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ON THE SEMILATTICE OF IDEMPOTENTS OF A FREE
INVERSE MONOID
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Some new concepts are introduced, in particular that of a unique factorization semilattice. Necessary and
sufficient conditions are given for two principal ideals of the semilattice of idempotents of a free inverse
monoid F1M(X) to be isomorphic and some properties of the Munn semigroup of E[_F1M(X)} are obtained.
Some results on the embedding of semilattices in E[FIM(X)~] are also obtained.
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1. Preliminaries

The general terminology and notation are those of Petrich [6].
Let S be a semigroup. We say that S is a semilattice if the following conditions hold:

Ve,feS,ef=fe.

Let £ be a semilattice. The natural partial order on E is defined by

Suppose that e,feE are such that e< f and the condition

holds for every geE. Then we say that / covers e and we denote this fact by e-</. For
every feE, we define Co\(f) = {eeE:e<f}.

For every eeE, we say that Ee = {fe:feE} is the principal ideal of E generated by e.
Now let S be an inverse semigroup. The subset of all idempotents of S is a semilattice,

usually denoted by E(S), and so E(S) is said to be the semilattice of idempotents of S.
Let X be a nonempty set. We define X~l = { x " ' : x e l } to be a set such that
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Moreover, we define (x~1)~1=x for every xeX. Now let ( X u X " 1 ) ' denote the free
monoid on XKJX"1 [2, §9.1], and let

(J
X<jX-

We define a partial order g , on Rx by

A subset A of Rx is said to be left closed if

VveAVueRx, M^/U

Finally, let Ex denote the set of all finite nonempty left closed subsets of Rx, with the
operation described by

AB = AKJB,

and let FIM(X) denote the free inverse monoid on X [6, §VIII.l.].

Lemma 1.1 [5; 8]. Let X be a nonempty set. Then

For the remainder of this paper, we assume that EX = E[F1M(X)~]. Let veRx. We
define

v = {u e Rx: u ^iv}.

It is immediate that veEx for every veRx. It follows easily that, for every A,BeEx,

A^BoA^B, (1.1)

and for every A e Ex,

A=\\u. (1.2)
usA

2. Unique factorization semilattices

In this section we introduce some concepts in semilattice theory and we relate them
toEx.
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Let £ be a semilattice and let eeE. We say that e is irreducible if, for every f,geE,

e=fg=>e=f or e=g.

The set of all irreducibles of E is denoted by Irr(£).
We say that e is prime if, for every f,geE,

or

Lemma 2.1. Let E be a semilattice and let eeE. Then

e prime => e irreducible.

Proof. Suppose that e is prime and suppose that e=fg for some f,geE. Then e^f
and e^g. Further, e^fg and so, since e is prime, we have e^f or e^g. Hence e=f or
e=g. Thus e is irreducible.

The semilattice E is said to be a unique factorization semilattice (UFS) if

(i) E is generated by Irr(£);

(ii) every irreducible is prime.

All these concepts are inspired by well-known concepts for integral domains [1, §5.3].
We need some results on UFSs.

Lemma 2.2. Let E denote a UFS. Let ei,...,en,fl,...,fmelTT(E) be such that
el...en = fl...fm. Then, for every ie{1,...,n}, there exists je{l,...,m} such that eK^/}.

Proof. Let ie{l,...,n}. Clearly, e>.f^...fm. Since £ is a UFS, e, is prime and an
elementary induction yields et^fj for some je{l,...,m}.

Lemma 2.3. Let E denote a VFS and let eeE. Then

(i) Irr(£e) = e.Irr(£);
(ii) Ee is a UFS.

Proof, (i) Let /elrr(£e). Since £ is a UFS, there exist £,,...,£„ elrr(£) such that
f=ii-Sn- Let ' De minimal among the nonempty subsets of {l,...,n} with respect to
f=eY\iei8i- Suppose that | / |>1. Since egt>f for every iel and f = Y\>eie8>' w e 0 D t a m

/^Irr(£e), a contradiction. Hence |/| = 1 and so /ee.Irr(£) .
Conversely, let gelrr(£) and suppose that eg=ff for some ff'eEe. We have

e^f^eg and e^f'^eg. But g^ff and since £ is a UFS, g is prime, so g^f or
g^f. Without loss of generality, we can assume that g^f. Hence eg^f and so eg=f.
Thus egelrr(£e).

