the condition in line 5 requires $O\left(|A|^{2} n\right)$ time. Altogether Algorithm 1 runs in $O\left(|A|^{2} n\right)$ time.

Now we prove Theorem 1.2 and Corollary 1.3.
Proof of Theorem 1.2. Assume $P \in\{0,1\}^{\Lambda \times I}$. If P has one block, then $\operatorname{SMP}\left(S_{P}\right)$ is in P by Lemma 3.5. Assume P does not have one block. Then there are $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that

$$
P(\lambda, i)=P(\mu, j)=1 \quad \text { and } \quad P(\mu, i)=0 .
$$

Let $r:=[i, \lambda], \quad s:=[i, \mu]$, and $t:=[j, \mu]$. Then $r s=s t=s$, and s does not generate a group. By Theorem 1.1 $\operatorname{SMP}\left(S_{P}\right)$ is NP-hard. NP-easiness follows from Lemma 3.4.

Proof of Corollary 1.3. The result is immediate from Theorem 1.2.
Next we restate the Rees theorem (see [4, Theorem 3.2.3]) for the case of finite combinatorial 0 -simple semigroups.

Theorem 3.6 (Rees theorem). Let P be a finite 0-1 matrix such that each row and each column has at least one 1. Then S_{P} is a finite combinatorial 0 -simple semigroup.

Conversely, every finite combinatorial 0 -simple semigroup is isomorphic to one constructed in this way.
Proof. See [4].
A semigroup S is said to have no zero divisors if for $s, t \in S$, $s t=0$ implies that $s=0$ or $t=0$.

Lemma 3.7. Let S_{P} be a finite combinatorial 0-simple semigroup. Then the matrix P has one block if and only if S_{P} has no zero divisors.

Proof. Assume $P \in\{0,1\}^{\Lambda \times I}$. If P has one block, then all entries of P are 1 . Thus S_{P} has no zero divisors. If P does not have one block, then $P(\lambda, i)=0$ for some $\lambda \in \Lambda$, $i \in I$. Now $[i, \lambda]$ is a zero divisor since $[i, \lambda]^{2}=0$.

Corollary 3.8. If a finite combinatorial 0 -simple semigroup S has no zero divisors, then $\operatorname{SMP}(S)$ is in P . Otherwise $\operatorname{SMP}(S)$ is NP -complete.

Proof. The result is immediate from Theorem 1.2 and Lemma 3.7.

4. Semigroups with PSPACE-complete SMP

There is an upper bound on the complexity of the SMP for semigroups.
Theorem 4.1 [1, Theorem 2.1]. The SMP for a finite semigroup is in PSPACE.
In [1] it has been shown that the SMP for T_{3}, the full transformation semigroup on three letters, is PSPACE-complete by reducing Kozen's function composition problem [6] to $\operatorname{SMP}\left(T_{3}\right)$. We adapt this proof to show that under the following conditions the SMP for a semigroup is PSPACE-complete.

Lemma 4.2. Let S be a finite semigroup and $s, t, u \in S$ such that:
(a) $s t s=s, t s t=t$;
(b) $s^{2}, t^{2}<_{\mathcal{J}} s$;
(c) $s u=s$ and $t u=t$.

Then $\operatorname{SMP}(S)$ is PSPACE-complete.
Proof. Kozen [6] showed that the following decision problem is PSPACE-complete: given $n \geq 1$ and functions $f_{1}, \ldots, f_{m}, g:[n] \rightarrow[n]$, we have to decide whether g can be obtained by composing the f_{i} 's. The input size for this problem is $(m+1) n \log n$. We will assume that the identity function can be obtained even from an empty set of functions. This does not change the complexity of the problem.

We encode Kozen's composition problem into $\operatorname{SMP}(S)$. By (a) $s, t, s t, t s$ are in the same \mathcal{J}-class. Observe that $s \neq s t$; otherwise $s^{2}=s t s=s$, which is impossible. By similar arguments we obtain that $u, s, t, s t, t s$ are distinct. Also note that $s t$ and $t s$ are idempotent while s and t are not.

