
11 The Minimal Supersymmetric Standard Model

We can now very easily construct a supersymmetric version of the Standard Model. For
each gauge field of the usual Standard Model we introduce a vector superfield. For each
fermion (quark or lepton) we introduce a chiral superfield with the same gauge quantum
numbers. Finally, we need at least two Higgs doublet chiral fields; if we introduce only
one, as in the simplest version of the Standard Model, the resulting theory possesses gauge
anomalies and is inconsistent. So, the theory is specified by the gauge group SU(3) ×
SU(2)× U(1) and enumeration the chiral fields,

Qf, ūf, d̄f, Lf, ēf, f = 1, 2, 3; HU, HD. (11.1)

The gauge-invariant kinetic terms, auxiliary D terms and gaugino–matter Yukawa cou-
plings are completely specified by the gauge symmetries. The superpotential can be taken
to be

W = HU(�U)f, f ′Qf Ūf ′ + HD(�D)f, f ′Qf D̄f′ + HD(�E)f, f ′Lf ēf ′ . (11.2)

If the Higgs fields obtain suitable expectation values then SU(2) × U(1) is broken and
quarks and leptons acquire mass, just as in the Standard Model.

There are other terms which can also be present in the superpotential. These include
the μ term, μHUHD. This is a supersymmetric mass term for the Higgs fields; see Section
11.1.1. We will see later that we need μ >∼ MZ to have a viable phenomenology. A set of
dimension-four terms permitted by the gauge symmetries raise serious issues. For example,
one can have the terms

ūf d̄gd̄h�
fgh + Qf Lgd̄hλ

fgh. (11.3)

These couplings violate B and L! This is our first serious setback. In the Standard Model,
there is no such problem. The leading B- and L-violating operators permitted by gauge
invariance possess dimension six, and they will be highly suppressed if the scale of
interactions which violates these symmetries is high, as in grand unified theories.

If we are not going to simply give up, we need to suppress B and L violation at the
level of dimension-four terms. The simplest approach is to postulate additional symmetries.
There are various possibilities one can imagine.

1. Global continuous symmetries It is hard to see how such symmetries could be
preserved in any quantum theory of gravity, and in string theory there is a theorem which
asserts that there are no global continuous symmetries. We will prove this statement, at
least for a large subset of known string theories, later.
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161 The Minimal Supersymmetric Standard Model

2. Discrete symmetries As we will see later, discrete symmetries can be gauge symme-
tries. As such they will not be broken in a consistent quantum theory. They are common
in string theory. These symmetries are often R symmetries, symmetries which do not
commute with supersymmetry.

A simple (though not unique) solution to the problem of B- and L-violation by
dimension-four operators is to postulate a discrete symmetry known as R-parity. Under
this symmetry, all ordinary particles are even while their superpartners are odd. Imposing
this symmetry immediately eliminates all the dangerous operators. For example,∫

d2θ ūd̄d̄ ∼ ψūψd̄
˜̄d (11.4)

(we have changed notation again: the tilde here indicates the superpartner of the ordinary
field, i.e. the squark) is odd under the symmetry.

More formally, we can define this symmetry as the following set of transformations on
superfields:

θα → −θα , (11.5)

(Qf, ūf, d̄f, Lf, ēf)→ −(Qf, ūf, d̄f, Lf, ēf), (11.6)

(HU, HD)→ (HU, HD). (11.7)

Alternatively, we can describe it as multiplication of the quark and lepton superfields
by −1, multiplication of the Higgs fields by 1 and a 2π rotation in space (which rotates all
fermions by −1). Because invariance under 2π rotations is automatic in Lorentz-invariant
theories, we need only the overall multiplication of the superfields. With this symmetry the
full, renormalizable, superpotential is just that in Eq. (11.2).

In addition to solving the problem of very fast proton decay, R-parity has another striking
consequence: the lightest of the new particles predicted by supersymmetry, the Lightest
supersymmetric particle (LSP), is stable. This particle can easily be neutral under the gauge
groups. It is then, inevitably, very weakly interacting. This in turn means the following.

• The generic signature of R-parity-conserving supersymmetric theories is the occurrence
of events with missing energy.

• Supersymmetry is likely to produce an interesting dark-matter candidate.

This second point is one of the principal reasons that many physicists have found the
possibility of low-energy supersymmetry so compelling. If one calculates the dark-matter
density then, as we will see in the chapter on cosmology, one automatically finds a density
in the right range if the scale of supersymmetry breaking is about 1 TeV. Later, we will
see an additional piece of circumstantial evidence for low-energy supersymmetry: the
unification of the gauge couplings within the MSSM.