(ii) Let feEe. Since £ is a UFS, there exist gl,...,gneln(E) such that f=gi-..gn.
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Therefore f = ef=eg1...gn = (egl)...{egn). By (i), egteIrr(£e) for every ie{1 n}. Thus
Ee is generated by Irr(£e).

Now let heln(Ee) and let a,beEe. Suppose that h^ab. By (i), we have h = eg for
some gelrr(E). Hence g^ab and so, since g is prime, g^.a or g^b. We can assume that
g ^ a. Since e ̂  a, we have h = eg^a. Thus /i is prime and the lemma is proved.

Lemma 2.4. Let E be a UFS. Let e,/,gelrr(£) be such that f>e and g>e. Then

f=g-

Proof. Since f£.e and g^e, we have fg^e. Suppose that fg=e. Since eelrr(£), we
must have e=f or e=g, a contradiction. Hence fg>e. Now f^fg>e and so, since
/ > e , we have f=fg. Therefore f^g and so f=g.

We say that a semilattice £ is upper finite if the sets {/ e £: / ^ e} are finite for all
ee£.

The next lemmas state some properties of Ex.

Lemma 2.5. Let X be a nonempty set. Then

(i) lrr(Ex) = {w:weRx};

(ii) Ex is a UFS;

(iii) Ex is upper finite.

Proof. Let -4elrr(£x). By (1.2), we have /^Huex"- Since /lelrr(£x), we have A = u
for some ueA. Therefore Irr(£^)s{w: weRx}.

Now suppose that weRx. We prove that w is prime. Suppose that w^,AB for some
A,BeEx. By (1.1), we have wew^AB = AvB. We can assume that weA. But A is left
closed and so w £ l Thus vv^A, by (1.1), and so w is prime.

By Lemma 2.1, this implies w irreducible and so (i) is proved. Moreover, it follows
that every irreducible of Ex is prime. By (i) and (1.2), ln(Ex) generates Ex and so Ex is
a UFS.

It follows easily from (1.1) that Ex is upper finite.

Lemma 2.6. Let X be a nonempty set. Let AeEx and let Be[ln(ExA)J\{A}. Then
there exists a unique Ce\xx(ExA) such that B<C.

Proof. By Lemma 2.5(ii), Ex is a UFS and so, by Lemmas 2.3 and 2.5(i), we have
B = Aii for some ueRx, Since B^A, we have u$A. In particular, w#l and so we can
define veRx to be the maximal proper prefix of u. Let C = Av. By Lemmas 2.3 and 2.5,
CeIrr(£Xy4). Since |C| = |B| — 1, we have B<C. The uniqueness of C follows from
Lemma 2.4, replacing £ by EXA and e by B.
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3. Principal ideals

In this section we shall obtain necessary and sufficient conditions for two principal
ideals of Ex to be isomorphic.

Lemma 3.1. Let X be a nonempty set and let AeEx. Then

\Cov(A)\-\\X\ if X is infinite.

Proof. We assume that X is finite, the other case being obvious. We use induction
on \A\.

Suppose that |̂ 4| = 1. Then A = {1} and so Cov(A) = {{l,x}:xeXuZ"1}. Hence
|Cou(/4)| = 2|X| and the lemma holds.

Now suppose that the lemma holds for every BeEx such that |B|^n, with neN. Let
AeEx be such that |/4| = n + l. Let veA have maximal length. Since |/4|>1, we have
|u|>l. Let yeX<jX~l denote the last letter of v. Let A'eEx and suppose that
A'eCov(A). Since |/T\/4| = 1, we can define u(A') to be the single element of A'\A. We
define r = {A'eCov(A):v^tu(A')} and A = [Coi>(/l)]\r.

