
Canad. Math. Bull. Vol. 27 (1), 1984 

F R E E A C T I O N S B Y E L E M E N T A R Y A B E L I A N 
2 - G R O U P S O N S T I E F E L M A N I F O L D S 

BY 

L A R R Y W. C U S I C K 

ABSTRACT. Let Vnk denote the Stiefel manifold of k -frames in 
Un. There is a free action on Vnk by the group 1\. We show that if 
Zl

2 acts freely on V 2 , m _ 1 + t k and 

2 s > m a x ( — ( k - l ) , f c - l | 
[m J 

then f<fc. 

§0. Introduction. Let Vnk denote the Stiefel manifold of orthonormal k-
frames in Rn. Elements of Vnk may be written as k -tuples of orthonormal 
vectors (vl9.. . , vk) in Un. The elementary abelian 2-group of rank k, Z2, acts 
on VnM as follows: if we write the generators of Z2 as T1? . . . , rk, define 
rt(vly. . . , vk) = (vl9. . ., —vi9. . . , vk). Clearly this is a free action, and one is 
tempted to 

CONJECTURE. If Zl
2 acts freely on Vn,k then I < k. 

The main result of this paper is to prove the above conjecture for an infinite 
number of Vn>k's for each k. 

MAIN THEOREM. Suppose that X is a finite CW-complex whose mod 2 
cohomology is isomorphic (as algebras over the Steenrod algebra) to 
H*(V2Sm_1+k,k;Z2) where 

2 s > m a x [ — ( k - 1 ) , fc-l], 

and suppose X admits a free cellular action by the group Z2 then I < k. 

The method of proof is to exploit a theorem due to G. Carlsson [1] that 
restricts varieties of Steenrod algebra invariant ideals of H*(Z2;22). The ideal 
we construct is generated by the transgressions of a set of multiplicative 
generators for H*(X; Z2) in the Serre spectral sequence associated to the 
fibration 

X - > E G X X - * B G . 
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The generators will transgress if we require them to be cyclic over the Steenrod 
algebra si (2). Thus, the first section of this paper is devoted to classifying all 
VnM for which the multiplicative generators form a cyclic module over M(2). 
This is where we need the restriction 2s > k ~ 1. 

In section 2 we attempt to show that the above ideal is si(2)-invariant. We 
are able to do this only under the further restriction that 

2s >— (fc-1). 
m 

Of course, if m > 3 then this is already implied by the first restriction. 
As a final remark, we would like to point out that one can prove the above 

conjecture for any Vn 2 using some simple counting arguments in the spectral 
sequence. 

§1. Stiefel manifolds. Let VnM be the Stiefel manifold of orthonormal 
fc-frames in n-space. Denote by P? the ^(2)-module H*(RP]V/[RP1"1; Z2). So 
P™ has a Z2-basis 1, zh . . . , zn where the dimension of zi is / and 

Sq% = 

1 zi+j if i+ /<JV 

0 otherwise 

For the definition of a free ,s$ (2)-algebra we refer the reader to [2]. 

PROPOSITION 1. [2] H*(V n k ; Z2) is isomorphic to the free sd(2)~algebra gener
ated by P^Zl 

DEFINITION. An ^(2)-module is called ^(2)-cyclic if it is generated over 
s£(2) by a single element. 

The next proposition classifies all P™ that are ,s$ (2)-cyclic. 

PROPOSITION 2. 

(a) Pl"m-i+k is si(2)-cyclic for any natural numbers m, s and k such that 
fc<2s. 

(b) Suppose that P f is sd(2)-cyclic. If we write l = 2sm-l, where m is odd, 
and N = 2sm-2+k then fc<2s. 

Before proving proposition 2 we first need the following lemma on mod 2 
binomial coefficients: 

/2sm - 1 \ 
LEMMA, (a) If j < 2s — 1 then ( . 1 = 1 mod 2 for any natural number m. 

(b) If 0 < / < 2 s and m is odd then 
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Proof, (a) We may assume m is odd otherwise we can factor out the largest 
power of 2 dividing m which will only have the effect of increasing s. We write 
m in its dyadic expansion 

t 

i=0 

where m 0 = 1 and each other mf = 0 or 1. The dyadic expansion of 2 s m - l is 
then 

2 s m - l = 2s + ( V m i 2 i + 2 j - l 

= l + 2 + - - - + 2 s _ 1 + X mi2i+s. 
i = l 

Since / < 2 S —1 the dyadic expansion of / may be written as 

s - l 

i = l 

Using the standard formula for computing binomial coefficients mod 2 from the 
dyadic expansions of its components [2] we have 

= 1 mod 2. 