We rename the following elements:

$$
0:=s, \quad 1:=s t, \quad 0 \rightarrow 0:=t s, \quad 0 \rightarrow 1:=t, \quad 1 \rightarrow 0:=s .
$$

We regard 0 and 1 as states and let $u, 0 \rightarrow 0,0 \rightarrow 1,1 \rightarrow 0$ act on these states by right multiplication. This yields the partial multiplication table

$$
\begin{array}{c|cccc}
S & u & 0 \rightarrow 0 & 0 \rightarrow 1 & 1 \rightarrow 0 \tag{4.1}\\
\hline 0 & 0 & 0 & 1 & \text { bad } \\
1 & 1 & \text { bad } & \text { bad } & 0
\end{array}
$$

where bad means an element $<_{\mathcal{J}} 0$ (or equivalently, $<_{\mathcal{J}} 1$). Note that if $x, y \in S$ and x is bad, then $x y$ is also bad by the definition of $<_{\mathcal{J}}$. We say a tuple is bad if it contains a bad element.

Let n and f_{1}, \ldots, f_{m}, g be an input to Kozen's composition problem. We will encode it as SMP on $n^{2}+m n+1$ positions. For $i \in[n]$ and $h:[n] \rightarrow[n]$ we write i^{h} instead of $h(i)$. We encode h by a mapping tuple $m_{h} \in S^{n^{2}+m n+1}$ as follows:

$$
m_{h}(x):= \begin{cases}1 & \text { if } x \in\left\{1^{h}, n+2^{h}, \ldots,(n-1) n+n^{h}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Hence the first n positions encode the image of 1 , the next n positions the image of 2 , and so on. The final $m n+1$ positions are used to distinguish mapping tuples from other tuples that we will define shortly.

We introduce the generators of the subalgebra of $S^{n^{2}+m n+1}$ gradually. The first generator is the mapping tuple m_{1} for the identity on [n].

Next, for each f_{i} we add the choice tuple c_{i} defined as

$$
c_{i}(x):= \begin{cases}u & \text { if } x \in\left[n^{2}\right] \\ 0 \rightarrow 1 & \text { if } x \in\left\{n^{2}+(i-1) n+1, \ldots, n^{2}+(i-1) n+n\right\}, \\ 0 \rightarrow 0 & \text { otherwise }\end{cases}
$$

Multiplying the mapping tuple for some h on the right by the choice tuple for f_{i} corresponds to deciding that h will be composed with f_{i}.

Finally, for each f_{i} and $j, k \in[n]$ we add the application tuple $a_{i j k}$ with the semantics apply f_{i} on coordinate j to k,
that is, in a mapping tuple m_{h} with $h(j)=k$ the encoded k is replaced by $f_{i}(k)$. If $k \neq k^{f_{i}}$, then

$$
a_{i j k}(x):= \begin{cases}1 \rightarrow 0 & \text { if } x \in\left\{(j-1) n+k, n^{2}+(i-1) n+j\right\} \\ 0 \rightarrow 1 & \text { if } x=(j-1) n+k^{f_{i}}, \\ 0 \rightarrow 0 & \text { if } x=m n+1 \\ u & \text { otherwise }\end{cases}
$$

If $k=k^{f_{i}}$, then

$$
a_{i j k}(x):= \begin{cases}1 \rightarrow 0 & \text { if } x=n^{2}+(i-1) n+j \\ 0 \rightarrow 0 & \text { if } x=m n+1, \\ u & \text { otherwise }\end{cases}
$$

Multiplication by the application tuples computes the composition decided by the choice tuples. More precisely, for any $h:[n] \rightarrow[n]$ and f_{i},

$$
\begin{equation*}
m_{h f_{i}}=m_{h} c_{i} a_{i 11^{h}} \cdots a_{i n n^{h}} . \tag{4.2}
\end{equation*}
$$

We refer to positions $n^{2}+1, \ldots, n^{2}+m n$ as the middle mn positions. Multiplying m_{h} by c_{i} turns the i th block of n positions among the middle $m n$ positions of m_{h} to 1 . The following multiplication with $a_{i 11^{h}} \cdots a_{i n n^{h}}$ resets these n positions to 0 . At the same time, in the first n positions of $m_{h} c_{i}$ the 1 gets moved from position 1^{h} to $\left(1^{h}\right)^{f_{i}}$, in the next n positions the 1 gets moved from $n+2^{h}$ to $n+\left(2^{h}\right)^{f_{i}}$, and so on. The last position remains 0 . Hence we obtain the mapping tuple of $h f_{i}$, and (4.2) is proved.

It remains to choose an element which will be generated by all these tuples if and only if g is a composition of f_{i} 's. This final element is the mapping tuple for g. We claim

$$
\begin{equation*}
g \in\left\langle f_{1}, \ldots, f_{m}\right\rangle \quad \text { if and only if } m_{g} \in\left\langle m_{1}, c_{1}, \ldots, c_{m}, a_{111}, \ldots, a_{m n n}\right\rangle . \tag{4.3}
\end{equation*}
$$

The implication from left to right is immediate from our observation (4.2). For the converse we fix a product of generator tuples which yields m_{g} and show that it essentially follows the pattern from (4.2).