Let A'el". Since \v\ is maximal in A and |.4'\i4| = 1, it follows that u(A') = vx for some
xeX KJ X~l. Since y is the last letter of v and u(A')eRx, we have x^y~[ and so
r = {/4u{yx}:xG(AruX-1)\{y"1}}. Hence |F| = 2

Let A0 = A\{v}. Since \v\ is maximal in A and
X\-L
v >1, we have AoeEx. We define a

map cp: A-* Cov(A0) as follows. Suppose that A'eA. Let A'0 = A'\{v}. Since v^tu(A'), it
follows that v must be maximal in A' for ^, . Hence A'oeEx. It is clear that
A'o e Cov(Ao) and so we can define A'(p = A'o. Moreover, q> is injective and [Cov{A0)~]\
(Acp) = {A}. Hence |A| = |Cou(^40)| — 1- Using the induction hypothesis, we obtain
| | | | ( | | - l = 2 i i ( p r | - l ) + l. Thus |i4| = | r | + |A| = 2 | ^ | - | | )

= 2|/l|(|A:|-l) + 2 and the result follows by induction.

We must introduce some new concepts and notation.
Let AeEx and let m = \A\. For all keN°, we define IrTm+k(ExA) = {Belrr(ExA):\B\ =

m + k}. Surely, lrT(ExA) = [jk^olnm+k(ExA). Moreover, lrrm{ExA) = {A} and
lTTm+l(ExA) = Cov(A). For every Belxx{ExA), we define [_B']A = {Ce\rr{ExA):C<B}.
Suppose that B^A. By Lemmas 2.3 and 2.5, we have B = Au for some ueRx\A. It
follows easily that [Bi]A = {Av:veRx and v = ux for some x e X u X " 1 } . Thus

P | - 1 if X is finite
\\X\ if X is infinite.

I = P | |
l \\X\ if X is infinite V ;

Now we obtain a criterion for isomorphism.

Lemma 3.2. Let X be a nonempty set and let A,BeEx. Then
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ExA^ExBo\Cov(A)\ = \C

Proof. Suppose that <b:ExA-*ExB is an isomorphism. We certainly have A<S> = B.
Let A'eCov(A). Since <1> is injective, we have A'<b<B. Suppose that A'<b<B'<B for
some B'eExB. Let A" = B'<S>~1. It follows easily that A'<A"<A, in contradiction with
A'eCov(A). Hence no such B' exists and so A'<&e Cov(B). Thus [Cov(Ay]Q>^Cov(B).
Similarly, we obtain [Cou(B)]0)"1£Cot)(/4). Hence [Cov{A)~]<b = Cov(B) and so |Cot>(/4)|
= \Cov(B)\.

Conversely, suppose that |Cou(/4)| = |Coy(B)|. Suppose that m = |/l | and n = |Bl- For
every keN°, we define a bijection (pk:lrrm+k{ExA) ->lnn+k(ExB) as follows.

Consider fc = 0. Since lrrm(ExA) = {A} and Irrn(ExB) = {B}, we define Aq>o = B.
Now suppose that q>k is defined for some fcef^0. Let Celrrm+jk(£jf.4). Suppose first

that fc = 0. Then C = A and C<pk = B and so |[C] J = |Cov(/4)| = |Coi>(B)| = |[C<pt],,|.
Suppose now that fc>0. By (3.1), we obtain |[C]/4| = |[C<plk]B| as well. Whatever the
case, we can define a bijection <Ac:[C]^^[C(pk]B for every CeIrrm+k(ExA). Since
^Tm+k+l(ExA) = \JCeirTm+kiExA)lC]A and Irrn + k + 1(£xB) = U D e I r r n + t ( £ x B ) [D] B , there is a
unique map (pk + l:Irrm+k+l(ExA)->lrtn+k+l(ExB) such that, for every
Ce\rxm+k{ExA),(pk+l\{C]A = \jjc. Since q>k is bijective and every tyc is bijective, it follows
that cpk + 1 is bijective as well. Next, we define <P:ITT(EXA)-*1TV(EXB) to be the unique
bijection such that <p\u,m+k(EXA) = <Pk f° r every keN°.

We prove that, for every C,DelTr(ExA),

C<DoC(p<Dq>. (3.2)

Suppose that C<D. Then Ce[D~]A and so Cq> = C\jiDe[_D(p]B. Hence Cq><Dq>.
Conversely, suppose that C(p-<D(p. It is immediate that C#/4. By Lemma 2.6, there

exists a unique C'eIrr(ExA) such that C-<C. It follows from above that C(p-<C'q>. By
Lemma 2.4, with E replaced by EXB and e replaced by Ccp, we obtain Dq> = C'<p. Since <p
is bijective, it follows that D = C and so CXD. Thus (3.2) holds.

