FREE ACTIONS BY ELEMENTARY ABELIAN 2-GROUPS ON STIEFEL MANIFOLDS

\[

\]

§0. Introduction. Let $V_{n, k}$ denote the Stiefel manifold of orthonormal k frames in \mathbb{R}^{n}. Elements of $V_{n, k}$ may be written as k-tuples of orthonormal vectors $\left(v_{1}, \ldots, v_{k}\right)$ in \mathbb{R}^{n}. The elementary abelian 2 -group of rank k, \mathbb{Z}_{2}^{k}, acts on $V_{n, k}$ as follows: if we write the generators of \mathbb{Z}_{2}^{k} as $\tau_{1}, \ldots, \tau_{k}$, define $\tau_{i}\left(v_{1}, \ldots, v_{k}\right)=\left(v_{1}, \ldots,-v_{i}, \ldots, v_{k}\right)$. Clearly this is a free action, and one is tempted to

Conjecture. If \mathbb{Z}_{2}^{l} acts freely on $V_{n, k}$ then $l \leq k$.
The main result of this paper is to prove the above conjecture for an infinite number of $V_{n, k}$'s for each k.

Main Theorem. Suppose that X is a finite CW-complex whose mod 2 cohomology is isomorphic (as algebras over the Steenrod algebra) to $H^{*}\left(V_{2^{s} m-1+k, k} ; \mathbb{Z}_{2}\right)$ where

$$
2^{s}>\max \left\{\frac{3}{m}(k-1), k-1\right\},
$$

and suppose X admits a free cellular action by the group \mathbb{Z}_{2}^{l} then $l \leq k$.
The method of proof is to exploit a theorem due to G. Carlsson [1] that restricts varieties of Steenrod algebra invariant ideals of $H^{*}\left(\mathbb{Z}_{2}^{l} ; \mathbb{Z}_{2}\right)$. The ideal we construct is generated by the transgressions of a set of multiplicative generators for $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ in the Serre spectral sequence associated to the fibration

$$
X \rightarrow E G \underset{G}{\times} X \rightarrow B G .
$$

Received by the editors October 5, 1982 and, in revised form, February 8, 1983.
AMS Subject Classification (1980): 55M35, 57S17
(C) Canadian Mathematical Society, 1984.

The generators will transgress if we require them to be cyclic over the Steenrod algebra $\mathscr{A}(2)$. Thus, the first section of this paper is devoted to classifying all $V_{n, k}$ for which the multiplicative generators form a cyclic module over $\mathscr{A}(2)$. This is where we need the restriction $2^{s}>k-1$.

In section 2 we attempt to show that the above ideal is $\mathscr{A}(2)$-invariant. We are able to do this only under the further restriction that

$$
2^{s}>\frac{3}{m}(k-1) .
$$

Of course, if $m \geq 3$ then this is already implied by the first restriction.
As a final remark, we would like to point out that one can prove the above conjecture for any $V_{n, 2}$ using some simple counting arguments in the spectral sequence.
§1. Stiefel manifolds. Let $V_{n, k}$ be the Stiefel manifold of orthonormal k-frames in n-space. Denote by P_{l}^{N} the $\mathscr{A}(2)$-module $H^{*}\left(\mathbb{R} P^{N} / \mathbb{R} P^{l-1} ; \mathbb{Z}_{2}\right)$. So P_{l}^{N} has a \mathbb{Z}_{2}-basis $1, z_{l}, \ldots, z_{n}$ where the dimension of z_{j} is j and

$$
S q^{i} z_{i}=\left\{\begin{array}{cl}
\binom{i}{j} z_{i+j} & \text { if } \quad i+j \leq N \\
0 & \text { otherwise }
\end{array}\right.
$$

For the definition of a free $\mathscr{A}(2)$-algebra we refer the reader to [2].
Proposition 1. [2] $H^{*}\left(V_{n, k} ; \mathbb{Z}_{2}\right)$ is isomorphic to the free $\mathscr{A}(2)$-algebra generated by P_{n-k}^{n-1}.

Definition. An $\mathscr{A}(2)$-module is called $\mathscr{A}(2)$-cyclic if it is generated over $\mathscr{A}(2)$ by a single element.

The next proposition classifies all P_{l}^{N} that are $\mathscr{A}(2)$-cyclic.
Proposition 2.
(a) $P_{2 s m-1}^{2 s m-2+k}$ is $\mathscr{A}(2)$-cyclic for any natural numbers m, s and k such that $k \leq 2^{s}$.
(b) Suppose that P_{l}^{N} is $\mathscr{A}(2)$-cyclic. If we write $l=2^{s} m-1$, where m is odd, and $N=2^{s} m-2+k$ then $k \leq 2^{s}$.

