FREE ACTIONS BY ELEMENTARY ABELIAN 2-GROUPS ON STIEFEL MANIFOLDS

BY

LARRY W. CUSICK

ABSTRACT. Let $V_{n,k}$ denote the Stiefel manifold of k-frames in \mathbb{R}^n . There is a free action on $V_{n,k}$ by the group \mathbb{Z}_2^k . We show that if \mathbb{Z}_2^l acts freely on $V_{2!m-1+k,k}$ and

$$2^s > \max\left\{\frac{3}{m}(k-1), k-1\right\}$$

then $l \leq k$.

§0. **Introduction.** Let $V_{n,k}$ denote the Stiefel manifold of orthonormal k-frames in \mathbb{R}^n . Elements of $V_{n,k}$ may be written as k-tuples of orthonormal vectors (v_1, \ldots, v_k) in \mathbb{R}^n . The elementary abelian 2-group of rank k, \mathbb{Z}_2^k , acts on $V_{n,k}$ as follows: if we write the generators of \mathbb{Z}_2^k as τ_1, \ldots, τ_k , define $\tau_i(v_1, \ldots, v_k) = (v_1, \ldots, -v_i, \ldots, v_k)$. Clearly this is a free action, and one is tempted to

CONJECTURE. If \mathbb{Z}_2^l acts freely on $V_{n,k}$ then $l \leq k$.

The main result of this paper is to prove the above conjecture for an infinite number of $V_{n,k}$'s for each k.

MAIN THEOREM. Suppose that X is a finite CW-complex whose mod 2 cohomology is isomorphic (as algebras over the Steenrod algebra) to $H^*(V_{2^*m-1+k,k};\mathbb{Z}_2)$ where

 $2^s > \max\left\{\frac{3}{m}(k-1), k-1\right\},\,$

and suppose X admits a free cellular action by the group \mathbb{Z}_2^l then $l \leq k$.

The method of proof is to exploit a theorem due to G. Carlsson [1] that restricts varieties of Steenrod algebra invariant ideals of $H^*(\mathbb{Z}_2^l; \mathbb{Z}_2)$. The ideal we construct is generated by the transgressions of a set of multiplicative generators for $H^*(X; \mathbb{Z}_2)$ in the Serre spectral sequence associated to the fibration

$$X \to EG \succeq X \to BG.$$

Received by the editors October 5, 1982 and, in revised form, February 8, 1983.

AMS Subject Classification (1980): 55M35, 57S17

[©] Canadian Mathematical Society, 1984.

The generators will transgress if we require them to be cyclic over the Steenrod algebra $\mathcal{A}(2)$. Thus, the first section of this paper is devoted to classifying all $V_{n,k}$ for which the multiplicative generators form a cyclic module over $\mathcal{A}(2)$. This is where we need the restriction $2^{s} > k - 1$.

In section 2 we attempt to show that the above ideal is $\mathcal{A}(2)$ -invariant. We are able to do this only under the further restriction that

$$2^{s} > \frac{3}{m} (k-1).$$

Of course, if $m \ge 3$ then this is already implied by the first restriction.

As a final remark, we would like to point out that one can prove the above conjecture for any $V_{n,2}$ using some simple counting arguments in the spectral sequence.

§1. Stiefel manifolds. Let $V_{n,k}$ be the Stiefel manifold of orthonormal k-frames in *n*-space. Denote by P_l^N the $\mathcal{A}(2)$ -module $H^*(\mathbb{R}P^N/\mathbb{R}P^{l-1}; \mathbb{Z}_2)$. So P_l^N has a \mathbb{Z}_2 -basis 1, z_1, \ldots, z_n where the dimension of z_j is j and

$$Sq^{i}z_{i} = \begin{cases} \binom{i}{j}z_{i+j} & \text{if } i+j \leq N\\ 0 & \text{otherwise} \end{cases}$$

For the definition of a free $\mathcal{A}(2)$ -algebra we refer the reader to [2].

PROPOSITION 1. [2] $H^*(V_{n,k}; \mathbb{Z}_2)$ is isomorphic to the free $\mathcal{A}(2)$ -algebra generated by P_{n-k}^{n-1} .

DEFINITION. An $\mathcal{A}(2)$ -module is called $\mathcal{A}(2)$ -cyclic if it is generated over $\mathcal{A}(2)$ by a single element.

The next proposition classifies all P_l^N that are $\mathcal{A}(2)$ -cyclic.

PROPOSITION 2.