Since Ex is upper finite, it follows easily from (3.2) that, for every C, D e lrr(ExA),

C<^DoC(p^Dq>. (3.3)

Suppose now that C1...Cr=D1...Ds, with Cl,...,Cr,Dl,...,DseIrr(ExA). Let
ie{l, . . . ,r}. By Lemmas 2.2 and 2.3(ii), there exists ;e{l,...,s} such that C^Dj. By
(3.3), we have CfCp^Djcp and so C1(p...Crq>^:Dl(p...Ds(p. Similarly, we obtain
D1(p...Ds<p^.C1(p...Cr(p and so C1q>...Cr(p = D1(p...Ds(p. A similar argument shows
that C1cp...Cr(p = D1q>...Ds(p implies C1...Cr = D1 ...Ds and so we can define an
injecive map <1>: EXA -»EXB as follows. Let CeExA. By Lemma 2.3, we can write
C = Cl...Cr for some C1, . . . ,CreIrr(£J f /4). Then we define CO = Cj(p...Cr(p.

We show that «5 is an isomorphism.
Let CeExB. By Lemma 2.3(ii), there exist C1, . . . ,CreIrr(£ ;rB) such that C = C1...Cr.

Since <p is bijective, there exist D1,...,Z)reIrr(£;r/4) such that C, = £>,</) for every
i e { l , . . . , r } . Thus C = C1...Cr = D1(p...Dr(p=(D1...Dr)Q> and so <D is surjective.
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Let C,DeExA. Suppose that C = Cx...Cr and D=DY...D, for some
Cu...,Cr,Du...,DselTT(ExA). Then CO>.D(D=(C1 . . . C ^ . f D , ...Z>s)O = Cl(p...
Crq>Dl(p...Ds(p=(C1...CrD1...Ds)Q>=(CD)<P. Thus <D is a homomorphism and the
lemma is proved.

We note that every isomorphism <tr.ExA-*ExB must induce bijections between
Inm+k(ExA) and lTTn+k(ExB) and satisfy (3.2).

Now Lemmas 3.1 and 3.2 yield:

Theorem 3.3. Let X be a nonempty set and let A,BeEx.
(i) IfX is infinite or \X\ = l, then EXA^EXB.
(ii) IfX is finite and \X\>1, then

ExA^ExBo\A\ = \B\.

A semilattice in which all the principal ideals are isomorphic is said to be uniform. It
follows from Theorem 3.3 that, if X is infinite or |X| = 1, then Ex is uniform.

4. The Munn semigroup

We can use the results obtained in Section 3 to get information about the Munn
semigroup [4] of the semillatice Ex.

Let £ be a semilattice and let U = {(e,f)eEx E.Ee^Ef}. For every (e,f)eU, let Tef

denote the set of all isomorphisms from Ee onto Ef. The Munn semigroup of E is
defined to be TE={J(ef)eU Te f, with the usual composition of relations [3, §V.4]. This is
an inverse semigroup and E(TE) = {lEe:eeE} is isomorphic to E. It follows easily from
the definition that, for every e,feE, \Ee3i = \Et3i if and only if (e,/)e U.

Theorem 4.1. Let X be a nonempty set. Then TEx is E-unitary.

Proof. Let A,B,CeEx and let <&:EXA-*EXB be an isomorphism. Suppose that
\ExC.<t>eE{TEx). We want to prove that <t>eE{TEx). We have that lExC® is the
restriction of <1> to the semilattice (EXC) n (EXA), that is, EXCA. Therefore we have
®\EXCA = 1EXCA

 afld w e m u s t show that O= lExA.
Suppose that <I)#l£x^. We show that

3D e 1TT(EX) such that D £ A and (AD)<J> # BD. (4.1)

Assume first that A = B. Since O#lE x X , there exists UeExA such that U<t>^U. Since
A<S> = B = A, we have U^A and so we can write U = AD1...Dn for some DfeIrr(£x),
with D,^/4,ie{l,...,«}. It follows that £>/!>#/), for some i and so (4.1) holds.

