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BASES AND BOREL SELECTORS FOR TALL FAMILIES

JAN GREBÍK AND CARLOS UZCÁTEGUI

Abstract. Given a familyC of infinite subsets ofN, we study when there is a Borel function S : 2N → 2N

such that for every infinite x ∈ 2N, S(x) ∈ C and S(x) ⊆ x. We show that the family of homogeneous
sets (with respect to a partition of a front) as given by the Nash-Williams’ theorem admits such a Borel
selector. However, we also show that the analogous result for Galvin’s lemma is not true by proving that
there is an F� tall ideal on N without a Borel selector. The proof is not constructive since it is based on
complexity considerations. We construct aΠ12 tall ideal on N without a tall closed subset.

§1. Introduction. A family C of subsets of N is tall if for every infinite x ⊆ N

there is an infinite y ∈ C such that y ⊆ x. We are interested in tall families C which
are in addition definable as subsets of 2N. Take for example the set hom(c) of all
monochromatic subsets of N for some coloring c : [N]2 → 2. This is, by Ramsey
theorem, a tall family and moreover it is a closed subset of 2N. We deal with the
question of when we can effectively witness that a family is tall, i.e., when there is
a Borel function S : 2N → 2N such that for every infinite x ∈ 2N, S(x) ∈ C, S(x)
is infinite and S(x) ⊆ x. We call such a function S a Borel selector for C. Note
that if there is a Borel selector S for C, then C contains an analytic subfamily which
is also tall. This leads to a natural basis problem of whether a given tall family C
contains a simpler tall subfamily C′ ⊆ C. By simpler we mean that C′ is of lower
complexity (for example closed) or is of a specific form (for examplehom(c) for some
coloring c).
An important source of examples of tall families are tall Borel ideals on N. Up to
now, all known examples of Borel tall ideals (see, for instance, [6, 7]) have a Borel
selector (see Section 3.3). One of the main results of this article is the existence of
an F� tall ideal without a Borel selector. The proof of this result is based on the
following facts. Every F� ideal can be coded by a closed collection of sets, i.e., by an
element of the hyperspace K(2N). In [5] it is proved that the set of codes of tall F�
ideals is a Π12-complete subset of K(2

N). To show that there is an F� ideal without
a selector we prove that the complexity of the set of codes of F� ideals with a Borel
selector is Σ12. However, it is an open question to find a concrete example of such
F� ideal. This result is a generalization of the classical fact that there is a closed
subset of NN × NN whose projection is NN but without a Borel uniformization (see
Corollary 4.19).
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Another important class of tall families are the collection of homogeneous sets
with respect to a partition of [N]� , the infinite subsets of N. Given O ⊆ [N]� , a
set x ⊆ N is called O-homogeneous, if either [x]� ⊆ O or [x]� ∩ O = ∅. A well
known theorem of Silver [12] says that for every analytic subset O of [N]� the
collection hom(O) of O-homogeneous sets is tall. When O is open (resp. clopen),
the corresponding Ramsey result is called Galvin’s lemma [3] (resp. Nash-Williams’
theorem [11]). The existence of Borel selectors for families of the form hom(O) may
be interpreted as the fact that the corresponding Ramsey theorem holds uniformly,
i.e., there is a Borel (uniform, definable) way to compute, given x ∈ [N]� , an infinite
O-homogeneous subset of x. For instance, the fact that the Random ideal R [6]
has a Borel selector is due to the fact that there is uniform approach of finding an
infinite monochromatic subset of a given set x ⊆ N, which could be seen as having a
“Borel proof” of Ramsey’s theorem [7]. Analogously, we show that Nash-Williams’
theorem also has a uniform version and thus hom(O) has a Borel selector for every
clopen set O. However, we show there is an open set O such that hom(O) does
not have a Borel selector and therefore Galvin’s lemma does not admit a uniform
version.
Ramsey -type theoremshavebeen analyzed froma related but different complexity
point of view. Solovay ([14]) showed that if O ⊆ [N]� is open and [x]� ⊆ O for
every x ∈ hom(O), then hom(O) contains an element which is hyperarithmetical in
the code of O (see also [1]).
Finally, we show that the basis problem also has a negative answer. We construct
a Π12 tall ideal I such that hom(O) �⊆ I for all open set O ⊆ [N]� , in particular, I
does not contain any tall closed subset. It is still an open question whether every
tall Borel (analytic) ideal contains a closed tall subset.

§2. Preliminaries. In this section we fix our notation, give some basic definitions
and results that are later used. We consider the natural isomorphism P(N) ≈ 2N
and view all relations and operation such as ⊆,∩,∪,
, [ ]<� , etc, as defined on 2N
i.e., we use x ⊆ y, x ∩ y, [x]<� , etc, for x, y ∈ 2N. For x a subset of N and n ∈ N we
let x/n = {m ∈ x : n < m}. We use the standard descriptive set theoretic notions
and notation (as in [8]). The projective classes are denoted Σ1n andΠ

1
n .

Definition 2.1. Let C ⊆ 2N be a tall family. We say that C has a Borel selector,
if there is a Borel function S : 2N → 2N such that for every infinite set x ∈ 2N, S(x)
is infinite, S(x) ⊆ x and S(x) ∈ C.

Note that we define the notion of a Borel selector only for tall families so if we
say that C has a Borel selector it automatically means that C is tall. We say that a
family C is hereditary if y ∈ C whenever there is x ∈ C such that y ⊆ x. We say that
I ⊆ 2N is an ideal on N if it is hereditary and it is closed under finite unions. As
usual, we define I+ as 2N \ I.
The following characterization of an F� ideal on N was given by Mazur [10].
Recall that a map ϕ : 2N → [0,∞] is a lower-semicontinuous submeasure (lscsm) if
for all x, y ∈ N

• ϕ(∅) = 0,
• x ⊆ y implies ϕ(x) ≤ ϕ(y),
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• ϕ(x ∪ y) ≤ ϕ(x) + ϕ(y),
• ϕ(x) = limn→∞ ϕ(x ∩ n).
Each lscsm ϕ naturally corresponds to the F� ideal Fin(ϕ) := {x : ϕ(x) <∞}.
Theorem 2.2 (Mazur [10]). An ideal I is F� if and only if there is lscsm ϕ such
that I = Fin(ϕ).
From this characterization one easily deduces (see for example [5]) the following
result which allows us to consider K(2N), the hyperspace of closed subsets of 2N

endowed with its usual metric topology, as a space of codes of F� ideals. For
K ∈ K(2N), let IK be ideal generated by K , i.e., x ∈ IK if and only if there are
y0, . . . , yn−1 ∈ K such that x ⊆

⋃
i<n yi . Clearly, IK is F� .