We can imagine more complicated symmetries which would have similar effects, and
we will have occasion to discuss these later. We can also relax the assumption of exact
R-parity conservation. If, for example, the lepton-number-violating couplings are for-
bidden then the restrictions on the baryon-number-violating couplings are not so severe
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162 The Minimal Supersymmetric Standard Model

and the phenomenological consequences are interesting. In most of what follows we will
assume a conserved Z2 R-parity.

11.1 Soft supersymmetry breaking in the MSSM

If supersymmetry is a feature of the underlying laws of nature then it is certainly broken.
The simplest approach to model building with supersymmetry is to add soft-breaking terms
to the effective Lagrangian in such a way that the squarks, sleptons and gauginos have
sufficiently large masses that they have not yet been observed (or, in the event that they are
discovered, to account for their values).

Without a microscopic theory of supersymmetry breaking, all the soft terms are
independent. It is of interest to ask how many soft-breaking parameters there are in the
MSSM. More precisely, we will count the parameters of the model beyond those of
the minimal Standard Model with a single Higgs doublet. Having imposed R-parity, the
number of Yukawa couplings is the same in both theories, as are the numbers of gauge
couplings and θ parameters. The quartic couplings of the Higgs fields are completely
determined by the gauge couplings. So the “new” terms arise from the soft-breaking terms
as well as the μ term for the Higgs fields. We will speak loosely of all of this as the soft-
breaking Lagrangian. Suppressing flavor indices, we have

Lsb = Q̃∗m2
QQ̃ + ˜̄u∗m2

ū ˜̄u + ˜̄d∗m2
d̄
˜̄d + L̃∗m2

LL̃ + ˜̄e∗m2
ē ˜̄e + HUQ̃Au ˜̄u + HDQ̃Ad

˜̄d
+ HDL̃ Ãl ˜̄e + c.c. + Miλλ+ c.c. + m2

HU |HU|2+m2
HD |HD|2+μBHUHD

+ μψHψH. (11.8)

The matrices m2
Q, m2

ū etc. are 3 × 3 Hermitian matrices, so they have nine independent
entries. The matrices Au, Ad etc. are general 3 × 3 complex matrices, so they each
possess 18 independent entries. Each of the gaugino masses is a complex number, so these
introduce six additional parameters. The quantities μ and B are also complex; they add
four more. In total, then, there are 111 new parameters. As in the Standard Model, not all
these parameters are meaningful; we are free to make field redefinitions. The counting is
significantly simplified if we just ask how many parameters there are beyond the usual 18
of the minimal theory.

To understand what redefinitions are possible beyond the transformations on the quarks
and leptons which go into defining the CKM parameters, we need to ask what are the
symmetries of the MSSM before the introduction of the soft-breaking terms and the
μ term (the μ term is more or less on the same footing as the soft-breaking terms, since it is
of the same order of magnitude; as we will discuss later, it might well arise from the physics
of supersymmetry breaking). Apart from the usual baryon and lepton numbers, there are
two more. The first is a Peccei–Quinn symmetry, under which the two Higgs superfields
rotate by the same phase while the right-handed quarks and leptons rotate by the opposite
phase. The second is an R symmetry, a generalization of the symmetry we found in the
Wess–Zumino model (see Section 9.6.1). It is worth describing this in some detail. By
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163 11.1 Soft supersymmetry breaking in the MSSM

definition, an R symmetry is a symmetry of the Hamiltonian which does not commute with
the supersymmetry generators. Such symmetries can be continuous or discrete. In the case
of continuous R symmetries, by convention we can take the θs to transform by a phase eiα .
Then the general transformation law takes the form

λi → eiαλi (11.9)

for the gauginos, while, for the elements of a chiral multiplet, we have

�i(x, θ) → eiriα�(x, θeiα), (11.10)

or, in terms of the component fields,

φi → eiriαφi, ψi → ei(ri−1)αψi, Fi → ei(ri−2)αFi. (11.11)

In order that the Lagrangian exhibit a continuous R symmetry, the total R charge of all
terms in the superpotential must be 2. In the MSSM, we can take ri = 2/3 for all the chiral
fields.

The soft-breaking terms, in general, break two of the three lepton-number symmetries,
the R-symmetry and the Peccei–Quinn symmetry. So there are four non-trivial field
redefinitions which we can perform. In addition, the minimal Standard Model has two
Higgs parameters. So from our 111 parameters, we can subtract a total of six, leaving 105
as the number of new parameters in the MSSM.