Now assume that A^B. Since Cov(A)^ITT(EXA), and by Lemma 2.3(i), there exist
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{Di.ie /}£lrr(£x) such that Cov(A) = {ADi.iel). Suppose that (ADi)<b = BDi for every
iel. Since [Cov(A)~]<b = Cov(B), we have Cov(B) = {BDt:iel}.

Suppose that A ^ B . Let ue A\B. Let «' denote the maximum prefix_of u contained in
B and suppose that u = u'xu", withjce.Yu.Y~1 and u"eRx. Then BU'XJBCOV(B) and so
Bu'x = BD, for some ie/. Since M'X, D,-e Irr(£y), we show easily that u'x = £>f. Jri fact,
D^Bu'x jind D,-^B together imply D^u'x. Similarly, u'x^Dt and so u'x = Di.
However, u'x ̂  A, a contradiction. Thus /I £ B. Similarly, we obtain B £ A and so A = B,
a contradiction. Therefore (/H>,)<1>#BD, for some iel and so (4.1) holds.

Now suppose that Deln(Ex) is such that D^A and (/iZ))O#BD. Let D'elrr(£x) be
such that D'<D. By Lemma 2.3(i), /tDeIrr(£x/l). Hence (AD)<beln(ExB) and so, by
Lemma 2.3(i), (AD)<S> = BU for some UelTr(Ex). Since £>^/4, we have U^B and also
D'^/l . Hence AD'<AD and so (XD')O<(y4D)a). Similarly, (AD')® = BU' for some
f/'elrr(£x). Since U is prime, BU'<BU and 1 / | B , we have [/'<L/. If U'<U"<U for
some l /"e£x , then C/"eIrr(£x), U"%B and it follows easily that BU'<BU"<BU, a
contradiction. Hence U'<U. Now suppose that BU' = BD'. Since [/',D'eIrr(£x) and
t / ' ^B , it follows easily that U' = D'. But U'<U and £>'-<D, so, by Lemma 2.4, we have
U = D, a contradiction. Hence BU'^BD', that is, {AD')<t>^BD' and so (4.1) holds for
DeIrr(£Xx) with arbitrary large cardinal. In particular, we can assume that |D|>|XBC|.
Suppose that (AD)® = BU, with C/eIrr(£x). Then CAD=(CAD)®=(CA)Q>.(AD)Q>=
CABU. Therefore D^CABU. Since |£>|>|C4B|, we have D%CAB. Then, since D is
prime, we get D^U. Hence |C/|^|D|>|/4BC|^|C^| and so U^CA. But U^CAD and
so, since U is prime, U^D. Therefore U = D, a contradiction. Hence O=l £ x X and so
7ix is E-unitary.

Let M be an inverse monoid. We say that M is bisimple if

Ve,/e£(M), e2=f®.

We say that M is completely semisimple if

Ve,/e£(M), e0=/0 =>

Theorem 4.2. Let X be a nonempty set. Then
(i) T^x is bisimple if and only if X is infinite or \X\ = 1;

(ii) ~ix is completely semisimple if and only if X is finite and \X\ > 1.

Proof, (i) Let /I, Be/I*. Since 1EXA@ = 1EXB@ is equivalent to EXA^EXB, we have
that T£x is bisimple if and only if Ex is uniform, and Theorem 3.3 yields the result.

(ii) Suppose that X is infinite or |-Y| = 1. Let A, BeEx be such that A>B. We have
that \ExA2> = \ExB2! and l£ x^> l£xB, so TEx is not completely semisimple.

Now suppose that X is finite and |-Y|>1- Let A,BeEx be such that \ExA@ = \ExB2l
and lExA^^EXB- Since lExA@ = lExB&>, we have EXA^EXB, and by Theorem 3.3,
|X| = |B|. Since lExA^lExB, we have A^B. Clearly, A^B and |/4| = |B| together imply
A = B, so 7£X is completely semisimple and the lemma is proved.
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5. Subsemilattices of Ex

The problem of Finding necessary and sufficient conditions for a semilattice to be
embeddable in Ex is still open. In this section, we obtain some results concerning some
particular classes of semilattices.

Since the free inverse monoid of countable rank is itself embeddable in any free
inverse monoid of rank greater than 1 [7], we will fix AT = {xn:nel^} throughout this
section.

Theorem 5.1. Let L be a finite semilattice. Then L is embeddable in Ex.