The last position of every mapping tuple is $0=s$, whereas the last position of the choice and application tuples is $0 \rightarrow 0=t s$. By (a) and (b) the only products of s and $t s$ that are equal to s are those of the form $s \cdot t s \cdots t s$. This means in the product yielding m_{g}, the generator m_{1} must occur at the beginning and nowhere else.

The second element from the left cannot be an application tuple as the $1 \rightarrow 0$ in one of the middle $m n$ positions would turn the result bad by (4.1). Thus the only option is the choice tuple for some function f_{i}. Multiplying m_{1} by c_{i} turns n positions (among the middle $m n$ positions) of m_{1} to 1 .

The third element from the left cannot be a choice tuple: since n of the middle $m n$ positions are 1 's, a multiplication by another choice tuple would produce a bad result. So before any more choice tuples can occur in our product, all n 1's in the middle $m n$ positions have to be reset to 0 . This can only be achieved by multiplying with n application tuples of the form $a_{i j k_{j}}$ for $j \in[n]$. Focusing on the first n^{2} positions of $m_{1} c_{i}$, we see that necessarily $k_{j}=j$ for all j. Hence the first $n+2$ factors of our product are

$$
m_{1} c_{i} a_{i 11} \cdots a_{i n n}=m_{f_{i}}
$$

Note that the order of the application tuples does not matter.
Continuing this reasoning with the mapping tuple for f_{i} (instead of the identity), we see that the next $n+1$ factors of our product are some c_{j} followed by n application
 end we get a mapping tuple for g if and only if g can be obtained as a composition of the f_{i} 's and the identity. This proves (4.3).

The number of tuples we input into SMP is $m n^{2}+m+2$, so the total size of the input is $O\left(\left(m n^{2}+m+2\right)\left(n^{2}+m n+1\right)\right)$, that is, polynomial with respect to the size of the input of the original problem. Thus Kozen's composition problem has a polynomial time reduction to $\operatorname{SMP}(S)$ and the latter is PSPACE-hard as well. Together with Theorem 4.1 this yields the result.

Proof of Theorem 1.4. Let $s^{\prime}:=(s, t s t), t^{\prime}:=(t s t, s)$, and $u^{\prime}:=(u, u)$ be elements of $S^{2}:=S \times S$. Clearly $s^{\prime} t^{\prime} s^{\prime}=s^{\prime}$ and $t^{\prime} s^{\prime} t^{\prime}=t^{\prime}$. Both s^{\prime} and t^{\prime} do not generate groups. By Lemma $2.1 s^{\prime 2}<\mathcal{J} s^{\prime}$ and $t^{\prime 2}<\mathcal{J} t^{\prime}$. Since $t^{\prime} \mathcal{J} s^{\prime}$, we have $t^{\prime 2}<\mathcal{J} s^{\prime}$. Now $s^{\prime}, t^{\prime}, u^{\prime}$ fulfill the hypothesis of Lemma 4.2. Thus $\operatorname{SMP}\left(S^{2}\right)$ is PSPACE-complete. As $\operatorname{SMP}\left(S^{2}\right)$ reduces to $\operatorname{SMP}(S)$ and vice versa, the result follows.

Now we are able to list several 'naturally occuring' semigroups (with semigroup signature) that have a PSPACE-complete SMP.

Corollary 4.3. The SMP for the following semigroups is PSPACE-complete:
(a) the Brandt monoid B_{2}^{1} and the monoid A_{2}^{1};
(b) for $n \geq 2$ and a finite ring R with identity $1 \neq 0$, the semigroup of all $n \times n$ matrices over R;
(c) the full transformation semigroup T_{n} on $n \geq 3$ letters;
(d) the symmetric inverse semigroup I_{n} on $n \geq 2$ letters.

