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ON THE SEMILATTICE OF IDEMPOTENTS OF A FREE
INVERSE MONOID

by PEDRO V. SILVA
(Received 12th November 1991)

Some new concepts are introduced, in particular that of a unique factorization semilattice. Necessary and
sufficient conditions are given for two principal ideals of the semilattice of idempotents of a free inverse
monoid FIM(X) to be isomorphic and some properties of the Munn semigroup of E[FIM(X)] are obtained.
Some results on the embedding of semilattices in E[FIM(X)] are also obtained.
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1. Preliminaries

The general terminology and notation are those of Petrich [6].
Let S be a semigroup. We say that S is a semilattice if the following conditions hold:

VeeS, e*=¢g;
Ve, feS, ef =fe.
Let E be a semilattice. The natural partial order on E is defined by
es fee=ef.
Suppose that e, f € E are such that e< f and the condition
elg<f=>e=g
holds for every ge E. Then we say that f covers e and we denote this fact by e< f. For
every f e E, we define Cov(f)={ecE:e<f}.
For every e€ E, we say that Ee={fe: f e E} is the principal ideal of E generated by e.
Now let S be an inverse semigroup. The subset of all idempotents of S is a semilattice,
usually denoted by E(S), and so E(S) is said to be the semilattice of idempotents of S.
Let X be a nonempty set. We define X ~!={x"':xe X} to be a set such that
XnX 1=g;

Vx,x,eX,x{1=x31=x,=x,.
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Moreover, we define (x~!) ™! =x for every x € X. Now let (X U X ~!)* denote the free
monoid on X U X! [2, §9.1], and let

RX=(XuX“)*\{ U (XuX“)*xx“(XuX")*].
xeXuX-1
We define a partial order <, on Ry by
u<,v<veuRy.
A subset A of Ry is said to be left closed if

VveAVue Ry, us v=>uecA.

Finally, let Ey denote the set of all finite nonempty left closed si9sets of Ry, with the
operation described by

AB=Au B,
and let FIM(X) denote the free inverse monoid on X [6, §VIIL1.].
Lemma 1.1 [5;8]. Let X be a nonempty set. Then
E,~E[FIM(X)].

For the remainder of this paper, we assume that Exy=E[FIM(X)]. Let veRy. We
define

i={ueRy u=p}.

It is immediate that 7€ Ex for every ve Ry. It follows easily that, for every 4, Be Ey,

AZB<> ACB, 1.1
and for every AeE,,
A=]] 4 (1.2)
ued

2. Unique factorization semilattices

In this section we introduce some concepts in semilattice theory and we relate them
to Ey.
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Let E be a semilattice and let ec E. We say that e is irreducible if, for every f,g€E,

e=fg=>e=fore=g.

The set of all irreducibles of E is denoted by Irr(E).
We say that e is prime if, for every f,g€eE,

ez fg=>exforexg
Lemma 2.1. Let E be a semilattice and let ec E. Then

e prime = e irreducible.

Proof. Suppose that e is prime and suppose that e= fg for some f,geE. TheneZ f
and e<g. Further, e= fg and so, since e is prime, we have e f or e=g. Hence e=f or
e=g. Thus e is irreducible.

The semilattice E is said to be a unique factorization semilattice (UFS) if

(1) E is generated by Irr(E);

(ii) every irreducible is prime.

All these concepts are inspired by well-known concepts for integral domains [1, §5.3].
We need some results on UFSs.

Lemma 2.2. Let E denote a UFS. Let e,...,e, fi,..., fm€lrt(E) be such that
ey...e,=fy... fn. Then, for every ie{l1,...,n}, there exists je{1,...,m} such that e;2 f;.

Proof. Let ie{l,...,n}. Clearly, ¢;2 f,... f,.. Since E is a UFS, ¢, is prime and an
elementary induction yields e;2 f; for some je{1,...,m}.

Lemma 2.3. Let E denote a UFS and let ec E. Then
(i) Irr(Ee)=e.Irr(E);
(ii) Eeis a UFS.

Proof. (i) Let felrr(Ee). Since E is a UFS, there exist g,,...,g,€lrr(E) such that
f=g;...8, Let I be minimal among the nonempty subsets of {1,...,n} with respect to
f=e[lic:8: Suppose that |I|>1. Since eg;> f for every iel and f=[];., eg;, we obtain
f ¢Irr(Ee), a contradiction. Hence |/|=1 and so fee.Irr(E).