Proof. Let <p:L-*X be an injective map. We define a map ®:L->EX by a<D =
1

We show that $ is a homomorphism. Let a,beL. Since Lxab=(L1a)n(L1b), we have
(afc)O = {l} u (L\L1ab)q> = {l) u (L\i(Lla) n (Lib)])<p = {l} u> [(L^a) u (L\L1b)]<p =
[{1} u(L\LXa)<p] u [{1} v(L\Lib)(p~} = aQ>.b(l>. Therefore <D is a homomorphism.

Now suppose that a<t> = M>. Then {l}u(L\Lla)(p = {l}u{L\L1b)(p and so L1a = L1b.
Hence a = cb for some ceL1, that is, a^b. Similarly, b^a, hence a = b. Thus O is
injective and the theorem is proved.

Theorem 5.2. Let L be a countable UFS. Then L is embeddable in Ex if and only if L
is upper finite.

Proof. Suppose that L is embeddable in Ex. Clearly, subsemilattices of upper finite
semilattices are upper finite. Since Ex is upper finite, it follows that L is upper finite.

Conversely, suppose that L is upper finite.
We prove that the elements of L can be written as a sequence (fn:ne N) such that

fn^fm=>n^m. (5.1)

Suppose that L = {en:neN}. We define a sequence (X,:neW) of subsets of L as
follows. Assuming that Ao = 0, we define An = {gsL:g~^.en}\{A0\j ...^> An-i) for every
neN. Since L is upper finite, every An is finite, possibly empty. Moreover, L = \Jn^lAn.
Now we define the sequence (/„: n e N).

Clearly, A^ j=0. Let / , be maximial in Al for the natural partial order of L.
Suppose that fu...,fk are defined for some keN and suppose that fkeAn. If

An\{fi,••-,/*}#0, we choose fk+1 to be a maximal element of ^4n\{/i , . . . , / t}. If
An\{fu••-,/*} = 0 , we choose fk+1 to be a maximal element of An+m, where m =
min{/ef^:An + l /0}. Note that j l eN: / l n + ,#0} is nonempty, since L is countable and
At u . . . u / l n is finite.

It is immediate that L = {fn:neN} and (/n:neN) satisfies (5.1).
We define a map (p:L-*Ex as follows. Since (5.1) holds, we have / teIrr(L). Let keN.

The set Bk = {ieN:/jeIrr(L) and / f ^ / k } is clearly finite. Since Irr(L) generates L, there
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exists some yjelrr(L) such that fi^fk and so Bk is nonempty. Since L is a UFS, it is
clear that fk = X\leBkfi- We define fkq> = {l} u {*,-: ieBk}.

We prove that <p is a homomorphism. Let TO, n e F*J and suppose that fmfn = / t . We
want to show that fm(p.fn(p = fkcp, that is, BmuBn = Bk. Since / ^ / m and fk^fn, it
follows that BmKj Bn^Bk. Now suppose that ieBk. Then /j£lrr(L) and fi^fk = fmfn.
Since L is a UFS, /j is prime and so we have fi^fm or / f ^ / n . Hence ieBmuBn and so
Bk^Bm u Bn. Thus Bm u Bn = Bk and <p is a homomorphism.

Now suppose that fm(p = fn<p for some m,neN. Then Bm = Bn and so /m = ]~I>"eBm/ =

IlieBn fi — fir Therefore (p is injective and the theorem is proved.

We note that these results only yield sufficient conditions for a semilattice to be
embeddable in Ex. We can provide a trivial example of a subsemilattice of Ex which is
not a UFS. In fact, let U, V, W,ZeEx be defined by U = {l,xl,x2}, V={l,xux3},
W={l,x2,x3} and Z = {l,xux2,x3}. Let N = {U, V, W,Z). Obviously, N is a subsemi-
lattice of Ex. However, N is not a UFS, since Uelrr(N), U^VW, U%V and U% W.

Theorem 5.3. There exists a countable upper finite semilattice which is not embeddable
Ex-

Proof. Let M = {(m,n)eN° xN°:m^n}, with multiplication described by

in Ex.