Proof. We apply Theorem 1.4.
(a) For B_{2}^{1} let $s:=[1,2]$ and $t:=[2,1]$. For A_{2}^{1} let $s:=[2,2]$ and $t:=[1,1]$.
(b) Define $n \times n$ matrices s, t over R by

$$
s_{i j}:=\left\{\begin{array}{ll}
1 & \text { if }(i, j)=(1,2), \\
0 & \text { otherwise },
\end{array} \quad t_{i j}:= \begin{cases}1 & \text { if }(i, j)=(2,1) \\
0 & \text { otherwise }\end{cases}\right.
$$

for $i, j \in[n]$. Let u be the identity matrix.
(c) Let u be the identity mapping on $[n]$, and $s, t:[n] \rightarrow[n]$,

$$
s(x):=\left\{\begin{array}{ll}
2 & \text { if } x=1, \\
3 & \text { otherwise }
\end{array} \quad t(x):= \begin{cases}1 & \text { if } x=2 \\
3 & \text { otherwise }\end{cases}\right.
$$

(d) Let u be the identity mapping, $s: 1 \mapsto 2$, and $t: 2 \mapsto 1$.

In [9] Schützenberger introduced the pseudovariety DS which comprises all finite monoids each of whose regular \mathcal{J}-classes is a subsemigroup. Besides studying the structure of these monoids, he determined the languages recognized by various subpseudovarieties of DS. We can now generalize Corollary 2.3 for the case of monoids.

Corollary 4.4. If a finite monoid is not in DS, then its SMP is PSPACE-complete.
Proof. Let S be a monoid which does not belong to DS. Then S has a \mathcal{J}-class which contains both group and nongroup \mathcal{H}-classes. Similar to the proof of Corollary 2.3, there is a $t \in S$ such that $s t s=s$. Now s, t, and the identity fulfill the hypothesis of Theorem 1.4.

5. Proof of Theorem 1.6

Lemma 5.1. If the 0-1 matrix P of a finite combinatorial Rees matrix semigroup S_{P} has one block, then $\operatorname{SMP}\left(S_{P}^{1}\right)$ is in NP .
Proof. Assume $P \in\{0,1\}^{\Lambda \times I}$, and let $J \subseteq I$ and $\Delta \subseteq \Lambda$ such that $P(\lambda, i)=1$ if and only if $(\lambda, i) \in \Delta \times J$ for $i \in I, \lambda \in \Lambda$. Let $T:=S_{P}^{1}$ and $A \subseteq T^{n}, b \in T^{n}$ be an instance of $\operatorname{SMP}(T)$ such that $b \in\langle A\rangle$. Let $a_{1}, \ldots, a_{k} \in A$ such that $b=a_{1} \cdots a_{k}$. If $b=(1, \ldots, 1)$ or $k=1$, then clearly $b \in A$. In this case the position of b in the list A is a witness. Assume $b \neq(1, \ldots, 1)$ and $k \geq 2$.

We claim that for $i \in[n]$ with $b(i)=0$ there are $\ell_{i}, r_{i} \in[k], \ell_{i}<r_{i}$ such that

$$
\begin{equation*}
a_{\ell_{i}} a_{r_{i}}(i)=0 \quad \text { and } \quad a_{\ell_{i}+1}(i)=\ldots=a_{r_{i}-1}(i)=1 \tag{5.1}
\end{equation*}
$$

This follows from Lemma 3.1(a). For $i \in[n]$ with $b(i) \in I \times \Lambda$ let

$$
\begin{aligned}
& \ell_{i}:=\min \left\{j \in[k] \mid a_{j}(i) \neq 1\right\}, \\
& r_{i}:=\max \left\{j \in[k] \mid a_{j}(i) \neq 1\right\} .
\end{aligned}
$$

Now define an index set $N \subseteq[k]$ by

$$
N:=\left\{\ell_{i} \mid i \in[n], b(i) \neq 1\right\} \cup\left\{r_{i} \mid i \in[n], b(i) \neq 1\right\} .
$$

Note that $N \neq \varnothing$; otherwise $b=(1, \ldots, 1)$ which contradicts our assumption.
For $i \in[n]$ we claim that

$$
\begin{equation*}
\prod_{j \in N} a_{j}(i)=b(i) \tag{5.2}
\end{equation*}
$$

where the indexes j of the factors are in ascending order. If $b(i)=1$, then $a_{j}(i)=1$ for all $j \in[k]$, and (5.2) follows. Assume $b(i)=0$. We have $\ell_{i}, r_{i} \in N$. By (5.1) all factors in (5.2) between $a_{\ell_{i}}(i)$ and $a_{r_{i}}(i)$ are equal to 1 . This and (5.1) imply (5.2). Finally assume $b(i) \in I \times \Lambda$. For $\ell_{i}<j<r_{i}$ we have $a_{j}(i) \in\{1\} \cup(J \times \Delta)$; otherwise we obtain the contradiction $b(i)=0$. Thus

$$
\prod_{\substack{j \in N \\ \ell_{i} \leq j \leq r_{i}}} a_{j}(i)=\prod_{\ell_{i} \leq j \leq r_{i}} a_{j}(i)
$$

Since $a_{j}(i)=1$ for $j<\ell_{i}$ and $j>r_{i}$, (5.2) follows.
The length of the product in (5.2) is $|N|$ and thus at most $2 n$. Thus this product is a valid witness for $b \in\langle A\rangle$, and the lemma is proved.