Before proving proposition 2 we first need the following lemma on mod 2 binomial coefficients:

Lemma. (a) If $j \leq 2^{s}-1$ then $\binom{2^{s} m-1}{j} \equiv 1 \bmod 2$ for any natural number m.
(b) If $0<j \leq 2^{s}$ and m is odd then

$$
\binom{2^{s}(m+1)-1-j}{j} \equiv 0 \bmod 2
$$

Proof. (a) We may assume m is odd otherwise we can factor out the largest power of 2 dividing m which will only have the effect of increasing s. We write m in its dyadic expansion

$$
m=\sum_{i=0}^{t} m_{i} 2^{i}
$$

where $m_{0}=1$ and each other $m_{i}=0$ or 1 . The dyadic expansion of $2^{s} m-1$ is then

$$
\begin{aligned}
2^{s} m-1 & =2^{s}+\left(\sum_{i=1}^{t} m_{i} 2^{i+2}\right)-1 \\
& =1+2+\cdots+2^{s-1}+\sum_{i=1}^{t} m_{i} i^{i+s}
\end{aligned}
$$

Since $j \leq 2^{s}-1$ the dyadic expansion of j may be written as

$$
j=\sum_{i=1}^{s-1} r_{i} 2^{i}
$$

Using the standard formula for computing binomial coefficients mod 2 from the dyadic expansions of its components [2] we have

$$
\begin{aligned}
\binom{2^{s} m-1}{j} & \equiv \prod_{i=1}^{s-1}\binom{1}{r_{i}} \cdot \prod_{i=1}^{t}\binom{m_{i}}{0} \\
& \equiv 1 \bmod 2
\end{aligned}
$$

(b) If we assume $0<j \leq 2^{s}$ then we may write the dyadic expansion of j as

$$
j=\sum_{i=1}^{s} r_{i} 2^{i} .
$$

From the proof of (a) we may write

$$
\begin{aligned}
2^{s}(m+1)-1 & =2^{s} m-1+2^{s} \\
& =1+2+\cdots+2^{s-1}+2^{s}+\sum_{i=1}^{t} m_{i} 2^{i+s}
\end{aligned}
$$

Hence

$$
\binom{2^{s}(m+1)-1-j}{j} \equiv \prod_{i=1}^{s}\binom{1-r_{i}}{r_{i}} \cdot \prod_{i=1}^{t}\binom{m_{i}}{0} \equiv \prod_{i=1}^{s}\binom{1-r_{i}}{r_{i}} \bmod 2 .
$$

We are assuming $j>0$ so at least one $r_{i}=1$, in which case

$$
\binom{1-\boldsymbol{r}_{\boldsymbol{i}}}{\boldsymbol{r}_{\boldsymbol{i}}}=\binom{0}{1}=0
$$

This completes the proof of the lemma.

Proof of Proposition 2. (a) For $0 \leq j \leq k-1 \leq 2^{s}-1$ we have, by the lemma,

$$
\begin{aligned}
S q^{j} z_{2^{s} m-1} & =\binom{2^{s} m-1}{j} z_{2^{s} m-1+j} \\
& =z_{2^{s} m-1+j}
\end{aligned}
$$

Thus every non-zero element is connected to $z_{2^{s} m-1}$ by a Steenrod square.
(b) Write $l=2^{s} m-1$ where m is odd, and $k=N-l+1$. If $k>2^{s}$ then $z_{2^{s}(m+1)-1}$ is non-zero in $P_{2^{s} m-1}^{2^{s} m-2+k}$.

We claim that $z_{2^{s}(m+1)-1}$ cannot be in the image of a non-zero class by any non-trivial Steenrod square. To see this suppose $0<j \leq 2^{s}$ and compute, using the lemma

$$
\begin{aligned}
S q^{j} z_{2^{s}(m+1)-1-j} & =\binom{2^{s}(m+1)-1-j}{j} z_{2^{s}(m+1)-1} \\
& =0
\end{aligned}
$$

This completes the proof of the proposition.
§2. The main theorem. The purpose of this section is to prove the main theorem. We assume that X is a finite $C W$-complex whose $\bmod 2$ cohomology is isomorphic (as algebras over the Steenrod algebra) to $H^{*}\left(V_{2^{s} m-1+k, k} ; \mathbb{Z}_{2}\right)$, where $k \leq 2^{s}$. From the previous section we know that $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ is a free $\mathscr{A}(2)$-algebra on an $\mathscr{A}(2)$-cyclic module with \mathbb{Z}_{2}-basis $\left\{z_{2^{s} m-1}, \ldots, z_{2^{s} m-2+k}\right\}$.