Clearly we would like to have a theory which predicts these parameters. Later, we will
study some candidates. To get started, however, it is helpful to make an ansatz. The simplest
thing to do is suppose that all the scalar masses are the same, all the gaugino masses
the same and so on. It is necessary to specify also a scale at which this ansatz holds,
since, even if true at one scale, it will not continue to hold at lower energies. Almost
all investigations of supersymmetry phenomenology assume such a degeneracy at a large
energy scale, typically the reduced Planck mass Mp. It is often said that degeneracy is
automatic in supergravity models, so this is frequently called the supergravity (SUGRA)
model but, as we will see, supergravity by itself makes no prediction of degeneracy. Some
authors, similarly, include this assumption as part of the definition of the MSSM, but in
this text we will use the term MSSM to refer to the particle content and the renormalizable
interactions. In any case, the ansatz consists of the following statements at the high-energy
scale.

1. All the scalar masses are the same, m̃2 = m2
0. This assumption is called the universality

of the scalar masses.
2. The gaugino masses are the same, Mi = M0. This is referred to as the GUT relation,

since it holds in simple grand unified models.
3. The soft-breaking cubic terms are assumed to be given by

Ltri = A(HUQyuū + HDQydd̄ + HDLylē ). (11.12)

The matrices yu, yd etc. are the same as those which appear in the Yukawa couplings.
This is the assumption of proportionality.
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164 The Minimal Supersymmetric Standard Model

Note that with this ansatz, if we ignore the various phases possibilities, five parameters
are required to specify the model (m2

0, M0, A, Bμ,μ). One of these can be traded for MZ,
so this is quite an improvement in predictive power. In addition, this ansatz automatically
satisfies all constraints coming from rare processes. As we will explain, rare decays and
flavor violation are suppressed (b → s + γ is not as strong a constraint, but it requires
other relations among soft masses). However, we need to ask: just how plausible are these
assumptions? We will try to address this question later.

11.1.1 Theμ term

One puzzle in the MSSM is the μ term, the supersymmetric mass term for the Higgs
fields. This term is not forbidden by the gauge symmetries, so the first question is: why is
it small, of order a few TeV rather than of order Mp or Mgut? One possibility is that there
is a symmetry which accounts for this. There might, for example, be a discrete symmetry
forbidding HUHD in the superpotential, spontaneously broken by the fields which also
break supersymmetry. Another possibility is related to the non-renormalization theorems.
If for some reason, there is no mass term at lowest order for the Higgs fields, one will not be
generated perturbatively. Theμ term, then, might be the result of the same non-perturbative
dynamics, for example, those responsible for supersymmetry breaking. In string theories,
as we will see later, it is quite common to find massless particles at tree level, simply “by
accident”. Such a phenomenon can also be arranged in grand unified theories.

In the absence of a large, tree level, μ term, supersymmetry breaking can quite easily
generate a μ term of order m3/2. Consider, for example, the Polonyi model. The operator∫

d 4θ
1

Mp
Z†HUHD (11.13)

would generate a μ term of just the correct size. In simple grand unified theories, such a
term is often generated.

When we discuss other models for supersymmetry breaking, such as gauge mediation,
we will see that the μ term sometimes poses additional challenges.

11.1.2 Cancelation of quadratic divergences in gauge theories

We have already seen that soft supersymmetry-violating mass terms receive only logarith-
mic divergences. While not essential to our present discussion, it is perhaps helpful to see
how the cancelation of quadratic divergences for scalar masses arises in gauge theories like
the MSSM.

Take, first, a U(1) theory, with (massless) chiral fields φ+ and φ−. Without doing any
computation it is easy to see that, provided we work in a way which preserves supersym-
metry, there can be no quadratic divergence. In the limit where the mass term vanishes, the
theory has a chiral symmetry under which φ+ and φ− rotate by the same phase,

φ± → eiαφ±. (11.14)
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Fig. 11.1 One-loop diagrams contributing to scalar masses in a supersymmetric gauge theory.

This symmetry forbids a mass term �φ+φ− in the superpotential the only from in which
a supersymmetric mass term could appear. The actual diagrams we need to compute are
shown in Fig. 11.1. Since we are interested only in the mass, we can take the external
momentum to be zero. It is convenient to choose the Landau gauge for the gauge boson.
In this gauge the gauge boson propagator is

Dμν = −i
(

gμν − qμqν
q2

)
1
q2 , (11.15)

so the first diagram vanishes. The second, third and fourth are straightforward to work out
from the basic Lagrangian. One finds:

Ib = g 2i × i
3

(2π)4

∫ d 4k
k2 , (11.16)

Ic = g 2i × i
(
√

2)2

(2π) 4

∫ d 4k
k4 Tr(kμσμkν σ̄ ν) (11.17)

= − 4g2

(2π)4

∫ d 4k
k2 , (11.18)

Id = g 2(i)(i)
1

(2π)4

∫ d 4k
k2 . (11.19)

It is easy to see that the sum Ia + Ib + Ic + Id = 0.
Including a soft-breaking mass for the scalars only changes Id:

Id → g 2

(2π)4

∫ d 4k
k2 − m̃2

= −i
g 2

(2π)4

∫ d 4kE

k 2
E + m̃2

= m̃2
independent + ig 2

16π2 m̃2 ln
�2

m̃2 . (11.20)
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We have worked here in Minkowski space and have indicated the factors i to assist the
reader in obtaining the correct signs for the diagrams. In the second line of Eq. (11.20)
we have performed a Wick rotation. In the third line we have separated off the mass-
independent part, since we know that this is canceled by the other diagrams.