Proposition 2.3. For every F� ideal I there is K ∈ K(2N) such that I = IK .
Proof. We include the proof given in [5] for the sake of completness. Let
supp(I) = {n ∈ N : {n} ∈ I} and I =

⋃
n Kn where each Kn is closed. Enu-

merate supp(I) as {an : n ∈ N}. Define a tree T =
⋃
n Tn on 2

<� where y ∈ [Tn] if
y(i) = 0 for every i < an, y(an) = 1 and there is x ∈ Kn such that y(i) = x(i) for
every i > an. Note that now for every x ∈ I there is y ∈ [T ] such that x
y is finite
and therefore if we put K = [T ] we have IK = I. 

Let T be the collection of allK ∈ K(2N) such that IK is tall. The following result
is crucial for our purposes.

Theorem 2.4 ([5]). T is Π12−complete subset of K(2N).
We present the original proof from [5] for the convenience of the reader. The
proof uses a special version of a result of Becker, Kahane, and Louveau (see [2]).
Consider the following set U ⊆ (C (2N × 2N, 2))� × 2N given by
((fn)n∈�, x) ∈ U ⇔ there is z ⊆ N such that (fn(x, ))n∈z converges pointwise to 0.

Theorem 2.5 ([8], Theorem 37.14). The set U is (C (2N × 2N, 2))�-universal for
Σ12(2

N), i.e., every Σ12 subset of 2
N appears as a section of U .

Proof of Theorem 2.4. Let X ⊆ 2N be Σ12 set. By the universality of U , there is
(fn)n∈� ∈ (C (2N × 2N, 2))� such that X = {x : ((fn)n∈�, x) ∈ U}. Define a map
� : 2N → K(2N) by y ∈ �(x) if and only if there is z ∈ 2N such that y(n) = fn(x, z)
for all n ∈ N. This function is clearly continuous. To finish the proof, it suffices to
show that x ∈ X if and only if I�(x) is not tall.
Given x ∈ X , there is z ⊆ N such that (fn(x, ))n∈z converges pointwise to 0,
that is z ∩ y is finite for every y ∈ �(x). Thus, z does not contain any infinite set in
I�(x). Hence I�(x) is not tall.
On the other hand, suppose x �∈ X . To show that I�(x) is tall, fix z ⊆ N infi-
nite. Since ((fn)n∈�, x) �∈ U , then (fn(x, ))n∈z does not converge pointwise to 0.
Therefore there is a y ∈ �(x) such that z ∩ y is infinite, so I�(x) is tall.
To finish the proof it is enough to realize that the set T is Π12. But this follows
easily from the definition of T :

T = {K ∈ K(2N) : ∀x ∈ 2N \ Fin ∃y ∈ K \ Fin |y ∩ x| = �}. 

Next, we state the combinatorial theorems (as presented in [15]). Let s ∈ [N]<�
and t ∈ [N]≤� . We write s � t when there is n ∈ N such that s = t ∩ {0, 1, . . . , n}
and we say that s is an initial segment of t.
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Theorem 2.6 (Galvin). Let F ⊆ [N]<� and an infinite x ∈ 2N. Then there is an
infinite y ⊆ x such that one of the following holds
• for all z ∈ [y]� there is s ∈ F such that s � z,
• [y]<� ∩ F = ∅.
We can think of F as a coloring of [N]<� and put hom(F) ⊆ 2N for the family
of all y that satisfy one of the conditions in the conclusion of Galvin’s theorem,
such sets are called F -homogeneous. It is clear that hom(F) is an hereditary tall
collection. Moreover, the family of all sets that satisfy the second condition is closed
and the family of sets that satisfy the first condition is Π11. We write P2 for the set
of all F ⊆ [N]<� such that for every infinite x ∈ 2N there is an infinite y ⊆ x such
that [y]<� ∩ F = ∅, i.e., the first condition in the conclusion of Galvin’s theorem is
never satisfied.
A special type of coloring of [N]<� is as follows. We say that B ⊆ [N]<� is a front
on an infinite set x ∈ 2N if
• every two elements of B are �-incomparable,
• every infinite y ⊆ x has an initial segment in B.
Theorem 2.7 (Nash-Williams). Let B be a front on N and F ⊆ B. Then for every
infinite x ∈ 2N there is an infinite y ⊆ x such that one of the following holds
• [y]<� ∩ B ⊆ F ,
• [y]<� ∩ F = ∅.
Let F ⊆ B as above, it is easy to verify that y ∈ hom(F) if and only if y
satisfies one of the conditions from the Nash-Williams’ theorem. Moreover, the
family hom(F) is easily seen to be closed, hereditary, and tall.
Proposition 2.8. For every closed, tall, and hereditaryK ⊆ 2N there isF ⊆ [N]<�
such that hom(F) = K .
Proof. Define FK = {s ∈ [N]<� : s �∈ K}. We claim that hom(FK) is equal to

{y ∈ [N]� : [y]<∞∩FK = ∅}. Let y ∈ hom(FK) and suppose, towards a contradic-
tion, that y satisfies the first condition in the conclusion of Galvin’s theorem. Since
K is tall there is an infinite z ⊆ y such that z ∈ K . As y satisfies the first condition,
there is s ∈ FK such that s � z but since K is hereditary we have s ∈ K and this
contradicts the definition of FK .
It remains to check that K = hom(FK). Clearly ⊆ holds. Conversely, let x �∈ K ,
since K is hereditary and closed there must be some n ∈ N such that x ∩ n �∈ K
then we have x ∩ n ∈ FK . Thus x �∈ hom(FK). 