Conversely, let gelrr(E) and suppose that eg=ff' for some f,f e Ee. We have
e=f=eg and e= f'=eg. But g= ff’ and since E is a UFS, g is prime, so g2 f or
g2 f'. Without loss of generality, we can assume that g= f. Hence eg> f and so eg= /.
Thus eg elrr(Ee).

(ii) Let feEe. Since E is a UFS, there exist g,,...,g,€Irr(E) such that f=g,...g,.
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Therefore f=ef =eg,...g,=(eg,)...(eg,)- By (i), eg;€Irr(Ee) for every ie{1,...,n}. Thus
Ee is generated by Irr(Ee).

Now let helrr(Ee) and let a,be Ee. Suppose that h=ab. By (i), we have h=eg for
some g e Irr(E). Hence g=ab and so, since g is prime, g2 a or g=b. We can assume that
g=a. Since e=a, we have h=eg>a. Thus h is prime and the lemma is proved.

Lemma 24. Let E be a UFS. Let e, f,gelrr(E) be such that f>e and g>-e. Then
f=z

Proof. Since f=e and g=e, we have fg=>e. Suppose that fg=e. Since eclIrr(E), we
must have e=f or e=g, a contradiction. Hence fg>e. Now f=fg>e and so, since
f>e, we have f=fg. Therefore f <g and so f=g.

We say that a semilattice E is upper finite if the sets {f € E: f 2e} are finite for all
ecE.
The next lemmas state some properties of Ey.

Lemma 2.5. Let X be a nonempty set. Then
(i) Irr(Ex)={w:weRy};

(ii) Ex is a UFS;

(i) Ey is upper finite.

Proof. Let Aelrr(Ey). By (1.2), we have A=[],. 4@ Since Aelrr(Ey), we have A=ii
for some u € A. Therefore Irr(Ex) = {w:we Ry}.

Now suppose that we Ry. We prove that w is prime. Suppose that w= AB for some
A,Be Ex. By (1.1), we have wew< AB=A U B. We can assume that we A. But A is left
closed and so we A. Thus w= A, by (1.1), and so w is prime.

By Lemma 2.1, this implies w irreducible and so (i) is proved. Moreover, it follows
that every irreducible of E is prime. By (i) and (1.2), Irr(Ey) generates E, and so Ey is
a UFS.

It follows easily from (1.1) that Ey is upper finite.

Lemma 2.6. Let X be a nonempty set. Let AcEy and let Be[Irr(ExA)\{A}. Then
there exists a unique C € Irr(ExA) such that B<C.

Proof. By Lemma 2.5(ii), E; is a UFS and so, by Lemmas 2.3 and 2.5(i), we have
B=Au for some ue Ry, Since B# A, we have u¢ A. In particular, u#1 and so we can
define ve Ry to be the maximal proper prefix of u. Let C=A¢. By Lemmas 2.3 and 2.5,
Celrr(ExA). Since |C|=|B|—1, we have B<C. The uniqueness of C follows from
Lemma 2.4, replacing E by ExA and e by B.
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3. Principal ideals

In this section we shall obtain necessary and sufficient conditions for two principal
ideals of Ey to be isomorphic.

Lemma 3.1. Let X be a nonempty set and let A€ Ex. Then

_f2|4|(x|-1)+2 if X is finite
ICOU(A)' —{|X | if X is infinite.

Proof. We assume that X is finite, the other case being obvious. We use induction
on |A|.

Sluplpose that |A|=1. Then A={1} and so Cov(4)={{1,x}:xeX uUX~'}. Hence
|Cov(4)|=2|X| and the lemma holds.

Now suppose that the lemma holds for every Be Ey such that |B|§n, with ne N. Let
AeEy be such that |4|=n+1. Let ve 4 have maximal length. Since |4|>1, we have
|[v|>1. Let yeX UX~! denote the last letter of v. Let A’€Ex and suppose that
A’eCouv(A). Since |A"\A|=1, we can define u(4’) to be the single element of 4"\4. We
define I'={A4'e Cov(A):v<u(A')} and A=[Cov(A)]\T.