Proof of Theorem 1.6. Assume $P \in\{0,1\}^{\Lambda \times I}$.
(a) If P is the all-1 matrix, then S_{P}^{1} is a band (idempotent semigroup) with \mathcal{J}-classes $\{0\}, I \times \Lambda$, and $\{1\}$. We show that S_{P}^{1} is a regular band, that is, S_{P}^{1} satisfies the identity

$$
\begin{equation*}
x y x z x \approx x y z x \tag{5.3}
\end{equation*}
$$

Let $x, y, z \in S_{P}^{1}$. If one of the variables is 0 or 1 , then (5.3) clearly holds. If $x, y, z \in I \times \Lambda$, then $x y x z x=x=x y z x$ by the definition of the multiplication. Thus S_{P}^{1} is a regular band. By [11, Corollary 1.7] the SMP for every regular band is in P.
(b) Assume P has one block and some entries are 0 . Let $i \in I$ and $\lambda \in \Lambda$ such that $P(\lambda, i)=0$. Let $s:=[i, \lambda]$ and $r:=t:=1$. Since s does not generate a group, $\operatorname{SMP}\left(S_{P}^{1}\right)$ is NP-hard by Theorem 1.1. NP-easiness follows from Lemma 5.1.
(c) In this case P does not have one block. Thus there are $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that

$$
P(\lambda, i)=P(\mu, j)=1 \quad \text { and } \quad P(\lambda, j)=0 .
$$

Let $s:=[j, \lambda]$ and $t:=[i, \mu]$. Then s does not generate a group, sts $=s, s 1=s$, and $t 1=t$. By Theorem 1.4 $\operatorname{SMP}(S)$ is PSPACE-complete.

References

[1] A. Bulatov, M. Kozik, P. Mayr and M. Steindl, ‘The subpower membership problem for semigroups', Internat. J. Algebra Comput. 26(07) (2016), 1435-1451.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, 7 (American Mathematical Society, Providence, RI, 1961).
[3] S. A. Cook., 'Characterizations of pushdown machines in terms of time-bounded computers', J. Assoc. Comput. Mach. 18 (1971), 4-18.
[4] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, 12 (The Clarendon Press, Oxford University Press, New York, Oxford Science Publications, 1995).
[5] P. Idziak, P. Marković, R. McKenzie, M. Valeriote and R. Willard, 'Tractability and learnability arising from algebras with few subpowers', SIAM J. Comput. 39(7) (2010), 3023-3037.
[6] D. Kozen, 'Complexity of finitely presented algebras', in: Conference Record of the Ninth Annual ACM Symposium on Theory of Computing (Boulder, CO, 1977) (Association for Computing Machinery, 1977), 164-177.
[7] M. Kozik., 'A finite set of functions with an EXPTIME-complete composition problem', Theoret. Comput. Sci. 407(1-3) (2008), 330-341.
[8] P. Mayr, 'The subpower membership problem for Mal'cev algebras', Internat. J. Algebra Comput. 22(7) (2012), 1250075, 23.
[9] M. P. Schützenberger, 'Sur le produit de concaténation non ambigu', Semigroup Forum 13(1) (1976/77), 47-75.
[10] S. Seif and C. Szabó, 'Computational complexity of checking identities in 0-simple semigroups and matrix semigroups over finite fields', Semigroup Forum 72(2) (2006), 207-222.
[11] M. Steindl, 'The subpower membership problem for bands', J. Algebra 489(Supplement C) (2017), 529-551.
[12] R. Willard, 'Four unsolved problems in congruence permutable varieties'. Talk at International Conference on Order, Algebra, and Logics, Vanderbilt University, Nashville, June 12-16, 2007.

MARKUS STEINDL, Institute for Algebra, Johannes Kepler University Linz, Altenberger St 69, 4040 Linz, Austria
and
Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, CO 80309-0395, USA
e-mail: markus.steindl@colorado.edu

[^0]: The author was supported by the Austrian Science Fund (FWF): P24285.
 (C) 2018 Australian Mathematical Publishing Association Inc.