Proposition 1. If $2^{s} m-1 \leq i \leq 2^{s} m-2+k$ then $H^{i}\left(X ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$ with non-zero element z_{i}.

Proof. The first possible non-zero product is $\left(z_{2^{s} m-1}\right)^{2}$ which is in dimension $2^{s+1} m-2$. We are assuming $k \leq 2^{s}$, so $2^{s} m-2+k \leq 2^{s} m-2+2^{s}=$ $2^{s}(m+1)-2$. Now $2^{s}(m+1)-2 \leq 2^{s+1} m-2$ and is equal only when $m=1$. But in this case

$$
\begin{aligned}
\left(z_{2^{s}-1}\right)^{2} & =S q^{2 s-1} z_{2^{s}-1} \\
& =\binom{2^{s}-1}{2^{s}-1} z_{2^{s+1}-2} \\
& =z_{2^{s+1}-2},
\end{aligned}
$$

so the proposition holds.
Assume that G is a finite group acting cellularly on X. Denote by X_{G} the space $E G \times{ }_{G} X$. We let $E_{r}^{*, *}$ be the r-th term of the Serre spectral sequence associated to the fibration

$$
X \rightarrow X_{G} \rightarrow B G
$$

It has E_{2} term

$$
E_{2}^{* *} \cong H^{*}\left(B G ; H^{*}\left(X ; \mathbb{Z}_{2}\right)\right)
$$

Proposition 2. If G acts freely on X then $E^{* *}$ is a finite dimensional \mathbb{Z}_{2}-vector space.

Proof. Under the hypothesis we have a homotopy equivalence $E G \times{ }_{G} X \simeq$ X / G. Since X is a finite $C W$-complex, and G acts cellularly on $X, X / G$ is a finite $C W$-complex. $E^{* *}$ is the associated graded groups to some filtration on $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ which is finite dimensionel.

Proposition 3. The induced G-action on $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ is trivial.
Proof. It is enough to show that G acts trivially on the generators $\left\{z_{i}\right\}_{i}$. This follows immediately from propositon 1 .

We now assume $G \cong \mathbb{Z}_{2}^{l}$. The $\bmod 2$ cohomology ring of \mathbb{Z}_{2}^{l} is well known: $H^{*}\left(B \mathbb{Z}_{2}^{l} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[\gamma_{1}, \ldots, \gamma_{l}\right]$, where each γ_{i} is in dimension 1. An element $f \in H^{n}\left(B G ; \mathbb{Z}_{2}\right)$ may be regarded, via the above ring isomorphism, as a homogeneous polynomial of degree n in l variables.

Proposition 4. [1]. For $G \cong \mathbb{Z}_{2}^{l}$ the polynomial $f \in H^{n}\left(B G ; \mathbb{Z}_{2}\right)$ has a nontrivial zero point if, and only if there is a subgroup inclusion $i: \mathbb{Z}_{2} \hookrightarrow \mathbb{Z}_{2}^{l}$ such that $i^{*} f=0$.

The first possible non-trivial differential in the above spectral sequence is $d_{2^{s} m}$. Let $f_{2^{s} m}=d_{2^{s} m}\left(z_{2^{2} m-1}\right)$, an element of $H^{2^{s} m}\left(B G: \mathbb{Z}_{2}\right)$.

Proposition 5. If \mathbb{Z}_{2}^{l} acts freely on X then $f_{2^{s} m}$ cannot have a non-trivial zero point in \mathbb{Z}_{2}^{l}.

Proof. Suppose $f_{2^{s} m}$ had a non-trivial zero point in \mathbb{Z}_{2}^{l}. By proposition 4 there would exist a subgroup inclusion $i: \mathbb{Z}_{2} \hookrightarrow \mathbb{Z}_{2}^{l}$ such that $i^{*} f_{2^{s} m}=0$. The Serre spectral sequence associated to the fibration $X \rightarrow X_{G} \rightarrow B G$ is natural with respect to subgroup inclusions. It would follow that the sequence for $X \rightarrow X_{\mathbb{Z}_{2}} \rightarrow B \mathbb{Z}_{2}$ will collapse, $E_{2}=E_{\infty}$. This violates proposition 2.

We recall that the transgression operator, τ, in the Serre spectral sequence commutes with the action of the Steenrod algebra. Consequently, under our assumptions, each generator $z_{2^{s} m-1}, \ldots, z_{2^{s} m-2+k}$ of $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ is transgressive and $\tau\left(z_{i}\right)$ is represented by $S q^{i-2^{s m+1}} f_{2^{s} m}$. Let $f_{2^{s} m+j}=S q^{i} f_{2^{s} m}$. We consider the ideal I, in $H^{*}\left(B G ; \mathbb{Z}_{2}\right)$, generated by $f_{2^{s} m}, \ldots, f_{2^{s} m+k-1}$.