Let A’eT. Since |v| is maximal in 4 and |4'\A4|=1, it follows that u(4’)=uvx for some
xeX uX~L Since y is the last letter of v and u(A’)e Ry, we have x#y~! and so
I={Au{vx}:xe(X VX \{y'}}. Hence |T'|=2|X|—-1.

Let Ay=A\{v}. Since |v| is maximal in 4 and |v|>1, we have A, E,. We define a
map ¢: A — Couv(A,) as follows. Suppose that A’e A. Let Ap=A'\{v}. Since v ,u(4’), it
follows that » must be maximal in A for £, Hence AyeEy. It is clear that
ApeCov(Ay) and so we can define 4'p=A,. Moreover, ¢ is injective and [Cov(A4y)]\
(A@)={A}. Hence |A|=|Cov(4,)|—1. Using the induction hypothesis, we obtain
|A|=2]40|(| X|-1)+2—1=2n(|X|-1)+1. Thus |4]|=|T|+|A|=2|X|-1+2n(X]|-1)+
1=2(n+1)(|X|-1)+2=2|4|(|X|—1)+2 and the result follows by induction.

We must introduce some new concepts and notation.

Let AeEy and let m=|A|. For all keN°, we define Irr, . (Ex4)={Belrr(ExA):|B|=
m+k}. Surely, Irr(ExA)=|)isolrr,+i(ExA). Moreover, Irr,(ExyA)={A} and
Irr,, (ExA)=Couv(A). For every Belrr(ExA), we define [B],={Celrr(ExA). C<B}.
Suppose that B#A4. By Lemmas 2.3 and 2.5, we have B=Ai for some ue Ry\A. It
follows easily that [B] ,={A%:ve Ry and v=ux for some xe X U X "'}. Thus

B 2|X|—1 if X is finite
|[B1a|= {l X| if X is infinite. D

Now we obtain a criterion for isomorphism.

Lemma 3.2. Let X be a nonempty set and let A,Be Ey. Then
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EyA= EyB<>|Cov(A)|=|Cov(B)|.

Proof. Suppose that ®: EyA — ExB is an isomorphism. We certainly have A®=B.
Let A’e Cov(A). Since @ is injective, we have A'®<B. Suppose that A'®<B <B for
some B'e ExB. Let A”=B'®!. It follows easily that A'<A” <A, in contradiction with
A’e Cov(A). Hence no such B’ exists and so A'®e Cov(B). Thus [Cov(A)]® < Cov(B).
Similarly, we obtain [Cov(B)]® ! < Cov(A4). Hence [Cov(A)]® = Cov(B) and so |Cov(A)[
=|Couv(B)|.

|Converslely, suppose that |Cov(A4)|=|Cov(B)|. Suppose that m=|A| and n=|B|. For
every ke N°, we define a bijection ¢@,:Irr,, . (ExA) = Irr, . (ExB) as follows.

Consider k=0. Since Irr,(ExA4)={A} and Irr,(ExB)={B}, we define Ap,=B.

Now suppose that ¢, is defined for some keN° Let Celrr,,, (ExA). Suppose first
that k=0. Then C=A and Co,=B and so |[Cl,|=|Cov(4)|=|Cov(B)|=|[Cp:]sl-
Suppose now that k>0. By (3.1), we obtain |[C] A|= [C(p,,],,l as well. Whatever the
case, we can define a bijection Y.:[C),—[Cop,Js for every Celrr, . (ExA). Since
Ity 4 1(ExA) =Ucetrrmenigxay [Cla and I,y ((ExB)=Upetrry. w(exs [Ds, there is a
unique map  @pyq: Ity (ExA)—Ir, 0 ((ExB)  such  that, for every
Celrt,, (ExA), @41 |ic1.=Vc- Since @, is bijective and every y is bijective, it follows
that ¢, ., is bijective as well. Next, we define ¢:Irr(EyA)— Irr(ExB) to be the unique
bijection such that (p|;,,,,,+k(ax,4)=‘l’,‘ for every ke N°.