It follows from the definition that the groupoid M is commutative and every element
of M is idempotent. We note that Mo = {(m,0):meN°} satisfies (MOM)\J(MMO)^MO.
Let (m,n),{m',ri),(m",n")eM. if m = m' = m", then [(m,n)(wi',n')](m",n") =
(m,min{«,n',n"}) = (m,n)[(m',«')(m",n")]. Otherwise, it follows from the remark on Mo

that [(m,«)(m',«')](m",w") = (max{m,m',m"},O)=(m,«)[(m',«')('n",n")]. Hence M is associ-
ative and so a semilattice.

Let (m,ri),{m',n')eM. It should be clear that (m',ri)^(m,ri) implies m'^m. Since
n'^m', there exist only finitely many (m',n')eM such that (m',n')^(m,n). Hence M is
upper finite.

Now suppose that <p:M-*Ex is an embedding. Let fc=|(0,0)(p|. Since (k,k)>
(/c,fc —1)> ... >(/c,0), we have {k,k)q» ...>(k,O)q>. Hence \{k,k)q>\< ... <|(fc,0)<p| and so
\{k,O)(p\-\(k,k)(p\^k. Since |/4B|gjyl|-l-|B|-l for every A,BeEx, we have |(fe,0)(p| =
\(O,O)q>.(k,k)q>\£\(O,O)q>\ + \(k,k)q>\-l. Hence |(O,O)(p|̂ |(fc,O)<p| -|(*,Ac)(p|+ 1 Zk+ 1, a
contradiction. Therefore no such embedding exists.

6. The Hopf property

An algebra A is said to be hopfian if the only surjective endomorphisms of A are the
automorphisms.
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It is known that FIM(X) is hopfian if and only if X is finite [5]. However, Ex shows
different behaviour.

Theorem 6.1. Let X be a nonempty set. Then Ex is not hopfian.

Proof. Let xeX and let

Y={ueRx:x
2^,u}.

Let V.(X^JX~1)*-^RX denote the map which associates to every ue(XvX~1)* the
corresponding reduced word, obtained by successively deleting all factors of the form
xx~\ xeXuX-1. Let AeEx. We define A'^A^ulx'^AnYYli. Obviously, A' is
finite and nonempty. We show that A' is left closed. Let we A' and let w'eRx with
w'<tw.

Suppose first that weA\Y. Since A is left closed, we have We A and it is clear that
w$Y implies w'$ Y. Hence w'e A'.

Now suppose that we[x~1(v4n Y)]j. Since leA\Y, we can assume that w'#l . Then
there exists some veRx such that x2veA and w = xv. Since w'<,w and w'#l , there
exists v'eRx such that v'<,v and w'=xv'. Since A is left closed, x2v'eA. Hence
w' = xv' = [x-1(x2v')']ie[.x-1(A n Y)~\i^A'. Thus A' is left closed.

We define a map <p:Ex-*Ex by Aq> = A', AeEx, and we show that q> is a
non-injective surjective homomorphism.

(i) <p is not injective.

It follows from the definition that {I,x,x2},(p = {l,x} = {l,x}q> hence <p is not
injective.

(ii) <p is surjective.

Let AeEx. Suppose that AnY = 0. Then it is immediate that Aq> = A.
Now suppose that / 4 n 7 # 0 . Then x,x2eA. Let B=(X\7)u {x2} u [_x(A n 7)].

Obviously, B is finite and nonempty. We show that B is left closed. Let weB and let
w'eRx be such that w'<,w. We have seen before that A\Y is left closed, so we can
assume that w$A\Y. Suppose that w = x2. Since A n Y#0 and A is left closed, we have
x2eA and so w'e/4\YsB. Now suppose that w = x3u for some ueRx such that x2ueA.
We can assume that w' = x3u' and u'<tu for some ii'e/?x. Since x2u'<lx

2u and >4 is left
closed, we have x2u'eA and so W = xiu'e[x(A ny ) ]g f l . Thus B is left closed and so
BeEx. It is immediate that Bq> = A and so <p is surjective.

(iii) (f> is a homomorphism.

Let A,BeEx. Then (AB)(p = l(AuB)\Y}KJ(X-1[{AKJB)nYJ)i={A\Y)u(B\Y)u
[x"'(i4ny)]iu[x"'(8ny)]i=(i4(ji))(%). Thus <p is a homomorphism and the
theorem is proved.
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