Proposition 2.9. The set P2 is Π12−complete.
Proof. This is a generalization of previous argument. It is easily seen that P2
is Π12. Thus, it suffices to find a continuous map � : K(2

N) → 2[N]
<�

such that
K ∈ T if and only if �(K) ∈ P2, where T is as in Theorem 2.4. Consider the map
� : K(2N)→ 2[N]<� given by

s ∈ �(K)⇔ ∀x ∈ K s �⊆ x.
We show first that� is continuous. Let s ∈ [N]<� and consider the subbasic clopen
set O = {F ∈ 2[N]<� : s ∈ F}. Then

�(K) �∈ O ⇔ ∃x ∈ 2N(x ∈ K ∧ s ⊆ x).
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This is clearly a projection of a compact subset of 2N × K(2N). Thus �−1(O) is
open. We have the same conclusion for the other subbasic clopen set O = {F ∈
2[N]

<�

: s �∈ F}.
Let K ∈ T . To prove that �(K) ∈ P2 we need to show that hom(�(K)) = {y ∈
[N]� : [y]<∞ ∩ �(K) = ∅}. In fact, as IK is tall, for every infinite y there is z ∈ K
such that z ∩ y is infinite. Using this fact and an argument similar to that in the
proof of Proposition 2.8, we get that there is no element of hom(FK) satisfying the
first condition in the conclusion of Galvin’s theorem.
Conversely, let K �∈ T . As IK is not tall, there is an infinite x ∈ 2N such that
x ∩ y is finite for all y ∈ K . By Galvin’s Lemma, we can assume w.l.o.g. that
x ∈ hom(�(K)). We show that x satisfies the first condition in the conclusion
of Galvin’s theorem, that is, �(K) �∈ P2. Suppose, towards a contradiction, that
[x]<∞ ∩ �(K) = ∅. Then for all n, there is yn ∈ K such that x ∩ n ⊆ yn. Since
K is compact, there is z ∈ K such that x ⊆ z but this is imposible as x ∩ z is
finite. 


§3. Positive results. In this section we prove the uniform version of the Nash-
Williams’s theorem. To state our theorem in full generality we must first introduce
several definitions.

3.1. Uniformly p+, q+ and selective ideals. Let I be an ideal on N. We say that I
is q+ if for all x ∈ I+ and every partition {sn}n of x into finite sets there is y ⊆ x
such that y ∈ I+ and |y ∩ xn| ≤ 1 for all n ∈ N. A subset of

⋃
si is a selector for

{sn}n if it selects at most one point of each piece sn. The ideal I is p+ if for every
decreasing sequence (xn)n of sets in I+ there is x ∈ I+ such that x \ xn is finite
for all n. It is selective, if for every decreasing sequence (xn)n of sets in I+ there is
x ∈ I+ such that x/n ⊆ xn for all n ∈ x. We are interested in the uniform versions
of these notions. We say that a Borel ideal I is uniformly selective if there is a Borel
function F from (2N)N into 2N such that whenever (xn)n is a decreasing sequence of
sets in I+, then x = F ((xn)n) is in I+ and x/n ⊆ xn for all n ∈ x. In an analogous
way, we define when an ideal is uniformly p+. We say that I is uniformly q+, if there
is a Borel function F from (2N)N into 2N such that whenever {sn}n is a partition of a
set x in I+ into finite sets, then y = F ((sn)n) ⊆ x, y belongs to I+ and |y ∩ sn| ≤ 1
for all n.
Let I be a Borel ideal. Consider the collection P of all (xn)n in (2N)N such that
(xn)n is decreasing and each xn belongs to I+. Clearly P is a Borel subset of (2N)N.
Thus it suffices to define on P the Borel function required to show uniform p+ or
uniform selectivity. Analogously, let Q be the collection of all (sn)n in (2N)N such
that (sn)n is pairwise disjoint, each sn is finite and

⋃
n sn ∈ I+. Then Q is a Borel

subset of (2N)N. Thus, it suffices to define onQ the Borel function required to have
uniform q+.
Lemma 3.1. A Borel ideal I is uniformly selective if and only if it is uniformly p+
and q+.
Proof. It is known that an ideal is selective if and only if it is p+ and q+ (see for
instance [16, Lemma 7.4]). We will verify that the standard proof of this result is
effective. Let I be an uniformly selective Borel ideal. It is clear that I is uniformly
p+. Let us check that it is uniformly q+. As we explain above, it suffices to find a
function F , as in the definition of an uniformly q+ ideal, which is defined only onQ.
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Consider the function G from Q into (2N)N given by G((sn)n) = (xn)n where
xn =

⋃
{sj : {0, . . . , n} ∩ sj = ∅} for each n. It is clear that each xn ∈ I+ and G is

Borel. Observe that if G((sn)n) = (xn)n and y is any diagonalization of (xn)n (i.e.,
y/n ⊆ xn for all n ∈ y), then |y ∩ si | ≤ 1 for all i . Let H be a Borel function as in
the definition of uniform selectivity. Then F = H ◦G works.
Suppose now that I is uniformly p+ and q+. We will show that I is uniformly
selective. As before, it suffices to define on P the Borel function required to show
uniform selectivity. Let (xn)n be a sequence inP . By the propertyp+, there is y ∈ I+
such that y ⊆∗ xn for all n. Let (nk)k be a strictly increasing sequence of natural
numbers such that n0 = 0 and y \ xnk ⊆ {0, . . . , nk+1} for all k. For instance, let
nk+1 = max{max(y \ xnk ), nk} + 1. By the property q+, there is z ∈ I+ such that
z ⊆ y and |z ∩ [nk, nk+1)| ≤ 1 for all k (where [nk, nk+1) is the interval of all n in
N such that nk ≤ n < nk+1). Let z0 be the union of all sets z ∩ [nk, nk+1) with k
even and z1 be the union of all sets z ∩ [nk, nk+1) with k odd. Either z0 or z1 (it
could be both) belongs to I+. Thus, we can assume w.l.o.g that z ∩ [n2k, n2k+1) = ∅
for all k (or z ∩ [n2k+1, n2k+2) = ∅ for all k). It is easy to verify that z/n ⊆ xn for
all n ∈ z. Thus, I is selective. To see that this proof is effective just observe that
the set y is choosen using the Borel function given by the fact that I is uniformly
p+. Now the sequence (nk)k was choosen in a Borel way as a function of y and
(xn)n. Then we use the Borel function given by the uniform q+ property to select
the set z. Finally, since I is Borel, we can pick in a Borel way among z0 and z1 the
appropriated alternative. 

Theorem 3.2. Let I be a F� ideal. Then,
(i) I is uniformly p+.
(ii) if I is q+, then it is uniformly q+.
In particular, every selective F� ideal is uniformly selective.
Proof. Let {sk}k be an enumeration of [N]<� and let � be the lower semicontin-
uous submeasure such that I = {x ∈ 2N : �(x) <∞}. First we claim that for each
n ∈ N there is a Borel function Gn : 2N → 2N such that for all x �∈ I, Gn(x) is a
finite subset of x and �(Gn(x)) ≥ n. Define Gn(x) = ∅ for x ∈ I. For x ∈ I+ let
Gn(x) = sk where k is the minimal index such that sk ⊆ x and �(sk) ≥ n.
We will define the Borel selection functions on the collections P and Q as it was
explained above.