- (a) $P_{2^sm-1}^{2^sm-2+k}$ is $\mathcal{A}(2)$ -cyclic for any natural numbers m, s and k such that $k \leq 2^s$.
- (b) Suppose that P_l^N is $\mathcal{A}(2)$ -cyclic. If we write $l = 2^s m 1$, where m is odd, and $N = 2^s m 2 + k$ then $k \le 2^s$.

Before proving proposition 2 we first need the following lemma on mod 2 binomial coefficients:

LEMMA. (a) If $j \le 2^s - 1$ then $\binom{2^s m - 1}{j} \equiv 1 \mod 2$ for any natural number m. (b) If $0 < j \le 2^s$ and m is odd then

$$\binom{2^{s}(m+1)-1-j}{j} \equiv 0 \mod 2$$

Proof. (a) We may assume m is odd otherwise we can factor out the largest power of 2 dividing m which will only have the effect of increasing s. We write m in its dyadic expansion

$$m = \sum_{i=0}^{t} m_i 2^i,$$

where $m_0 = 1$ and each other $m_i = 0$ or 1. The dyadic expansion of $2^s m - 1$ is then

$$2^{s}m - 1 = 2^{s} + \left(\sum_{i=1}^{t} m_{i} 2^{i+2}\right) - 1$$
$$= 1 + 2 + \dots + 2^{s-1} + \sum_{i=1}^{t} m_{i} 2^{i+s}.$$

Since $i \le 2^s - 1$ the dyadic expansion of *i* may be written as

$$j=\sum_{i=1}^{s-1}r_i2^i.$$

Using the standard formula for computing binomial coefficients mod 2 from the dyadic expansions of its components [2] we have

$$\binom{2^{s}m-1}{j} \equiv \prod_{i=1}^{s-1} \binom{1}{r_i} \cdot \prod_{i=1}^{t} \binom{m_i}{0}$$
$$\equiv 1 \mod 2.$$

(b) If we assume $0 < j \le 2^s$ then we may write the dyadic expansion of j as

$$j=\sum_{i=1}^{s}r_i2^i.$$

From the proof of (a) we may write

$$2^{s}(m+1) - 1 = 2^{s}m - 1 + 2^{s}$$
$$= 1 + 2 + \dots + 2^{s-1} + 2^{s} + \sum_{i=1}^{t} m_{i} 2^{i+s}$$

Hence

$$\binom{2^{s}(m+1)-1-j}{j} \equiv \prod_{i=1}^{s} \binom{1-r_{i}}{r_{i}} \cdot \prod_{i=1}^{t} \binom{m_{i}}{0} \equiv \prod_{i=1}^{s} \binom{1-r_{i}}{r_{i}} \mod 2.$$

We are assuming j > 0 so at least one $r_i = 1$, in which case

$$\binom{1-r_i}{r_i} = \binom{0}{1} = 0.$$

This completes the proof of the lemma.

https://doi.org/10.4153/CMB-1984-011-1 Published online by Cambridge University Press

March

Proof of Proposition 2. (a) For $0 \le j \le k - 1 \le 2^s - 1$ we have, by the lemma,

$$Sq^{j}z_{2^{s}m-1} = {\binom{2^{s}m-1}{j}}z_{2^{s}m-1+j}$$
$$= z_{2^{s}m-1+j}.$$

Thus every non-zero element is connected to $z_{2^{s_{m-1}}}$ by a Steenrod square.

(b) Write $l=2^sm-1$ where m is odd, and k=N-l+1. If $k>2^s$ then $z_{2^s(m+1)-1}$ is non-zero in $P_{2^sm-1}^{2^sm-2+k}$.

We claim that $z_{2^s(m+1)-1}$ cannot be in the image of a non-zero class by any non-trivial Steenrod square. To see this suppose $0 < j \le 2^s$ and compute, using the lemma

$$Sq^{j}z_{2^{*}(m+1)-1-j} = {\binom{2^{s}(m+1)-1-j}{j}}z_{2^{*}(m+1)-1}$$
$$= 0.$$

This completes the proof of the proposition.

§2. The main theorem. The purpose of this section is to prove the main theorem. We assume that X is a finite CW-complex whose mod 2 cohomology is isomorphic (as algebras over the Steenrod algebra) to $H^*(V_{2^sm-1+k,k}; \mathbb{Z}_2)$, where $k \leq 2^s$. From the previous section we know that $H^*(X; \mathbb{Z}_2)$ is a free $\mathcal{A}(2)$ -algebra on an $\mathcal{A}(2)$ -cyclic module with \mathbb{Z}_2 -basis $\{z_{2^sm-1}, \ldots, z_{2^sm-2+k}\}$.