Summarizing, the one-loop mass shift is

δm̃2 = − g2

16π2 m̃2 ln
�2

m̃2 . (11.21)

Note that the mass shift is proportional to m̃2, the supersymmetry-breaking mass, which we
expect since supersymmetry is restored as m̃2 → 0. In the context of the Standard Model
we see that the scale of supersymmetry breaking cannot be much larger than the Higgs
mass scale itself without fine tuning. Roughly speaking, it cannot be much larger than this
scale than by a factor of order 1/√αW, i.e. of order six. We also see that the correction has
a logarithmic sensitivity to the cutoff. So, just as for the gauge and Yukawa couplings, the
soft masses run with the energy.

11.2 SU(2)× U(1) breaking

In the MSSM there are a number of general statements which can be made about the
breaking of SU(2) × U(1). The only quartic couplings of the Higgs fields arise from the
SU(2) and U(1) D2 terms. The general form of the soft-breaking mass terms has been
described above. So, before we worry about any detailed ansatz for the soft breakings, we
note that the Higgs potential is given quite generally by

VHiggs = m2
HU |HU|2 + m2

HD |HD|2 − m2
3(HUHD + h.c.)

+ 1
8
(g2 + g ′2)(|HU|2 − |HD|2)2 + 1

2
g 2|HUHD|2. (11.22)

This potential by itself conserves CP; a simple field redefinition removes any phase in m2
3.

(As we will discuss shortly, there are many other possible sources of CP violation in the
MSSM.) The physical states in the Higgs sector are usually described by assuming that
CP is a good symmetry. In that case there are two CP-even scalars, H0 and h0, where, by
convention, h0 is the lighter of the two. There are a CP-odd neutral scalar A and charged
scalars H±. At tree level, one also defines a parameter which is the ratio of the vevs of HU
and HD or v1 and v2:

tanβ = |〈HU〉|
|〈HD〉| ≡ v1

v2
. (11.23)

Note that, with this definition, as tanβ grows so does the Yukawa coupling of the b quark.
To obtain a suitable vacuum, there are two constraints which the soft breakings must

satisfy.

1. Without the soft-breaking terms, HU = HD (v1 = v2 = v) makes the SU(2) and
U(1) D terms vanish, i.e. there is no quartic coupling in this direction. So the energy
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167 11.3 Embedding the MSSM in supergravity

is unbounded below, unless

m2
HU + m2

HD − 2|m3|2 > 0. (11.24)

2. In order to obtain symmetry breaking, the Higgs mass matrix must have a negative
eigenvalue. This gives the requirement∣∣m2

3
∣∣2 > m2

HU m2
HD . (11.25)

When these conditions are satisfied, it is straightforward to minimize the potential and
determine the spectrum. One finds that

m2
A = m2

3
sinβ cosβ

. (11.26)

It is conventional to take m2
A as one parameter. Then one finds that the charged Higgs

masses are given by

m2
H± = m2

W + m2
A, (11.27)

while the neutral Higgs masses are

m2
H0,h0 = 1

2

[
m2

A + m2
Z ±

√(
m2

A + m2
Z
)2 − 4m2

Zm2
A cos 2β

]
. (11.28)

Note the inequalities

mh0 ≤ mA, mh0 ≤ mZ, mH± ≥ mW. (11.29)

With the discovery of the Higgs at 125 GeV, it would appear that the MSSM is ruled
out. However, these are tree level relations. We will shortly turn to the issue of radiative
corrections and will see that these can be quite substantial. We will also see, however, that
accounting for a Higgs mass of 125 GeV appears to require a significant fine tuning of the
parameters.

11.3 Embedding the MSSM in supergravity

In the previous chapter we introduced N = 1 supergravity theories. These theories are not
renormalizable and must be viewed as effective theories, valid below some energy scale
which might be the Planck scale or unification scale (or something else).

The approach we have introduced to model building is quite useful when we are
considering models for the origin of supersymmetry breaking in the MSSM. The basic
assumptions of this approach were as follows.