We prove that, for every C,Delrr(ExA),

C<D < Cop=<De. 3.2)

Suppose that C<D. Then Ce[D], and so Co=Cy,e[Dp]lz. Hence Co<Dep.
Conversely, suppose that Co<Deg. It is immediate that C# A. By Lemma 2.6, there
exists a unique C' elrr(ExA) such that C<C'. It follows from above that Co<C'¢. By
Lemma 2.4, with E replaced by ExB and e replaced by C¢, we obtain Dp=C'¢. Since ¢
is bijective, it follows that D=C’ and so C<D. Thus (3.2) holds.
Since Ey is upper finite, it follows easily from (3.2) that, for every C, D e Irr(Ey A),

C=D<Cyp=Do. (33)

Suppose now that C,...C,=D,...D,, with C,,...,C,D,,...,D,eltr(ExA). Let
ie{l,...,r}. By Lemmas 2.2 and 2.3(ii), there exists je{l,...,s} such that C;>D, By
(3.3), we have Cip=Djp and so C,¢...C,¢2D,¢...D,p. Similarly, we obtain
D,¢...Dp=2Cip...C,p and so C,¢p...C,o=D,¢...D;p. A similar argument shows
that C,¢...C,¢o=D,¢...D,o implies C,...C,=D,...D; and so we can define an
injecive map ®:EyA— EyB as follows. Let Ce ExA. By Lemma 2.3, we can write
C=C,...C, for some C,,...,C,eItr(ExA). Then we define C®=C,¢...C,o.

We show that @ is an isomorphism.

Let Ce ExB. By Lemma 2.3(ii), there exist C,,...,C,elrr(ExB) such that C=C,...C,.
Since ¢ is bijective, there exist D,,...,D,elrr(ExA4) such that C;=D;¢ for every
ie{l,...,r}. Thus C=C,...C,=D,¢...D,¢=(D,...D,)® and so ® is surjective.
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Let C,DeExA. Suppose that C=C,...C, and D=D,...D, for some
Cy,...,C,,Dy,...,Delrr(ExA). Then CO.DP=(C,...C,)0.(D,...D)®=C,0...
C,oD,p...D,o=(C,...C,D,...DY0=(CD)®. Thus ® is a homomorphism and the
lemma is proved.

We note that every isomorphism ®:EyA— EyB must induce bijections between
Irr,, . 1(ExA) and Irr, . (ExB) and satisfy (3.2).
Now Lemmas 3.1 and 3.2 yield:

Theorem 3.3. Let X be a nonempty set and let A,Be Ey.
(i) If X is infinite or |X|=1, then ExyA=EyB.
(ii) If X is finite and |X|> 1, then

ExA~EyB<>|A4|=|B|.

A semilattice in which all the principal ideals are isomorphic is said to be uniform. It
follows from Theorem 3.3 that, if X is infinite or |X|=1, then Ey is uniform.

4. The Munn semigroup

We can use the results obtained in Section 3 to get information about the Munn
semigroup [4] of the semillatice Ey.

Let E be a semilattice and let U={(e, f)e Ex E: EexEf}. For every (¢, f)eU, let T, ,
denote the set of all isomorphisms from Ee onto Ef. The Munn semigroup of E is
defined to be Ty=J. fyev To. s» With the usual composition of relations [3, §V.4]. This is
an inverse semigroup and E(T;)={l1g,:e€E} is isomorphic to E. It follows easily from
the definition that, for every e, f€E, 1;,2 =19 if and only if (e, f) e U.

Theorem 4.1. Let X be a nonempty set. Then Tg, is E-unitary.

Proof. Let A,B,CeEy and let ®:ExA— Ey,B be an isomorphism. Suppose that
lgc. ©eE(T;,). We want to prove that ®eE(T,). We have that 1.,..® is the
restriction of ® to the semilattice (ExC) n(ExA), that is, ExCA. Therefore we have
O|gyca=lg,ca and we must show that @=1g, ,.

Suppose that ®#1,, ,. We show that

3D elrr(Ey) such that D} A and (AD)® # BD. 4.1
Assume first that A= B. Since ®#1;, ,, there exists U e ExA such that U®# U. Since
A®=B=A, we have U# A and so we can write U=AD,...D, for some D;elrr(Ey),

with D;2 4,ie{1,...,n}. It follows that D,®3 D, for some i and so (4.1) holds.
Now assume that A #B. Since Cov(4)<Irr(ExA), and by Lemma 2.3(i), there exist
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{D;iel}<Irr(Ex) such that Cov(A)={AD;iel}. Suppose that (AD;)®=BD; for every
iel. Since [Cov(A)]® = Cov(B), we have Cov(B)={BD;iel}.