PROPOSITION 1. If $2^sm - 1 \le i \le 2^sm - 2 + k$ then $H^i(X; \mathbb{Z}_2) \cong \mathbb{Z}_2$ with non-zero element z_i .

Proof. The first possible non-zero product is $(z_{2^sm-1})^2$ which is in dimension $2^{s+1}m-2$. We are assuming $k \le 2^s$, so $2^sm-2+k \le 2^sm-2+2^s = 2^s(m+1)-2$. Now $2^s(m+1)-2 \le 2^{s+1}m-2$ and is equal only when m = 1. But in this case $(z_{2^s-1})^2 = \mathbf{S}a^{2^{s-1}}z_{2^s-1}$.

$$\begin{aligned} z^{s-1} &= Sq^{2^{s-1}}z_{2^{s-1}} \\ &= \binom{2^s - 1}{2^s - 1}z_{2^{s+1} - 2} \\ &= z_{2^{s+1} - 2}, \end{aligned}$$

so the proposition holds.

Assume that G is a finite group acting cellularly on X. Denote by X_G the space $EG \times_G X$. We let $E_r^{*,*}$ be the *r*-th term of the Serre spectral sequence associated to the fibration

$$X \rightarrow X_G \rightarrow BG.$$

It has E_2 term

$$E_2^{**} \cong H^*(BG; H^*(X; \mathbb{Z}_2)).$$

1984]

[March

PROPOSITION 2. If G acts freely on X then E^{**} is a finite dimensional \mathbb{Z}_2 -vector space.

Proof. Under the hypothesis we have a homotopy equivalence $EG \times_G X \approx X/G$. Since X is a finite CW-complex, and G acts cellularly on X, X/G is a finite CW-complex. E^{**} is the associated graded groups to some filtration on $H^*(X; \mathbb{Z}_2)$ which is finite dimensionel.

PROPOSITION 3. The induced G-action on $H^*(X; \mathbb{Z}_2)$ is trivial.

Proof. It is enough to show that G acts trivially on the generators $\{z_i\}_i$. This follows immediately from propositon 1.

We now assume $G \cong \mathbb{Z}_2^l$. The mod 2 cohomology ring of \mathbb{Z}_2^l is well known: $H^*(B\mathbb{Z}_2^l; \mathbb{Z}_2) \cong \mathbb{Z}_2[\gamma_1, \ldots, \gamma_l]$, where each γ_i is in dimension 1. An element $f \in H^n(BG; \mathbb{Z}_2)$ may be regarded, via the above ring isomorphism, as a homogeneous polynomial of degree n in l variables.

PROPOSITION 4. [1]. For $G \cong \mathbb{Z}_2^l$ the polynomial $f \in H^n(BG; \mathbb{Z}_2)$ has a nontrivial zero point if, and only if there is a subgroup inclusion $i:\mathbb{Z}_2 \hookrightarrow \mathbb{Z}_2^l$ such that $i^*f = 0$.

The first possible non-trivial differential in the above spectral sequence is d_{2^sm} . Let $f_{2^sm} = d_{2^sm}(z_{2^2m-1})$, an element of $H^{2^sm}(BG:\mathbb{Z}_2)$.

PROPOSITION 5. If \mathbb{Z}_2^l acts freely on X then f_{2^sm} cannot have a non-trivial zero point in \mathbb{Z}_2^l .

Proof. Suppose f_{2^sm} had a non-trivial zero point in \mathbb{Z}_2^l . By proposition 4 there would exist a subgroup inclusion $i:\mathbb{Z}_2 \hookrightarrow \mathbb{Z}_2^l$ such that $i^*f_{2^sm} = 0$. The Serre spectral sequence associated to the fibration $X \to X_G \to BG$ is natural with respect to subgroup inclusions. It would follow that the sequence for $X \to X_{\mathbb{Z}_2} \to B\mathbb{Z}_2$ will collapse, $E_2 = E_{\infty}$. This violates proposition 2.

We recall that the transgression operator, τ , in the Serre spectral sequence commutes with the action of the Steenrod algebra. Consequently, under our assumptions, each generator $z_{2^sm-1}, \ldots, z_{2^sm-2+k}$ of $H^*(X; \mathbb{Z}_2)$ is transgressive and $\tau(z_i)$ is represented by $Sq^{i-2^sm+1}f_{2^sm}$. Let $f_{2^sm+j} = Sq^jf_{2^sm}$. We consider the ideal *I*, in $H^*(BG; \mathbb{Z}_2)$, generated by $f_{2^sm}, \ldots, f_{2^sm+k-1}$.