• The theory consists of two sets of fields the visible sector fields ya, which in the context
of the MSSM would be the quark and lepton superfields, and the hidden sector fields zi,
responsible for supersymmetry breaking.
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• The superpotential was taken to have the form

W(z, y) = Wz(z)+ Wy(y). (11.30)

• For the Kahler potential we took the simple ansatz

K =
∑

a
y†

aya +
∑

i
z†

i zi. (11.31)

In this case, we saw that if the supersymmetry-breaking scale was of order

Mint = m3/2Mp (11.32)

then there was an array of soft-breaking terms of order m3/2. In particular, there were
universal masses and A terms,

am2
3/2|ya|2 + bm3/2Wabyayb + cm3/2Wabcyaybyc. (11.33)

Here Wab = ∂a∂bW and Wabc = ∂a∂b∂cW.

Given that the MSSM is at best an effective-low-energy theory, one can ask how
natural are our assumptions, and what would be the consequences of relaxing them? The
assumption that there is some sort of hidden sector, and that the superpotential breaks
up as we have hypothesized, is, as we will see, a reasonable one. It can be enforced
by symmetries. The assumption that the Kahler potential takes this simple (often called
“minimal”) form is a strong one, not justified by symmetry considerations. It turns out not
to hold in any general sense in string theory, the only context in which presently we can
compute it. If we relax this assumption, we lose the universality of scalar masses and the
proportionality of the A terms to the superpotential. As we will see later in this chapter,
without these or something close the MSSM is not compatible with experiment.

11.4 Radiative corrections to the Higgs mass limit

We have seen that, in the MSSM, the Higgs mass at tree level is less than the Z mass. This
bound is clearly violated in nature. In this section and the next, we will see that a 125 GeV
Higgs particle can be accommodated within the MSSM, though it requires either a large
scale of supersymmetry breaking or the introduction of new degrees of freedom.

In the MSSM, at tree level, the form of the Higgs potential is highly constrained
because the quartic couplings are completely determined by the gauge interactions. Once
supersymmetry (susy) is broken, however, there can be corrections to the quartic terms
from radiative corrections.These corrections are soft, in that the susy-violating four-
point functions vanish rapidly at momenta above the susy-breaking scale. Still, they are
important in determining the low-energy properties of the theory, such as the Higgs vacuum
expectation values (vevs) and the spectrum.

The largest effect of this kind comes from loops involving top quarks or their scalar
partners, the stops. It is not hard to get a rough estimate of the effect. In the limit m̃t �
mt, the effective Lagrangian is not supersymmetric below m̃t. As a result, there can be
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Fig. 11.2 Corrections to quartic Higgs couplings from top loops.
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Fig. 11.3 Higgs mass as a function of susy-breaking parameters.

corrections to the Higgs quartic couplings. Consider the diagrams of Fig. 11.2. In this limit
we can get a reasonable estimate by just keeping the top quark loop. The result will be
logarithmically divergent, and we can take the cutoff to be m̃t. So we have

δλ = (−1)y4
t × 3

∫ d 4k
(2π)4

Tr
1

( �k − mt)4
(11.34)

= − 12iy4
t

16π2 ln
m̃2

t
m2

t
. (11.35)

One can get a better estimate by keeping finite terms and higher-order corrections. There
exist online tools to perform these calculations (mentioned in the references at the end of
this chapter). For large tanβ these corrections are most effective; this corresponds precisely
to the decoupling limit discussed in Chapter 3, where the Higgs is principally HU. A typical
plot of mH as a function of m̃t, for small values of the A parameter for the stops and for
large tanβ, is that of Fig. 11.3. We see that, for moderate values of the A parameter, a Higgs
of 125 GeV corresponds to a stop mass of order 10 TeV. As we will see in the next section,
this, in turn, implies a significant tuning of the Higgs mass.
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11.5 Fine tuning of the Higgs mass

We saw earlier that in the Wess–Zumino model at one loop there is a negative renormal-
ization of the soft-breaking scalar masses. This calculation can be translated to the MSSM,
with a modification for the color and SU(2) factors. One obtains

m2
HU = (mHU)

2
0 − 6y2

t
16π2 ln

�2

m2
(
m̃2

t + m2
t̄
)
, (11.36)

m̃2
t = (m̃t)

2
0 − 4y2

t
16π2 ln

�2

m2 m̃2
H. (11.37)

So, we see that loop corrections involving the top quark Yukawa coupling reduce both the
Higgs and the stop masses. If m̃2

t = 10 TeV, and if� ∼ Mp, the correction to the stop mass
is of order one but the correction to the Higgs mass is of order 8000m2

H! This suggests a
tuning of the parameter (mHU)

2
0 at nearly the one part in 10 000 level, and a more refined

renormalization group analysis supports this.
Such a tuning of parameters is troubling, given that we introduced supersymmetry in

order to avoid such problems with naturalness. It is, at least, not as extreme as the situation
without supersymmetry. It is also consistent with the data. In the next section, we will
mention a few ideas to ameliorate this tuning.