(b) If we assume 0 < / < 2s then we may write the dyadic expansion of / as 

i = t ral. 
i = 1 

From the proof of (a) we may write 

2s(m + l ) - l = 2 s m - l - f 2 s 

t 

= 1 + 2 + - • • + 2S-1 + 2S+ X mt2
i+s 

i = l 

Hence 

We are assuming j > 0 so at least one rt = 1, in which case 

CD-©--
This completes the proof of the lemma. • 
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Proof oi Proposition 2. (a) For 0 < / < k - l < 2 s - l w e have, by the lemma, 

_ / 2 s m - l \ 
Sq z 2 s m - i — I . I z 2

s
m - i + j 

~ ^ 2 s m - l + j -

Thus every non-zero element is connected to z2*m-i by a Steenrod square. 
(b) Write l = 2sm-l where m is odd, and fc=N-l + l . If fc>2s then 

Z2-(m+i)-i is non-zero in P 2C:?+ k . 
We claim that z2

s(m+i)-i cannot be in the image of a non-zero class by any 
non-trivial Steenrod square. To see this suppose 0 < / < 2 s and compute, using 
the lemma 

. _ / 2 s ( m + l ) - l - A 
&<l Z 2 s (m + l ) - l - j ~ I . l Z 2 s (m + l ) - l 

- 0 . 

This completes the proof of the proposition. • 

§2. The main theorem. The purpose of this section is to prove the main 
theorem. We assume that X is a finite CW-complex whose mod 2 cohomology 
is isomorphic (as algebras over the Steenrod algebra) to H*(V2sm_1+k k; Z2), 
where k < 2 s . From the previous section we know that H*(X;Z2) is a free 
£#(2)-algebra on an ^(2)-cyclic module with Z2-basis {z2sm__1?. . . , z2»w-2+k}« 

PROPOSITION 1. If 2 s m - l < i < 2 s m - 2 + k then Hi(X;Z2) = Z2 with non-zero 
element zt. 

Proof. The first possible non-zero product is (z2»m-i)2 which is in dimension 
2 s + 1 m - 2 . We are assuming fc<2s, so 2 s m - 2 + k < 2 s m - 2 + 2s = 
2s(m + l ) - 2 . Now2 s(m + l ) - 2 < 2 s + 1 m - 2 a n d i s e q u a l o n l y when m = 1. But 
in this case , x2 _ 2s_-, 

(z2s_1)
2 = Sq2 1zT_1 

IT :î> 2 s " 2 

= Z2s + l - 2 > 

so the proposition holds. • 

Assume that G is a finite group acting cellularly on X. Denote by XG the 
space EG XGX. We let JB*'* be the r-th term of the Serre spectral sequence 
associated to the fibration 

X-+XG->BG. 

It has E2 term 

E**sH*(BG;H*(X;Z2)) . 
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PROPOSITION 2. If G acts freely on X then E** is a finite dimensional 
Z2-vector space. 

Proof. Under the hypothesis we have a homotopy equivalence EG XGX — 
X/G Since X is a finite CW-complex, and G acts cellularly on X, X/G is a 
finite CW-complex. E** is the associated graded groups to some filtration on 
H*(X; Z2) which is finite dimensionel. • 

PROPOSITION 3. The induced G-action on H*(X; Z2) is trivial. 

Proof. It is enough to show that G acts trivially on the generators {z^. This 
follows immediately from propositon 1. • 

We now assume G = Z 2 . The mod 2 cohomology ring of Z2 is well known: 
H*(BZ2; Z 2 ) = Z2[Y1 ? . . . , ji], where each yt is in dimension 1. An element 
feHn(BG;Z2) may be regarded, via the above ring isomorphism, as a 
homogeneous polynomial of degree n in / variables. 

PROPOSITION 4. [1]. For G = Z2 the polynomial feHn(BG;Z2) has a non-
trivial zero point if and only if there is a subgroup inclusion i : Z2 <—> Z2 such that 
i*/ = 0. 