Lemma 1. $E_{\infty}^{*, 0}=H^{*}\left(B G ; \mathbb{Z}_{2}\right) / I$ for $*<2^{s+1} m$.
Proof. According to proposition 1 every element of $H^{i}\left(X ; \mathbb{Z}_{2}\right)$ is transgressive for $2^{s} m-1 \leq i \leq 2^{s} m-2+k$. Furthermore $E_{2}^{0, i}=0$ for $2^{s} m-2+k<i<$ $2^{s+1} m-1$. The lemma now follows from dimension considerations.

Lemma 2. $S q^{i} f_{2^{s} m+j} \in I$ whenever $i+j<2^{s} m$.
Proof. Since $E_{\infty}^{*, 0}$ is the image of $H^{*}\left(B G ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(X_{G} ; \mathbb{Z}_{2}\right)$ it is a module
over the Steenrod algebra. $S q^{i} f_{2^{s} m+j}$ represents zero in this module. The lemma now follows from lemma 1.
Proposition 6. If $2^{s}>\max \left\{\frac{3}{m}(k-1), k-1\right\}$ then I is $\mathscr{A}(2)$-invariant.
Proof. Let $A(i, j)$ be the statement " $S q^{i} S q^{i} f_{2^{*} m} \in I$." We wish to show that $A(i, j)$ is true whenever $0 \leq j \leq k-1$ and $0 \leq i \leq 2^{s} m+j$. We proceed by induction on j. $A(i, 0)$ is true for $0 \leq i<2^{s} m$ by lemma 2 and $A\left(2^{s} m, 0\right)$ is true since $S q^{2^{s} m} f_{2^{s} m}=\left(f_{2^{s} m}\right)^{2}$, and $\left(f_{2^{s} m}\right)^{2}$ is clearly in I.

Now for the inductive step, suppose that we have verified $A\left(i, j^{\prime}\right)$ whenever $0 \leq j^{\prime} \leq j-1$ and $0 \leq i \leq 2^{s} m+j^{\prime}$. If $i<2^{s} m-j$ then $A(i, j)$ follows from lemma 2. Hence we may assume $i \geq 2^{s} m-j$. First observe that

$$
\begin{aligned}
i & \geq 2^{s} m-j \\
& >3(k-1)-j \\
& \geq 3 j-j \\
& =2 j
\end{aligned}
$$

So by the Adem relations

$$
S q^{i} S q^{i} f_{2^{s} m}=S q^{2 j} S q^{i-j} f_{2^{s} m}+\sum_{a<j} C_{a} S q^{i+j-a} S q^{a} f_{2^{s} m}, \quad \text { where } \quad C_{a} \in \mathbb{Z}_{2}
$$

Inductively $S q^{i+i-a} S q^{a} f_{2^{s} m} \in I$ for $a<j$. We are left with showing $S q^{2 i} S q^{i-j} f_{2^{s} m} \in$ I. Because of the inequalities $2 j \leq 2(k-1)<2^{s} m-(k-1)$ it follows from lemma 2 that $S q^{2 j} I \subset I$. We have already verified $A(i-j, 0)$, so $S q^{2 j} S q^{i-j} f_{2^{s} m} \in I$. This completes the inductive step.

Proposition 7. [1]. Let $I=\left(f_{1}, \ldots, f_{s}\right)$ be an ideal generated by homogeneous polynomials f_{j} in $\mathbb{Z}_{2}\left[\gamma_{1}, \ldots, \gamma_{l}\right]$. Assume further that I is invariant under the action of the Steenrod algebra. Then if $l>s$ the polynomials f_{j} have a non-trivial common zero in \mathbb{Z}_{2}^{l}.

Proof of the Main Theorem. We have seen, in proposition 6, that the ideal $I=\left(f_{2^{s} m}, \ldots, f_{2^{s} m+k-1}\right)$ is $\mathscr{A}(2)$-invariant. By naturality of the Steenrod operations and proposition 4 there is a non-trivial common zero to $f_{2^{s} m}, \ldots, f_{2^{s} m+k-1}$ if, and only if $f_{2^{s} m}$ has a non-trivial zero. It follows from proposition 5 that $f_{2^{s} m}, \ldots, f_{2^{s} m+k-1}$ can have no non-trivial zero point. The result now follows from proposition 7 .

Bibliography

1. G. Carlsson, On the non-existence of free actions of elementary abelian groups on products of spheres, American J. of Math. 102 (1980) 1147-1157.
2. N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Annals of Math. Studies 50, Princeton University Press, Princeton, 1962.

Department of Mathematics
California State University, Long Beach
Long Beach, CA 90840