(i) Let (xn)n be a sequence in P . Define G((xn)n) =
⋃
n Gn(xn). Then G is

Borel and has the required property since, letting y = G((xn)n), we have that
y \ xn ⊆ G(x0) ∪ · · · ∪ G(xn−1) is a finite set.

(ii) We define recursively Borel functions Fn : Q → 2N and Kn : Q → N for all
n ∈ N. For (ti )i ∈ Q we define
• F1((ti)i ) = sk where k is the smallest j such that �(sj) ≥ 1 and sj is a
(finite) selector for (ti)i . Such j exists since I is q+. In fact, let y be a
selector for (ti)i such that y ∈ I+. Hence,G1(y) is a finite selector for (ti)i
as requiered. Let K1((ti )i) be the smallest k such that F1((ti)i ) ∩ tj = ∅
for all j ≥ k.

• Fn+1((ti )i) = sk where k is the smallest j such that �(sj) ≥ n + 1 and
sj is a (finite) selector for (ti )i≥kn where kn = Kn((ti )i). As before, as
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I is q+, such k exists. Let Kn+1((ti)i ) be the smallest k > kn such that
Fn+1((ti)i ) ∩ tj = ∅ for all j ≥ k.

Then Fn and Kn are Borel functions for all n. Finally put F ((ti)i ) =⋃
n∈N
Fn((ti )i). From the construction it is clear that y = F ((ti )i) is a selector

for (ti)i and �(y) =∞, hence y ∈ I+. 

Corollary 3.3. Fin is uniformly selective.

Recall thatA ⊆ [N]� is an almost disjoint family if x ∩ y ∈ Fin for every x, y ∈ A
with x �= y. Let A be an almost disjoint family and I(A) be the ideal generated by
A. By a result of Mathias [9], I(A) is selective. It is easy to verify that when A is
closed (as a subset of 2N), then I(A) is F� . Hence, from Theorem 3.2 we get the
following

Corollary 3.4. Let A be a closed almost disjoint family. Then I(A) is uniformly
selective.

The previous result naturally suggests the following.

Question 3.5. Is I(A) uniformly selective for every almost disjoint Borel family
A? More generally, is every Borel selective ideal uniformly selective?

3.2. Uniform Ramsey-type theorems. Recall that the lexicographic order<lex on
[N]<� is defined by s <lex t if min(s
t) ∈ s . Let x ∈ 2N be infinite and B ⊆ [x]<�
be a front on x. Then the restriction of <lex on B is a well-order and its order type
is called the rank of B (denoted rank(B)).
For F ⊆ [N]<� we define F = {s ∈ [N]<� : s � t for some t ∈ F}.
Lemma 3.6. Let B be a front and F ⊆ B. Let F̂ = {s ∈ [N]<� : ∃t ∈ F ,∃t′ ∈

B, t � s � t′}. Then x ∈ hom(F) if and only if [x]<�∩F = ∅ or [x]<�∩B ⊆ F ∪F̂ .
Proof. Let x ∈ hom(F). Suppose the first item in the conclusion of Theorem 2.6
holds. Let s ⊂ x with s ∈ B and put y = s ∪ {n ∈ x : n > max s}. Thus there is
t ∈ F such that t � y. Hence, s � t or t � s . In either case, s ∈ F ∪F̂ . Conversely,
suppose that [x]<� ∩B ⊆ F ∪ F̂ and let y ∈ [x]<� . Since B is a front, there is t ∈ B
such that t � y. Then t ∈ F ∪ F̂ . Since t ∈ B, there is s � t with s ∈ F . Hence,
x ∈ hom(F). 

Theorem 3.7. Let I be a uniformly selective Borel ideal on N and let B be a front
on some set z ∈ I+. There is a Borel map S : 2B × (I+ � z)→ I+ such that S(F , x)
is a F -homogeneous subset of x for all x ∈ I+ � z.
Proof. Let B be a front on z and proceed by induction on α = rank(B).
If rank(B) = �, then B = [z]1. Let S(F , x) = (

⋃
F) ∩ x, if (

⋃
F) ∩ x ∈ I+.

Otherwise, S(F , x) = x \
⋃
F . Since I+ is Borel, then S is a Borel function.

Now suppose that the claim holds for all fronts on any z ∈ I+ of rank less than
α. Let B be a front on z ∈ I+ of rank α. For each n ∈ N and F ⊆ B, let

F{n} = {t ∈ [N]<� : n < min(t) & {n} ∪ t ∈ F}.

Observe that B{n} is a front on z/n = {m ∈ z : n < m} with rank less than α.
Consider the function

Γ : 2B × I+ � z →
∏
n∈N

(2B{n} × I+ � (z/n))
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where Γ(F , x) = ((F{n}, x/n))n∈N forx ⊆ z in I+. ThenΓ is Borel. By the inductive
hypothesis there is Borel function

S :
∏
n∈N

(2B{n} × I+ � (z/n))→
∏
n∈N

(I+ � (z/n))

that satisfies the conclusion of the theorem for each coordinate. Denote by Sn the
composition of Γ, S and the projection to n-th coordinate.
We define a sequence of Borel functions {Hn}n<�. For (F , x) ∈ 2B × I+ � z
define recursively

• H0(F , x) = S0(F{0}, x/0),

• Hn+1(F , x) = Sn+1(F{n+1},Hn(F , x)/(n + 1)).
Observe that the map (F , x) �→ {Hn(F , x)}n<� is Borel. Since I is uniformly
selective, we can extract, in a Borel way, from the sequence {Hn(F , x)}n<� a set
y ∈ I+ such that

y/n ⊆ Hn(F , x) for all n ∈ y.
Lemma 3.6 naturally provides the notion of i-homogeneous for F for i = 0, 1. Let

yi = {n ∈ y : Hn(F , x) is i-homogeneous for F{n}}.
Then yi is i-homogeneous for F . In fact, for i = 0, let t be a finite subset of y0
and let n = min(t). Then t/n ⊆ Hn(F , x) as n ∈ t ⊆ y. Therefore t/n �∈ F{n}, as
Hn(F , x) is 0-homogeneous for F{n}. Thus t = {n} ∪ t/n �∈ F . Using Lemma 3.6,
a similar argument works for i = 1.
By Lemma 3.6, being i-homogeneous for F is a Borel property, therefore the
function y �→ (y0, y1) is Borel. Since y ∈ I+, then at least one of the sets y0 or y1
belongs to I+. Let S(F , x) = y0 if y0 ∈ I+ and y1, otherwise. As I+ is Borel, we
can pick in a Borel way the alternative that holds. Thus S is Borel. 

Since Fin is uniformly selective (Corollary 3.3), we get the uniform version of
Nash-Williams’ theorem.