11.6 Reducing the tuning: the NMSSM

We have seen that in the MSSM the effective Higgs quartic coupling is small because it
is determined by the gauge couplings; this is what accounts for the tree level Higgs mass
bound. The requirement of a large stop mass was driven by the need to enhance the quartic
coupling. One might also hope to enhance the quartic coupling by introducing additional
fields with superpotential couplings to the Higgs. The simplest approach yields the Next
to Minimal Supersymmetric Standard Model, or NMSSM. In its simplest version the field
content of the model is that of the MSSM plus an additional singlet, S. The superpotential
includes a term

WNMSSM = λSHUHd (11.38)

in addition to the Yukawa couplings of the Higgs. This superpotential leads to a quartic
coupling

δV = |λHUHd|2, (11.39)

which can increase the Higgs mass. However, λ cannot be arbitrarily large otherwise
perturbation theory would break down. Requiring that there be no Landau pole for λ
typically implies that λ < 0.7.
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One difficulty with this proposal is that the maximum effect occurs when tanβ ∼ 1, so
that HU and HD are more or less aligned. In this limit the top quark corrections to the quartic
coupling are less effective. Adding other terms to the superpotential, such as 1

2 mSS2 and
S3 as well as the various possible soft breakings, yields a large parameter space to explore.
One typically finds that fine tuning can be significantly improved over the MSSM, but
because of the constraints on λ it is still significantly worse than 10%.

There are other proposals to reduce the tuning of the MSSM by introducing additional
degrees of freedom. Additional gauge interactions, for example, can help. Perhaps a
compelling model may yet emerge. As we will see in the following sections, however,
direct searches for supersymmetric particles, especially with the LHC, have placed
stringent lower limits on the masses of supersymmetric partners of ordinary particles.

11.7 Constraints on low-energy supersymmetry: direct searches
and rare processes

Naturalness points to supersymmetry at a scale below the TeV scale – arguably of order
MZ. We have already discussed how the Higgs mass points towards a significantly higher
scale, somewhere around 10 TeV. Direct searches for supersymmetric particles, as we will
briefly review here, also point to a high scale. Current limits on squarks and gluinos are,
over much of the parameter space, larger than a TeV and they will become stronger (or
evidence for supersymmetry will emerge) during future LHC runs. The limits on leptons,
charginos and neutralinos (see below) are significant, though not quite as strong.

There are also strong constraints on the supersymmetry parameters (the 101 parameters
we counted in the MSSM, for example) from rare processes.

11.7.1 Direct searches for supersymmetric particles

As mentioned above, direct searches for supersymmetric particles at LEP, the Tevatron
and the LHC have placed significant limits on their masses. Among the states in the
MSSM which are possible discovery channels for supersymmetry, are the charginos, linear
combinations of the partners of the W± and H±, and the neutralinos, linear combinations
of the partners of the Z and γ (B and W3) and the neutral Higgs. The mass matrix for the
charginos, w± and h̃± is given by

Lsb = Q̃∗m2
QQ̃ + ˜̄u∗m2

ū ˜̄u + ˜̄d∗m2
d̄
˜̄d + L̃∗m2

LL̃ + ˜̄e∗m2
ē ˜̄e + HUQ̃Au ˜̄u + HDQ̃Ad

˜̄d
+ 〈HU〉2+m2

HD〈HD〉2 + μBHUHD

+ μψHψH. (11.40)

The matrices m2
Q, m2

Ū and so on that give mass to the scalar partners of quarks and
leptons (squarks and sleptons) are 3×3 Hermitian matrices, so they have nine independent
entries. The matrices Au, Ad etc. are general 3 × 3 complex matrices, so they each possess
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Fig. 11.4 Slepton production in e+ e− annihilation.

18 independent entries. Each gaugino mass is a complex number, so these introduce six
additional parameters; M1, M2 and M3 are Majorana mass terms for the U(1), SU(2)
and SU(3) gauginos. The quantities μ and B are also complex and so introduce four
more parameters. In total, then, there are 111 new parameters. As in the Standard Model,
they are not all meaningful since we are free to make field redefinitions. The counting is
significantly simplified if we just ask how many parameters there are beyond the usual 18
of the minimal theory.