Suppose that Ad B. Let ue A\B. Let ' denote the maximum prefix of u contained in
B and suppose that u=u'xu", with xe X UX ! and 4" e Ry. Then Bw'x e Cov(B) and so
Bu'x=BD; for some iel. Since u'x,D;elrr(Ex), we show easily that w'x=D;. In fact,
D;zBu'x and D,~$B together imply D;=u'x. Similarly, ¥'x=D; and so u'x=D,.
However, u'x = A, a contradiction. Thus A< B. Similarly, we obtain BE A and so A =B,
a contradiction. Therefore (AD,)® # BD, for some i€l and so (4.1) holds.

Now suppose that Delrr(Ey) is such that D;A and (AD)®+#BD. Let D'elrr(Ey) be
such that D’<D. By Lemma 2.3(i), ADelrr(ExA). Hence (AD)®elIrr(ExB) and so, by
Lemma 2.3(i), (AD)®=BU for some U elrr(Ey). Since D% A, we have U} B and also
D'kA. Hence AD'<AD and so (AD)®<(AD)®. Similarly, (AD')®=BU’ for some
U’elrr(Ey). Since U is prime, BU'<BU and UiB, we have U'<U. If U'<U"<U for
some U”e€Ey, then U”€elrr(Ey), U”*B and it follows easily that BU'<BU” <BU, a
contradiction. Hence U'<U. Now suppose that BU'=BD’. Since U’,D’elrr(Ey) and
U’iB, it follows easily that U'=D". But U'<U and D'<D, so, by Lemma 2.4, we have
U =D, a contradiction. Hence BU’s BD’, that is, (AD')®# BD’ and so (4.1) holds for
Delrr(EXy) with arbitrary large cardinal. In particular, we can assume that |D|>|ABC]|.
Suppose that (AD)®=BU, with Uelrr(Ex). Then CAD=(CAD)YD=(CA)P.(AD)®=
CABU. Therefore D2CABU. Since |D|>|CAB|, we have D CAB. Then, since D is
prime, we get D2 U. Hence |U|2|D|>|4BC|2|CA| and so U2 CA. But U2=CAD and
so, since U is prime, U=D. Therefore U=D, a contradiction. Hence ®=1, , and so
T, is E-unitary.

Let M be an inverse monoid. We say that M is bisimple if
Ve, f€cE(M), e2=f9.
We say that M is completely semisimple if
Ve,feE(M), 2 =D =e f.

Theorem 4.2. Let X be a nonempty set. Then
(1) Tg, is bisimple if and only if X is infinite or |X |= 1;
(ii) Tg, is completely semisimple if and only if X is finite and | X|> 1.

Proof. (i) Let A,Be Ay. Since 1z, ,2=1,,59 is equivalent to ExA=EyB, we have
that Ty, is bisimple if and only if Ey is uniform, and Theorem 3.3 yields the result.

(i) Suppose that X is infinite or |X|=1. Let A,BeEyx be such that A>B. We have
that 1z, ,2=1g,2 and 1, ;> 1, , so Tg, is not completely semisimple.

Now suppose that X is finite and |X |>1. Let A,BeEy be such that 15, ,2=1;,,92
and 1g,,<1g,p Since 1, D=1, 9, we have ExA=EyB, and by Theorem 3.3,
|A|=|B|. Since 1;,,<1g,5 we have ASB. Clearly, A<B and |A|=|B| together imply
A=B, so Tg, is completely semisimple and the lemma is proved.
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5. Subsemilattices of E,

The problem of finding necessary and sufficient conditions for a semilattice to be
embeddable in E is still open. In this section, we obtain some results concerning some
particular classes of semilattices.

Since the free inverse monoid of countable rank is itself embeddable in any free
inverse monoid of rank greater than 1 [7], we will fix X ={x,:ne N} throughout this
section.

Theorem 5.1. Let L be a finite semilattice. Then L is embeddable in E.