The first possible non-trivial differential in the above spectral sequence is 
d2-m. Let f^m:=d2sm(z22m_1), an element of H2Sm(BG:Z2). 

PROPOSITION 5. If Z2 acts freely on X then f2*m cannot have a non-trivial zero 
point in Z2. 

Proof. Suppose /2
sm n a d a non-trivial zero point in Z2. By proposition 4 

there would exist a subgroup inclusion i : Z 2
c ^ Z 2 such that i*/2»m = 0. The 

Serre spectral sequence associated to the fibration X —> XG —» BG is natural 
with respect to subgroup inclusions. It would follow that the sequence for 
X —» XZ2 -» BZ2 will collapse, E2 = E^. This violates proposition 2. • 

We recall that the transgression operator, r, in the Serre spectral sequence 
commutes with the action of the Steenrod algebra. Consequently, under our 
assumptions, each generator z2sm_1?. . . , z2sm_2+k of H*(X; Z2) is transgressive 
and T(zf) is represented by Sql~2srn+1f2sm. Let /2sm+J = SqJ/2s

m- We consider the 
ideal J, in H*(BG; Z2), generated by / 2 . m , . . . , f2*m+k-i. 

LEMMA 1. E Ï ° = H*(BG;Z 2 ) / / /or *<2 s + 1 m. 

Proof. According to proposition 1 every element of H l (X;Z 2 ) is transgres
sive for 2 s m - l < i < 2 s m - 2 + k. Furthermore E ^ = 0 for 2 s m - 2 + fc<i< 
2 s + 1 m - l . The lemma now follows from dimension considerations. • 

LEMMA 2. SqlfTm+ieI whenever i+j<2sm. 

Proof. Since E%'° is the image of H*(BG; Z2) -^ H*(XG ; Z2) it is a module 
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over the Steenrod algebra. Sqlf2sm+j represents zero in this module. The lemma 
now follows from lemma 1. • 

PROPOSITION 6. If 2s >max \— (k - 1 ) , k -1} then I is M(2)-invariant. 
Im J 

Proof. Let A(i,j) be the statement "Sq\SqJ/2smeI." We wish to show that 
A (i, j) is true whenever 0 < / < k - 1 and 0 < i < 2sm 4- /. We proceed by induc
tion on j . A(i, 0) is true for 0 < i <2 sm by lemma 2 and A(2sm, 0) is true since 
Sq2Srnf2*m = ( f 2 J 2 , and (f2sm)2 is clearly in I. 

Now for the inductive step, suppose that we have verified A(i, /') whenever 
0 < / ' < j - l and 0 < i < 2 s m + j ' . If i<2sm-j then A(i, j) follows from lemma 
2. Hence we may assume i > 2 s m - j . First observe that 

i > 2 s m - j 

> 3 ( f c - l ) - / 

= 2/. 
So by the Adem relations 

Sq'&j'^-m = S ^ ' S q ' - ^ v , + I Q S q ' - ' - S q " / ^ , where Ca e Z2. 
a < j 

Inductively SqiH~aSqaf2Srne I for a < / . We are left with showing Sq2jSq i-J/2sme 
I. Because of the inequalities 2 / < 2 ( k - l ) < 2 s m - ( k - l ) it follows from 
lemma 2 that Sq2iI^I. We have already verified A(i-j, 0), so Sq2iSqi~ifTmeL 
This completes the inductive step. • 

PROPOSITION 7. [1]. Let I = (fl9..., /s) 6e an idea? generated by homogeneous 
polynomials fi in Z 2 [YI , . . . , 7J. Assume further that I is invariant under the 
action of the Steenrod algebra. Then if l>s the polynomials fi have a non-trivial 
common zero in Zl

2. 

Proof of the Main Theorem. We have seen, in proposition 6, that the ideal 
^^(/2sm? • • • >/2sm+k-i) is ^(2)-invariant. By naturality of the Steenrod opera
tions and proposition 4 there is a non-trivial common zero to /2»m,. . . , /^m+k-i 
if, and only if f2*m has a non-trivial zero. It follows from proposition 5 that 
/2sm> • • • > f2sm+k-i can have no non-trivial zero point. The result now follows 
from proposition 7. • 
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