For the neutralinos, w0, b, h̃0
U, h̃0

D, there is a 4 × 4 mass matrix. We will leave the study
of these for the exercises. Conventionally, the charginos are denoted χ̃+

1 , χ̃−
1 , χ̃+

2 , χ̃−
2 ,

where the label 2 indicates a chargino having greater mass. The neutralinos are denoted
χ̃0

1 , χ̃0
2 , χ̃0

3 , χ̃0
4 , again ordered by increasing mass. The lightest of these states is stable if

R-parity is conserved and is a natural dark-matter candidate.
The direct searches are easy to describe, and production and decay rates can be computed

given a knowledge of the spectrum since the couplings of the fields are known. If R-parity
is conserved then the LSP is stable and weakly interacting, so the characteristic signal
for supersymmetry is missing energy. For example, in e+e− colliders one can produce
slepton pairs, if they are light enough, through the diagram of Fig. 11.4. These then decay,
typically, to a lepton and a neutralino, as indicated. So the final state contains a pair of
acoplanar leptons and missing energy. The LEP ran at center of mass energies as high as√

s = 209 GeV, setting limits of order 90 GeV on sleptons and 103.5 GeV on charginos.
The LHC has strengthened these limits in some regions of the parameter space.

In hadron colliders at high energies, one has the potential to produce colored hadrons –
squarks and gluinos – at high rates. As a result the most dramatic limits on supersymmetric
particles have been set by the LHC (following earlier searches at the Tevatron). The LHC
has run at 7 and 8 GeV, collecting 20 (femtobarns)−1 of data per detector at the higher
energy, Setting limits, however, on gaugino and squark masses (and those of other states)
is a model-dependent process. For example, if gauginos are heavier than squarks, they will
first decay to a gluon and a squark; the squark may decay to a quark and a neutralino or to a
quark and a chargino, with the chargino in turn decaying by a variety of possible channels.
If the squarks are heavier than gluinos, there are alternative decay chains.
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Many analyses employ the ansatz we called SUGRA (see Section 11.1), with five
parameters. Quite stringent limits can then be set on these different parameters, and
correspondingly on the masses of the various superparticles. In recent years this model
has been refined somewhat and rebranded as the Constrained Minimal Supersymmetric
Standard Model, or CMSSM. A more phenomenological variant with assumptions which
are not quite as restrictive is the PMSSM. The strategy, in this framework, is to allow the
maximum (or close to the maximum) number of parameters consistent with the various
facts of low-energy physics. An alternative approach, adopted by many theorists and
employed in many experimental analyses, is referred to as the “simplified model” method.
Here one focuses on signals, i.e. particular production and decay possibilities, rather than
on fitting to models. From all these types of analysis one finds lower limits on gluinos of
order 1.2–1.7 TeV and similar limits for squarks.

11.7.2 Constraints from rare processes

Rare processes provide another set of strong constraints on the soft-breaking parameters.
In the simple ansatz, all the scalar masses are the same at some very high energy scale.
However, even if this is assumed to be true at one scale, it is not true at all scales, i.e. these
relations are renormalized. Indeed, all 105 parameters are truly parameters and it is not
obvious that the assumptions of universality and proportionality are natural. However,
there are strong experimental constraints which suggest some degree of degeneracy.

As one example, there is no reason, a priori, why the mass matrix for the L̃s (the partners
of the lepton doublets) should be diagonal in the same basis as the charged leptons. If it is
not then there is no conservation of separate lepton numbers, and the decay μ → eγ will
occur (Fig. 11.5). To see that we are potentially in serious trouble, we can make a crude
estimate. The muon lifetime is proportional to G2

Fm5
μ. The decay μ → eγ occurs owing to

the operator

Lμeγ = eCFμν ūσμνe. (11.41)

If there is no particular suppression, we might expect that

C = αw
π

mμ
m2

susy
. (11.42)

μ

γ

μ e

X

Fig. 11.5 Contribution toμ → eγ .
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Therefore the branching ratio, i.e. the ratio of the rate of decay to eγ and the rate for all
decays, would be of order

BR = �(μ → e + γ )
�(μ → all)

=
(αw
π

)2
(

MW
Msusy

)4
. (11.43)

This ratio might become as small as 10−8−10−9 if the supersymmetry-breaking scale is
large, 1 TeV or so. But the current experimental limit is 1.2 × 10−11. So even in this case
it is necessary to suppress the off-diagonal terms. More detailed descriptions of the limits
are found in the suggested reading at the end of the chapter.

Another troublesome constraint arises from the neutron and electron electric dipole
moments, dn and de. Any non-zero value of these quantities signifies CP violation.
Currently, one has dn < 2.9 × 10−26e cm and de < 18.7 × 10−29e cm. The soft-breaking
terms in the MSSM contain many new sources of CP violation. Even with the assumptions
of universality and proportionality, the gaugino mass and the A, μ and B parameters are
all complex and can violate CP. At the quark level, the issue is that one-loop diagrams
can generate a quark dipole moment, as in Fig. 11.6. Note that this particular diagram is
proportional to the phases of the gluino and the A parameter. It is easy to see that, even if
msusy ∼ 500 GeV, these phases must be smaller than about 10−2. More detailed estimates
can be found in the suggested reading at the end of the chapter.