Proof. Let ¢:L— X be an injective map. We define a map ®:L—E, by a®d=
{1} U(L\L'a)e.

We show that ® is a homomorphism. Let a,be L. Since L'ab=(L'a) n(L'b), we have
(ab)®={1} L (L\L'ab)p={1} U (L\[(L'a) n (L'B)])p={1} U [(L\L'a) U (L\L'b)]g=
[{1} u(L\L'a)¢] L [{1} U(L\L'b)p]=a®. b®. Therefore ® is a homomorphism.

Now suppose that a®=»b®. Then {1} U (L\L'a)p={1} U(L\L'b)¢ and so L'a=L'b.
Hence a=cb for some ceL', that is, a<b. Similarly, b<a, hence a=b. Thus ® is
injective and the theorem is proved.

Theorem 5.2. Let L be a countable UFS. Then L is embeddable in Ex if and only if L
is upper finite.

Proof. Suppose that L is embeddable in Ey. Clearly, subsemilattices of upper finite
semilattices are upper finite. Since Ey is upper finite, it follows that L is upper finite.

Conversely, suppose that L is upper finite.

We prove that the elements of L can be written as a sequence (f,: ne N) such that

[ilfm=>nzm. (5.1)

Suppose that L={e,:neN}. We define a sequence (4,,neN) of subsets of L as
follows. Assuming that A,= ¥, we define 4,={geL:g=e,}\(4ou...U A4,_,) for every
neN. Since L is upper finite, every A, is finite, possibly empty. Moreover, L= J,5 4,.
Now we define the sequence (f,:neN).

Clearly, A, # . Let f, be maximial in A, for the natural partial order of L.

Suppose that f,,..., f, are defined for some keN and suppose that fieA,. If
AN 1>, fi} £, we choose f,.; to be a maximal element of A\{f,...,fi}- If
AN fi} =9, we choose fi,, to be a maximal element of A,,,, where m=
min{leN: A4, ,,#}. Note that {{eN: 4,,,# J} is nonempty, since L is countable and
A, u...U A, is finite.

It is immediate that L={f,:ne N} and (f,:neN) satisfies (5.1).

We define a map ¢: L—E, as follows. Since (5.1) holds, we have f, eIrr(L). Let ke N.
The set B,={ieN: fieIrr(L) and f;2 f,} is clearly finite. Since Irr(L) generates L, there

https://doi.org/10.1017/50013091500018447 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500018447

358 PEDRO V. SILVA

exists some f;elrr(L) such that f;= f, and so B, is nonempty. Since L is a UFS, it is
clear that f,=[];cs, fi- We define fro={1} U {x;:ie B;}.

We prove that ¢ is a homomorphism. Let m,ne N and suppose that f, f,=f.. We
want to show that f,¢. f,0= fie, that is, B,,u B,=B,. Since f,<f, and f,<f,, it
follows that B, u B,< B,. Now suppose that ie B,. Then f,elrr(L) and f;2 fi=f.f.
Since L is a UFS, f; is prime and so we have f;=f,, or f;= f,. Hence ie B,,u B, and so
B, B,, u B,. Thus B,,u B,=B, and ¢ is a homomorphism.

Now suppose that f,.¢=f,¢ for some m,neN. Then B, =B, and so f,=[|ics,. fi=
[lics, fi=f,- Therefore ¢ is injective and the theorem is proved.

We note that these results only yield sufficient conditions for a semilattice to be
embeddable in E,. We can provide a trivial example of a subsemilattice of Ey which is
not a UFS. In fact, let U,V,W,ZeEy be defined by U={1,x,,x,}, V={1,x,,x3},
W={1,x,,x3} and Z={1,x,,x,,x3}. Let N={U, V, W, Z}. Obviously, N is a subsemi-
lattice of Ex. However, N is not a UFS, since Uelrr(N), U= VW, Ui V and U* w.

Theorem 5.3. There exists a countable upper finite semilattice which is not embeddable
in Ey.

Proof. Let M ={(m,n)e N° x N° m2n}, with multiplication described by

v n_ f(mmin{n,n}) fm=m
(m, W\ (', ) = {(max {m,m'},0) if m#nm'.