Corollary 3.8. Let B be a front onN. There is a Borel map S : 2B× [N]� → [N]�
such that S(F , x) is a F -homogeneous subset of x, for all x ∈ [N]<� and all F ⊆ B.

Using the front [N]n , we get that the classical Ramsey’s theorem holds uniformly
(the case n = 2 appeared in [7]).

Corollary 3.9. For each n ∈ N, there is a Borel function S : 2[N]
n × [N]<� →

[N]<� such that S(F , x) is an infinite subset of x homogeneous for F ⊆ [N]n .
Let C1 and C2 be two tall hereditary families with Borel selector. It is easy to verify
that C1 ∩ C2 has a Borel selector and thus it is natural to ask the following.
Question 3.10. Let B1 and B2 two fronts on N andFi ⊆ Bi , i ∈ 2. Is there a front

B3 and F3 ⊆ B3 such that hom(F3) ⊆ hom(F1) ∩ hom(F2)?
3.3. Some examples. We present some examples showing that the search for a
Borel selector for a tall family C can be reduced, in some instances, to finding an
appropriated coloring c such that hom(c) ⊆ C and then use Corollary 3.9.
Let us start recalling that an ideal I isKatětov below an idealJ , denoted I ≤K J ,
if there is a function f : N → N such that f−1[x] ∈ J for every x ∈ I. This pre-
order has been extensively investigated (see, for instance, [6] and the references
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therein). LetR be the ideal on N generated by the homogeneous sets of the random
graph ([7]). It follows from the universal property of the randomgraph thatR ≤K I
if and only if there is a F ⊆ [N]2 such that hom(F) ⊆ I. In particular, if R ≤K I,
then I has a Borel selector. All ideals studied in [6, 7] are Katětov above R, and
therefore they admit a Borel selector. Even Solecki’s ideal S ([13]) has a Borel
selector [5] (even thought, it is open whether R ≤K S). It is proved in [5] that
having a Borel selector is closed upwards in the Katětov order and if I is a tall Borel
ideal with a Borel selector then there is a tall Borel ideal J such that I �≤K J .

Example 3.11. LetWO(Q) be the collection of all well-ordered subsets ofQwith
respect to the usual order. Let WO(Q)∗ the collection of well ordered subsets of
(Q, <∗) where <∗ is the reversed order of the usual order of Q. Let C =WO(Q) ∪
WO(Q)∗. Notice that C is a complete co-analytic set. To see that C has a Borel
selector, fix an enumeration (rn)n ofQ. Let c : [Q]2 → 2 be the Sierpinski’s coloring
which is given by c{rn, rm} = 0 if and only if n < m and rn < rm. Then hom(c) ⊆ C.

Example 3.12. Let (xn)n be a sequence on a compact metric space X . Let

C(xn)n = {y ⊆ N : (xn)n∈y is convergent}.

Then C(xn)n is clearly tall. We show that there is a coloring c such that hom(c) ⊆
C(xn)n. In fact, let f : 2N → X be a continuous surjection. Pick yn ∈ 2N such that
f(yn) = xn for each n ∈ N. Let� be the usual lexicografic order on 2N. Consider the
Sierpinsky coloring c{n,m}< = 0 if and only if yn ≺ ym. Then hom(c) ⊆ C(xn)n.

Example 3.13. Let (X, �) be a regular space without isolated points over a
countable set X . We show that there is a coloring c : [X ]2 → 2 such that
hom(c) ⊆ nwd (X, �). For X equal to the rationals, the Sierpinski coloring c on
[Q]2 satisfies that hom(c) ⊆ nwd (Q). Now let X be any countable regular space
without isolated points. Let (Vn)n be a countable collection of �-open sets that
separates points. Let 	 be the topology generated by the Vn’s. Then (X, 	) is home-
omorphic to Q. Therefore the Sierpinski coloring on Q can be defined on [X ]2

such that every c-homogeneous set is a 	-discrete subset of X . Since 	 ⊆ �, then
hom(c) ⊆ nwd (X, �).

Example 3.14. Let e : [N]� → NN be the increasing enumeration function, i.e.,
e(x)(n) is the nth element of x in its natural order. Notice that e is continuous. Let

 : [N]� × [N]� → [N]� be given by


(x, y) = {e(x)(n) : n ∈ y}.

Then 
(x, y) ⊆ x and 
 is continuous. For each y ∈ [N]� , let

Cy = {
(x, y) : x ∈ [N]�}.

Then Cy is a tall family and obviously S(x) = 
(x, y) is a Borel selector for Cy .
We will show that Cy contains hom(c) for some coloring c. Let (yn)n be the
increasing enumeration of y. We assume that y0 ≥ 1. If (zn)n is the increasing
enumeration of an infinite set z, then

z ∈ Cy ⇔ (∀n)(yn+1 − yn ≤ zn+1 − zn) & y0 ≤ z0.
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Consider the following coloring:

c{k, l} = 0 if and only if l − k ≥ yk & k ≥ y0.
It is easy to verify that any c-homogeneous infinite set is necessarily 0-homogeneous
and also that hom(c) ⊆ Cy .
Let S be Solecki’s ideal ([13]). As we mentioned before, an important open
question stated in [6] is whetherR ≤K S. An analogous question is the following.
Question 3.15. Are there a front B and F ⊆ B such that hom(F) ⊆ S?

§4. Negative results. In this section we show that there is a tall F� ideal without a
Borel selector and deduce from this fact that there is no uniform version of Galvin’s
theorem. We also show that there is a Π12 tall ideal I such that hom(F) �⊆ I for
every F ⊆ [N]<� .
4.1. An F� ideal without a selector and no uniform version of Galvin’s theorem.
Recall that the hyperspaceK(2N) serves as a space of codes for F� ideals (see Propo-
sition 2.3). We have seen that the set T of codes of tall F� ideals is Π12−complete
(see Theorem 2.4). To show that there is an F� ideal without a selector we prove
that the complexity of the set of codes of F� ideals with a Borel selector is Σ12.
We start by modifying a bit the notion of tallness and Borel selector. For K ∈
K(2N), let

↓ K = {x : ∃y ∈ K x ⊆ y},
〈K〉n = {

⋃
i<n

yi : yi ∈ K}.

Definition 4.1. We say thatK ∈ K(2N) is pseudo-tall if for every infinite x ∈ 2N
there is infinite y ∈↓ K such that y ⊆ x.