In the real world CP is violated, so it is puzzling that all the soft-supersymmetry-
violating terms should preserve CP to such a high degree. This is in contrast with the
minimal Standard Model, with a single Higgs field, which can reproduce the observed
CP violation with phases of order 1. It is thus a serious challenge to understand why CP
should be such a good symmetry if nature is supersymmetric. Various explanations have
been offered. We will discuss some of these later, but it should be kept in mind that the
smallness of CP violation suggests that either the low-energy supersymmetry hypothesis is
wrong or there is some interesting physics which explains the surprisingly small values of
the dipole moments.

So far, we have discussed constraints on slepton degeneracy and CP-violating phases.
There are also constraints on the squark masses, arising from various flavor-violating
processes. In the Standard Model the most famous of these are strangeness-changing
processes such as KK̄ mixing. One of the early triumphs of the Standard Model was that
it successfully explained why this mixing is so small. Indeed, the Standard Model gives

μ

γ

uu

X

Fig. 11.6 Contribution to dn in supersymmetric theories.
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s dW

W

d s

Fig. 11.7 Contribution to K ↔ K̄ in the Standard Model.
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Fig. 11.8 Gluino exchange contribution to KK̄ mixing in the MSSM.

a quite good estimate for the mixing. This was originally used to predict – amazingly
accurately – the charm quark mass. The mixing receives contributions from box diagrams
such as that shown in Fig. 11.7. If we consider only the first two generations and ignore the
quark masses (compared with MW), we have that

M(K0 → K̄0) ∝ (VdiV†
is)(V

†
sjVjd) = 0. (11.44)

Including fermion masses leads to terms in the low-energy effective action Leff of order

αW
4π

m2
c

M 2
W

GF ln
m2

c
m2

u
(s̄γ μγ5d)(d̄γ μγ 5s)+ · · · . (11.45)

The matrix element of the operator appearing here can be estimated in various ways, and
one finds that this expression roughly saturates the observed value (this was the origin of
the prediction by Gaillard and Lee of the value of the charm quark mass). Similarly, the
CP-violating parameter in the kaon system (the “ε” parameter) is in rough accord with
observation for reasonable values of the CKM parameter δ.

In supersymmetric theories, if squarks are degenerate then there are similar cancelations.
However, if they are not then there are new, very dangerous, contributions. The most
serious is that indicated in Fig. 11.8, arising from the exchange of gluinos and squarks.
This is nominally larger than the Standard Model contribution by a factor (αs/αW)

2 ≈ 10.
Also, the Standard Model contribution vanishes in the chiral limit whereas the gluino
exchange does not, and this leads to an additional enhancement of nearly an order of
magnitude. However, the diagram is highly suppressed in the limit of exact universality
and proportionality. Proportionality means that the A terms in Eq. (11.8) are suppressed by
factors of order the light quark masses, while universality means that the squark propagator
〈q̃∗q̃〉 is proportional to the unit matrix in flavor space. So, on the one hand, there are no
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appreciable off-diagonal terms which can contribute to the diagram. On the other hand,
there is surely some degree of non-degeneracy. One finds that, even if the characteristic
susy scale is 1 TeV, one needs degeneracy in the down squark sector at the one part in 30
level.

So the CP-preserving part of the KK mass matrix already tightly constrains the down
squark mass matrix and the CP-violations part provides even more severe constraints.
There are also strong limits on DD mixing, which significantly restrict the mass matrix
in the up squark sector. Other important constraints on soft breakings come from other rare
processes such as b → sγ . Again, more details can be found in the references given in the
suggested reading.

Suggested reading

The minimal supersymmetric Standard Model is described in most reviews of super-
symmetry. Probably the best place to look for up-to-date reviews of the model and
the experimental constraints is the Particle Data Group website. A useful collection of
renormalization group formulas for supersymmetric theories is provided in the review by
Martin and Vaughn (1994). Limits on rare processes are discussed in a number of articles,
such as that by Masiero and Silvestrini (1997). The status of the NMSSM, including
questions of tuning, is discussed in Hall et al. (2012).

Exercises

(1) Derive Eqs. (11.24)–(11.27).
(2) Verify the formula for the top quark corrections to the Higgs mass. Evaluate yt in terms

of mt and sinβ. Show that, to this level of accuracy,

m2
h < m2

Z cos 2β + 12g 2

16π 2
m4

t
m2

W
ln

(
m̃2m2

t
)
.

(3) Estimate the sizes of the supersymmetric contributions to the quark electric dipole
moment, assuming that all the superpartner masses are of order msusy and that δ is a
typical phase. Assuming, as well, that the neutron electric dipole moment is of order the
quark electric dipole moment, how small do the phases have to be if msusy = 500 GeV?
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