It follows from the definition that the groupoid M is commutative and every element
of M is idempotent. We note that My={(m,0):me N°} satisfies (M M)u(MMg)S M,.
Let  (m,n),(m',n),(m",n") e M. if m=m=m" then [(m,n)(m',n)](m",n")=
(m,min{n,n’,n"})=(m,n)[(m’,n’)(m",n")]. Otherwise, it follows from the remark on M,
that [(m, n)(m’, n')](m”, n") =(max {m,m’,m"},0)=(m, n)[(m’,n’)(m",n")]. Hence M is associ-
ative and so a semilattice.

Let (m,n),(m',n')e M. It should be clear that (m',n’)=(m,n) implies m'<m. Since
n’' Em’, there exist only finitely many (m',n')e M such that (m', n')=(m,n). Hence M is
upper finite.

Now suppose that ¢:M—E, is an embedding. Let k=|(0,0)¢| Since (k,k)>
(k,k—1)>...>(k,0), we have (k,k)p>...>(k,0)¢. Hence |(k,k)(p|< <|(k,0)(p| and so
|(k,0)¢| —|(k, k)p|= k. Since |AB|<|A|+|B|—1 for every A,BeEy, we have |(k,0)¢|=
(0,0)¢. (k,k)p| <|(0,0)p|+|(k, k)| — 1. Hence [(0,0)¢|=|(k,0)¢|—|(k,k)o|+12k+1, a
contradiction. Therefore no such embedding exists.

6. The Hopf property

An algebra A is said to be hopfian if the only surjective endomorphisms of 4 are the
automorphisms.
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It is known that FIM(X) is hopfian if and only if X is finite [5]. However, Ey shows
different behaviour.

Theorem 6.1. Let X be a nonempty set. Then Ey is not hopfian.

Proof. Let xeX and let
Y={ueRy:x*<,u}.

Let (X v X~ !)*> R, denote the map which associates to every ue(X u X ~!)* the
corresponding reduced word, obtained by successively deleting all factors of the form
xx~ !, xeXuX ' Let AeEy. We define A'=(A4\Y)u[x (4 Y)]i. Obviously, 4’ is
finite and nonempty. We show that A’ is left closed. Let we A’ and let w e R, with
W<, w.

Suppose first that we A\Y. Since A4 is left closed, we have w e A and it is clear that
w¢ Y implies w'¢ Y. Hence w'e A",

Now suppose that we[x~}(4 n Y)]u. Since 1€ A\Y, we can assume that w #1. Then
there exists some ve Ry such that x?ved and w=xv. Since w' <,w and w #1, there
exists v’ € Ry such that v'<;v and w=xv. Since A is left closed, x2v"'e A. Hence
w=xv'=[x"1(x*v)]ie[x (AN Y)]JicA. Thus A’ is left closed.

We define a map ¢:Ey—Ey by Ap=A4", AcEy, and we show that ¢ is a
non-injective surjective homomorphism.

(i) ¢ is not injective.

It follows from the definition that {1,x,x2},¢={1,x}={1,x}¢ hence ¢ is not
injective.

(i1) ¢ is surjective.

Let A€ Ey. Suppose that A~ Y =(F. Then it is immediate that A= A.

Now suppose that AnY#. Then x,x’e A. Let B=(A\Y)u {x*} u[x(4nY)].
Obviously, B is finite and nonempty. We show that B is left closed. Let we B and let
w eRy be such that w'<,w. We have seen before that A\Y is left closed, so we can
assume that w¢ A\ Y. Suppose that w=x2. Since AN Y #J and A is left closed, we have
x?€ 4 and so w' € A\ Y = B. Now suppose that w=x3u for some ue Ry such that x2ue A.
We can assume that w'=x>u’ and «’ <, u for some u’e Ry. Since x>’ <,x*u and A is left
closed, we have x*u’ € A and so w =x3u'e[x(4 n Y)]<B. Thus B is left closed and so
Be E;. It is immediate that Bo=A4 and so ¢ is surjective.

(iii) @ is a homomorphism.

Let A,BeEy. Then (AB)o=[(AuB\YJU(x"![(AuB)NnY])i=(4A\Y)u(B\Y)u
xMAnNiv[x Y (Bn Y)]i=(4¢)(Bp). Thus ¢ is a homomorphism and the
theorem is proved.
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