One can verify that, as a function, ↓: K(2N) → K(2N) is continuous. Note that
K is pseudo-tall if and only if IK is tall.
Lemma 4.2 ([5]). Let K ∈ K(2N) with ∅ ∈ K . There is a Borel function φ : 2N →(
2N

)N
such that φ(x)(n) ∈ K for every x ∈ 2N and n ∈ N, {n : φ(x)(n) �= ∅} is finite

for every x ∈ 2N and x ⊆
⋃
n∈N
φ(x)(n) for every x ∈ IK .

Proof. For each n ∈ N, consider the following relation:

Rn = {(x, y1, . . . , yn) ∈ 2N ×Kn : x ⊆ y1 ∪ · · · ∪ yn}.
Notice Rn is closed and therefore for each x ∈ 2N, (Rn)x = {(y1, . . . , yn) ∈ Kn :
x ⊆ y1 ∪ · · · ∪ yn} is closed (hence compact). Thus, by the classical theorem of
Arsenin-Kunugui (see for instance [8, 35.46]), Rn can be uniformized by a Borel
function fn. That is, letting Pn to be the collection of all x ∈ 2N such that there
is (y1. . . . , yn) such that (x, y1, . . . , yn) ∈ Rn, then Pn is closed, fn : Pn → Kn is
Borel and (x,fn(x)) ∈ Rn for all x ∈ Pn . Notice that IK =

⋃
n Pn . Define φ(x)

as follows: if x �∈ IK then φ(x)(n) = ∅ for all n. On the other hand, if x ∈ IK , let
φ(x) = (fn(x), ∅, ∅, . . . , ) where n is the least m such that x ∈ Pm. Then φ is Borel
and satisfies the conclusion. 

Let us note, that the previous result is equivalent to saying that there is a Borel
function IK → K<� such that x ⊆

⋃
ϕ(x)(n).
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Proposition 4.3. Let K ∈ K(2N) be pseudo-tall. Then IK has a Borel selector S
if and only if it has a Borel selector S′ such that rng(S′) ⊆↓ K .
Proof. Only one implication is not trivial. Let S be a Borel selector for IK .
Clearly we can assume without loss of generality that ∅ ∈ K . Let φ be the map
given by Lemma 4.2. We define a mapW : 2N →↓ K as follows. For each x ∈ IK
infinite, let b1, b2, . . . , bn ∈ K such that φ(x) = (b1, . . . , bn, ∅, . . .), then we put
W (x) = x ∩ bi where i is the first j such that x ∩ bj is infinite. And W (x) = ∅,
for any other x ∈ 2N. ThenW is a Borel map,W (x) ⊆ x andW (x) is infinite for
every infinite set x ∈ IK . To finish the proof, put S′ =W ◦ S. 

This leads to a modified definition of a selector.

Definition 4.4. Let K ∈ K(2N) be pseudo-tall. We say that K has a Borel
pseudo-selector if there is a Borel function S : 2N → 2N such that
• S(x) ∈↓ K ,
• if x is infinite, then S(x) is also infinite,
• S(x) ⊆ x.
By the Proposition 4.3, K ∈ K(2N) has a pseudo-selector if and only if IK has a
selector and therefore it suffices to consider only pseudo-selectors of closed subsets
of 2N. In other words, the questions of the existence of a Borel selector for F� ideals
and for a hereditary tall closed subsets of 2N are equivalent. Let us summarize this
in the following proposition.

Proposition 4.5. Let K ∈ K(2N) be tall. The following are equivalent:
• there is a Borel selector for K ,
• there is a Borel pseudo-selector for K ,
• the F� ideal IK has a Borel selector,
• the smallest ideal I that containsK and Fin has a Borel selector.
Proof. It can be easily verified that the ideal I in the fourth condition is also
F� . The only implication that is not clear from the previous argument is how to
get a Borel selector from a Borel pseudo-selector. Let S : 2N → N be a Borel
pseudo-selector for K . Define

{(x, y) : S(x) ⊆ y ⊆ x, y ∈ K} ⊆ 2N × 2N.
This is a Borel set with each vertical section compact and therefore it has a Borel
uniformization by a classical uniformization theorem (see, for instance, [8, Theorem
35.46]). The uniformizing function is a Borel selector forK. 


4.1.1. Coding of Borel functions. Now we are going to present how to code Borel
functions. For that end, first we need to code Borel sets. This coding is somewhat
standard (see for instance [4, pag. 19]), but we need to present it with some detail.
We define a set of labeled well-founded trees which will be the codes of Borel sets.

Definition 4.6. Let LT be the set of all trees on N where each node is labeled
by an element of {0, 1}.
So, formally, every element of LT is a tuple (T,f) where T ⊆ N<� is a tree and
f : T → 2. However, we will always write only T ∈ LT and (s, i) ∈ T meaning
that f(s) = i .
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One can easily check that there LT is a closed subset of the Polish space of all
trees on N × 2, thus LT is a Polish space. Moreover, the set of all well-founded
labeled treesWFLT is Π11.
We are interested in a closed subspace of LT which will contain all codes for
Borel subsets of 2N.

Definition 4.7. Let LTc ⊆ LT be the set of all labeled trees satisfying the
following condition.

• if (s, 1) ∈ T then (s�(0), 0) ∈ T and it is the only immediate successor of
(s, 1).

One can easily verify that LTc is a closed subspace of LT and the set of well-
founded treesWFLTc ⊆ LTc is Π11.
Now we will define, for each T ∈ WFLTc , the Borel set AT coded by T . And
conversely, for each Borel setA ⊆ 2N there will be aT ∈WFLTc such thatA = AT .
The definition of AT is by recursion on the rank of T .
Let {tn : n ∈ N} be an enumeration of all basic open sets of 2N, i.e., each tn is a
finite binary sequence. Recursively define what each (s, i) ∈ T codes:
• if (s, 0) is a leaf then it codes the basic open set ts(|s|−1) (in the case of s = ∅,
we put t∅(|∅|−1) = t0),

• if (s, 0) is not a leaf, then it codes the union of the sets coded by (s�n, i) where
(s�n, i) ∈ T ,

• (s, 1) codes the complement of what (s�(0), 0) codes.
Finally, AT is the set coded by (∅, i).
Lemma 4.8. For every Borel set A ⊆ 2N there is T ∈ WFLTc such that A = AT .
And conversely, AT is Borel for each T ∈WFLTc .
Proof. Given T ∈ WFLTc , one easily shows for induction on the rank of T
that AT is Borel. Conversely, given a Borel set A ⊆ 2N, by induction on the Borel
complexity of A it is easy to construct a T ∈WFLTc such that A = AT . 