LEMMA 1. $E_{\infty}^{*,0} = H^*(BG; \mathbb{Z}_2)/I$ for $* < 2^{s+1}m$.

Proof. According to proposition 1 every element of $H^i(X; \mathbb{Z}_2)$ is transgressive for $2^sm - 1 \le i \le 2^sm - 2 + k$. Furthermore $E_2^{0,i} = 0$ for $2^sm - 2 + k < i < 2^{s+1}m - 1$. The lemma now follows from dimension considerations.

LEMMA 2. $Sq^i f_{2^sm+i} \in I$ whenever $i + j < 2^sm$.

Proof. Since $E_{\infty}^{*,0}$ is the image of $H^*(BG; \mathbb{Z}_2) \to H^*(X_G; \mathbb{Z}_2)$ it is a module

76

PROPOSITION 6. If
$$2^s > \max\left\{\frac{3}{m}(k-1), k-1\right\}$$
 then I is $\mathcal{A}(2)$ -invariant.

Proof. Let A(i, j) be the statement " $Sq^iSq^jf_{2^sm} \in I$." We wish to show that A(i, j) is true whenever $0 \le j \le k - 1$ and $0 \le i \le 2^sm + j$. We proceed by induction on *j*. A(i, 0) is true for $0 \le i < 2^sm$ by lemma 2 and $A(2^sm, 0)$ is true since $Sq^{2^sm}f_{2^sm} = (f_{2^sm})^2$, and $(f_{2^sm})^2$ is clearly in *I*.

Now for the inductive step, suppose that we have verified A(i, j') whenever $0 \le j' \le j-1$ and $0 \le i \le 2^s m + j'$. If $i < 2^s m - j$ then A(i, j) follows from lemma 2. Hence we may assume $i \ge 2^s m - j$. First observe that

$$k \ge 2^{s}m - j$$

> 3(k - 1) - j
\ge 3j - j
= 2j.

So by the Adem relations

$$Sq^{i}Sq^{j}f_{2^{s}m} = Sq^{2j}Sq^{i-j}f_{2^{s}m} + \sum_{a < j} C_{a}Sq^{i+j-a}Sq^{a}f_{2^{s}m}, \text{ where } C_{a} \in \mathbb{Z}_{2}.$$

Inductively $Sq^{i+j-a}Sq^af_{2^sm} \in I$ for a < j. We are left with showing $Sq^{2i}Sq^{i-j}f_{2^sm} \in I$. *I*. Because of the inequalities $2j \le 2(k-1) < 2^sm - (k-1)$ it follows from lemma 2 that $Sq^{2i}I \subset I$. We have already verified A(i-j, 0), so $Sq^{2i}Sq^{i-j}f_{2^sm} \in I$. This completes the inductive step.

PROPOSITION 7. [1]. Let $I = (f_1, \ldots, f_s)$ be an ideal generated by homogeneous polynomials f_i in $\mathbb{Z}_2[\gamma_1, \ldots, \gamma_l]$. Assume further that I is invariant under the action of the Steenrod algebra. Then if l > s the polynomials f_i have a non-trivial common zero in \mathbb{Z}_2^l .

Proof of the Main Theorem. We have seen, in proposition 6, that the ideal $I = (f_{2^sm}, \ldots, f_{2^sm+k-1})$ is $\mathscr{A}(2)$ -invariant. By naturality of the Steenrod operations and proposition 4 there is a non-trivial common zero to $f_{2^sm}, \ldots, f_{2^sm+k-1}$ if, and only if f_{2^sm} has a non-trivial zero. It follows from proposition 5 that $f_{2^sm}, \ldots, f_{2^sm+k-1}$ can have no non-trivial zero point. The result now follows from proposition 7.

BIBLIOGRAPHY

1. G. Carlsson, On the non-existence of free actions of elementary abelian groups on products of spheres, American J. of Math. **102** (1980) 1147–1157.

2. N. E. Steenrod and D. B. A. Epstein, *Cohomology Operations*, Annals of Math. Studies 50, Princeton University Press, Princeton, 1962.

DEPARTMENT OF MATHEMATICS CALIFORNIA STATE UNIVERSITY, LONG BEACH LONG BEACH, CA 90840

1984]