Let Ci ⊆ 2N × LTc , i ∈ 2, be given by

(x,T ) ∈ C1 if and only if T ∈WFLTc and x ∈ AT
and

(x,T ) ∈ C0 if and only if T ∈WFLTc and x �∈ AT .
The following is a crucial result.

Lemma 4.9. The relation Ci is Π11 for i ∈ 2.
For the proof we need some auxiliary results. We define the following subset
G ⊆ 2N × LTc × LT .

Definition 4.10. A triple (x,T, S) is in G ⊆ 2N × LTc × LT if and only if
• (s, i) ∈ T for some i ∈ 2 if and only if (s, j) ∈ S for some j ∈ 2,
• if (s, 0) ∈ T is leaf then (s, 1) ∈ S if and only if ts(|s|−1) � x,
• if (s, 1) ∈ T then (s, 1) ∈ S if and only if (s�(0), 0) ∈ S,
• if (s, 0) ∈ T not a leaf then (s, 1) ∈ S if and only if there is n ∈ N such that
(s�(n), 1) ∈ S.
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Note that if (x,T, S) ∈ G then S has the same tree structure as T , it only has
different labeling. Also note that if T is well-founded then the labeling of S is
uniquely determined by the values on its leafs (this can be proved by induction on
the rank of S). Since the label of the leafs of S are uniquely determined by (x,T ),
we can conclude that for each T ∈WFLTc and every x ∈ 2N there is exactly one S
such that (x,T, S) ∈ G .
Claim 4.11. The set G is Borel.

Proof. We verify that each condition is Borel. The first and the third conditions
are independent of the first coordinate and are closed.
For the second condition. Let Ps := {T ∈ LTc : s is a leaf of T} and Qs :=

{T ∈ LT : (s, 1) ∈ T} for each s ∈ N<� . Then Ps and Qs are easily seen to be
closed. Define

Rs := (2N×(LTc\Ps)×LT )∪(ts(|s|−1)×Ps×Qs)∪((2N\ts(|s|−1))×Ps×(LT \Qs)).

Then
⋂
s∈N<�

Rs is the collection of all (x,T, S) satisfying the second condition.
The fourth condition is also independent of the first coordinate and one can verify
that

Q′
s := {T ∈ LT : (s, 1) ∈ T ⇐⇒ ∃n ∈ N(s�(n), 1) ∈ S}

is Borel. Combination of Ps , Q′
s and their complements gives us the desired

result. 

For each (s, i) ∈ T , let T(s,i) := {(t, j) : (s�t, j) ∈ T}. Consider the following
continuous bijection Γ : LTc → LTc where
• if (∅, 0) ∈ T then Γ(T ) = R where (∅, 1) ∈ R and T(∅,0) = R((0),0),
• if (∅, 1) ∈ T then Γ(T ) = R where (∅, 0) ∈ R and T((0),0) = R(∅,0).
In other words, Γ � WFLTc is the bijection switching the codes for a set and its
complement.

Claim 4.12. Let T ∈WFLTc and x ∈ 2N then |{S : (x,T, S) ∈ G}| = 1 and for
the unique (x,T, S) ∈ G we have that (∅, 1) ∈ S if and only if x is in the set coded by
T . Moreover, let (x,T, S), (x,Γ(T ), S′ ) ∈ G , then (∅, 1) is in S or S′ but not in both
of them.

Proof. This follows from the discussion after the Definition 4.10 and the
definition of Γ. 

Proof of Lemma 4.9. Let Gi := {(x,T, S) ∈ G : (∅, i) ∈ S} for i ∈ 2. One can
easily see thatG = G0 ∪G1 and both sets are Borel. Let proj(Gi ) := {(x,T ) : ∃S ∈
LT (x,T, S) ∈ Gi}. Then from Claim 4.12 we have

C1 = (2N ×WFLTc) ∩ proj(G1)

and

C0 = (2N ×WFLTc) ∩ proj(G0).

Finally, we show that the set (2N ×WFLTc)∩ proj(Gi) isΠ11 for i < 2. This follows
from the classical result that if A ⊆ X ×Y is Borel, then {x ∈ X : ∃!y ∈ Y (x, y) ∈
A} is Π11. But we can also give a direct proof as follows.
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The setsHi := (2N×LTc) \ proj(Gi) are clearlyΠ11 and so areMi :=WFLTc ∩
Hi for i < 2. But then using the Claim 4.12 we see that (2N×WFLTc)∩proj(Gi ) =
M1−i . 

Next we define a coding of Borel functions from 2N to 2N. Let

Cn := {x ∈ 2N : x(n) = 1}.

Let f : 2N → 2N be a Borel function and let An := f−1(Cn). Then f is described
by the sequence {An}n∈� because f(x)(n) = 1 if and only if x ∈ An. Thus, the
following is the natural definition of codes for Borel functions.

Definition 4.13. Let FT = (LTc)N andWFFT = (WFLTc)N.

The product topology on FT is Polish andWFFT ⊆ FT is Π11. We denote the
elements of FT also by T and the n-th element of T as T (n).
Lemma 4.14. The set WFFT codes Borel functions from 2N to 2N i.e., every
sequence T ∈ WFFT is a code for a function fT and for every Borel function f
there is a sequence T ∈WFFT such that fT = f.
Proof. As it wasmentioned above, every Borel functionf is coded by a sequence
of Borel sets (An)n. Let T = (T (n))n be such that T (n) ∈ WFLTc codes An for
each n ∈ N. 


4.1.2. Coding of selectors and F� ideals. Now we will show that the codes for
F� ideals with Borel selector is Σ12 and then conclude with the main results of this
section.
Consider the following map Ω : 2N ×WFFT → 2N given by Ω(x,T )(n) = 1
if and only if x is in the set coded by T (n). From the definitions of Ci , Ω, and
Lemma 4.9 the following is straightforward.

Lemma 4.15. Let R ⊆ 2N ×FT × 2N be given by (x,T, y) ∈ R if and only if

∀n ∈ N [ ( (x,T (n)) ∈ C1 → y(n) = 1) ∧ ( (x,T (n)) ∈ C0 → y(n) = 0) ].

Then R is Σ11 and for all (x,T, y) ∈ 2N ×WFFT × 2N we have

Ω(x,T ) = y ⇐⇒ (x,T, y) ∈ R. 


Consider the following setM ⊆ 2N × FT ×K(2N) defined by (x,T,K) ∈ M if
and only if

• T ∈WFFT ,
• Ω(x,T ) ∈↓ K ,
• Ω(x,T ) ⊆ x,
• if |x| = �, then |Ω(x,T )| = |x|.
Lemma 4.16. M is aΠ11 subset of 2

N ×FT × K(2N).
Proof. It follows from Lemma 4.15. For instance, the second condition can be
expressed as follows:

T ∈ WFFT ∧ Ω(x, T ) ∈↓ K ⇐⇒ T ∈ WFFT ∧ ∀y ∈ 2N((x, T, y) ∈ R → y ∈↓ K). 

Theorem 4.17. The set of all K ∈ K(2N) that have a Borel pseudo-selector is
Σ12.

https://doi.org/10.1017/jsl.2018.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.66


BASES AND BOREL SELECTORS FOR TALL FAMILIES 373

Proof. This set may be described as

{K ∈ K(2N) : ∃T ∈ FT ∀x ∈ 2N(x,T,K) ∈ M}

which is Σ12. 

Theorem 4.18. There is an F� tall ideal without a Borel selector.

Proof. The codes of F� ideals with a Borel selector are clearly a subset of
all tall F� ideals and the former set is Σ12 but the latter is Π

1
2−complete (see

Theorem 2.4). 

Corollary 4.19 ([8]). There is a closed subset of A ⊆ NN × NN such that NN =
proj(A) = {x ∈ NN : ∃y ∈ NN s. t. (x, y) ∈ A} and it does not have a Borel
uniformization.

Proof. The space X := 2N \ {x : ∃n s. t. ∀m > n x(m) = 0} is homeomorphic
to NN. The restriction of the relation S = {(x, y) ∈ 2N × 2N : x ⊇ y} to X is closed
in X . By our theorem there is a tallK ∈ K(2N) without Borel selector. ThenK ∩X
is closed in X and the closed set A := S � (X × X ) ∩ (X × (K ∩ X )) has no Borel
uniformization. 

Since Theorem 4.18 has an indirect proof we have the following.

Question 4.20. Find a concrete example of an F� tall ideal without a Borel
selector.

4.1.3. Galvin’s theorem. Nowwe use some previous results to simply observe that
there is no uniform version of Galvin’s theorem.

Theorem 4.21. There is F ⊆ [N]<� such that there is no Borel function S : 2N →
2N satisfying S(x) ∈ hom(F), S(x) ⊆ x and S(x) infinite for every infinite x ∈ 2N.
Proof. Combine Theorem 4.18 and Proposition 2.8. 


4.2. AΠ12 tall ideal without a closed tall subset. We construct aΠ
1
2 tall ideal which

does not contain hom(F) for every F ⊆ [N]<� . Recall that hom(F) is Π11 for every
F ⊆ [N]<� and therefore we have the following.
Observation 4.22. Let R ⊆ 2[N]<� × [N]� × [N]� be defined by

R(F , x, y)⇔ y ⊆ x & y ∈ hom(F).

Then R is Π11.

Lemma 4.23. [7, Lemma 4.6] There is a continuous function � : [N]� × 2N → 2N
such that for every infinite x ∈ [N]� , the collection {�(x, y) : y ∈ 2N} is an almost
disjoint family of infinite subsets of x. Moreover, for all infinite x there is an infinite
z ⊆ x such that z ∩ �(x, y) = ∅ for all y ∈ 2N.
Theorem 4.24. There is aΠ12 tall idealI such that for allx ∈ I+ and allF ⊆ [N]<�
there is y ⊆ x with y ∈ hom(F) ∩ I+. In particular, I does not contain any closed
hereditary tall set.

Proof. The construction is similar to that presented in [7, Theorem 4.7]. Let
ϕ : 2N → 2[N]<� be a continuous surjection. By the classical uniformization theorem
[8], letR∗ ⊆ R be aΠ11 uniformization for the relationR given by Observation 4.22.
Let � be given by Lemma 4.23. Let
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C1 = {y ∈ [N]� : ∃x ∈ 2N, R∗(ϕ(x), �(N, x), y)},
Cn+1 = {y ∈ [N]� : ∃x ∈ 2N,∃z ∈ Cn, R∗(ϕ(x), �(z, x), y)}.

Then each Cn is Σ12. Finally, let
x ∈ H ⇔ (∃n ∈ N) (∃y ∈ Cn) y ⊆∗ x.

To see that I is an ideal, suppose x ∪ y �∈ I, we will show that either x �∈ I or
y �∈ I. Let n ∈ N and z ∈ Cn be so that z ⊆∗ x ∪ y. Consider the following coloring
of pairs:

c{n,m} = 1 if and only if {n,m} ⊆ x.
Let w ∈ 2N be such that ϕ(w) = c, and let u ∈ [N]� be such that
R∗(ϕ(w), �(z,w), u). Then u ∈ Cn+1 and it is c-homogeneous. If u is 1-
homogeneous, then u ⊆ x and if u is 0-homogeneous, then u ∩ x has at most
one point. Since u ⊆ z ⊆∗ x ∪ y, then u ⊆∗ x or u ⊆∗ y, so either x �∈ I or y �∈ I.
Let us see that I is tall. Fix x �∈ I. Then there is n ∈ N and y ∈ Cn such that
y ⊆∗ x. By Lemma 4.23, there is z ⊆ y infinite such that �(y, x) ∩ z = ∅ for
all x ∈ 2N. We claim that z ∈ I. In fact, towards a contradiction, let m > n and
w ∈ Cm such that w ⊆∗ z. As Cm is a.d., then there is u such that w ⊆∗ �(y, u),
which is impossible.
We show that it satisfies the other requirements. It is clearly Π12. Let F ⊆ [N]<�
and y �∈ I. Then there is x ∈ 2N such that F = ϕ(x). There is also n ∈ N and
z ∈ Cn so that z ⊆∗ y. Let w be such thatR∗(ϕ(x), �(z, x), w). Then w ⊆ z and is
F -homogeneous. By definition,w ∈ H. Thenw∩y is infinite andF -homogeneous.
The last claim follows from Lemma 2.8. 

A corollary of the proof of the previous theorem provides a more general
construction of co-analytic tall ideals as in [7].

Theorem 4.25. Let B be a front over N. There is a co-analytic tall ideal I such
that hom(F) �⊆ I for all F ⊆ B.
Proof. From the proof of Theorem 4.24 and using Corollary 3.8 instead of the
co-analytic uniformizing setR∗, we define the sets Cn, which are now analytic. Thus,
the ideal constructed is co-analytic. 

In [7] it was asked whether every analytic tall ideal contains a F� tall ideal. A
weaker version of this question is the following.

Question 4.26. Forwhich tall families C there isF ⊆ [N]<� such that hom(F) ⊆ C
(here hom(F) is not necessarily closed )?
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