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Abstract

In this article we show the asymptotics of distribution and moments of the size Xn of the
minimal clade of a randomly chosen individual in a Bolthausen–Sznitman n-coalescent
for n → ∞. The Bolthausen–Sznitman n-coalescent is a Markov process taking states
in the set of partitions of {1, . . . , n}, where 1, . . . , n are referred to as individuals. The
minimal clade of an individual is the equivalence class the individual is in at the time of the
first coalescence event this individual participates in. We also provide exact formulae for
the distribution of Xn. The main tool used is the connection of the Bolthausen–Sznitman
n-coalescent with random recursive trees introduced by Goldschmidt and Martin (2005).
With it, we show that Xn − 1 is distributed as the size of a uniformly chosen table in a
standard Chinese restaurant process with n − 1 customers.
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1. Introduction

The Bolthausen–Sznitman n-coalescent is a time-homogeneous Markov process (�
(n)
t )t≥0

whose state space is the set of partitions of {1, . . . , n}. The only possible transitions in this
process are those in which several blocks of a partition are merged (or coalesced) into one new
block. Only one new block can be formed in a transition (no simultaneous mergers). Each
k-tuple of b present blocks is merged to a new block at rate (k − 2)! (b − k)!/(b − 1)!. The
Bolthausen–Sznitman n-coalescent is a member of the �-n-coalescent family (which were
introduced independently by Sagitov [24] and Pitman [22]). A �-n-coalescent is again a time-
homogeneous, continuous-time Markov process whose state space is the set of partitions of
{1, . . . , n}. The possible transitions are again mergers of multiple blocks into a new block.
Each merger of k blocks among b happens with rate∫

[0,1]
xk−2(1 − x)n−k�(dx)

for a finite measure � on [0, 1]. Note that the Bolthausen–Sznitman coalescent has � = U[0,1],
the uniform distribution on [0, 1]. Each �-n-coalescent can be represented as a random tree
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with n leaves {1, . . . , n} and random branch lengths by representing each merger as an internal
node in the tree (the branch lengths are given by the waiting times for the mergers, time is
measured starting from the leaves). Also, note that a �-n-coalescent at time t forms a random
exchangeable partition of {1, . . . , n}.

The Bolthausen–Sznitman n-coalescent was introduced by Bolthausen and Sznitman in 1998
(see [5]). It has connections to population genetics and physics. In mathematical physics, it
appears in the context of spin glasses (see [5] and [6]). It also seems to be a suitable model
for the genealogy of a sample of n alleles/genes/haplotypes in several models for selection in
population genetics (see [2], [8], [9], [12], and [21]; see also the survey [7]). Note that this is in
contrast to the standard model for a genealogical tree of a sample of n alleles/genes/haplotypes
which is Kingman’s n-coalescent (� = δ0, only two blocks merge at a time, introduced in
[20]). Also, note that, due to the interpretation of the Bolthausen–Sznitman n-coalescent as a
genealogical tree, we refer to {1, . . . , n} as individuals.

Here, we focus on the Bolthausen–Sznitman n-coalescent as a model for a genealogical tree
which depicts the ancestry of n alleles sampled at a genetic locus. Since the genealogical tree
is often endowed with a mutation structure which is interpreted under the infinitely-many sites
model, we assume a locus consisting of many nucleotide sites, for example, a gene. Different
alleles can thus also be seen as different haplotypes spanning over the nucleotide sites of this
locus. One piece of important information coded in the genealogy is the relatedness of an allele
randomly chosen from the sample to the rest of the sample. There are two functionals/statistics
of the genealogical tree which transport complementary information about this relatedness.
The first functional is the length En of an external branch chosen at random from the n external
branches associated with the leaves {1, . . . , n} of the tree, introduced by Fu and Li [15]. Here
En gives the time that the chosen allele has to evolve independently of the rest of the sample
(e.g. by mutation). This gives a measure of the genetic uniqueness of this allele relative to
the rest of the sample. The second functional is the size Xn of the minimal clade containing
the randomly chosen allele, introduced by Blum and François [4]. The minimal clade can be
defined in different, yet equivalent ways. The minimal clade is

• the equivalence class that contains the (randomly chosen) allele i ∈ {1, . . . , n} at the first
time i is merged,

• all leaves of the subtree rooted at the most recent ancestor of allele i,

• all descendants of the most recent ancestor of allele i.

The minimal clade can also be seen as the smallest family containing i. The size of the minimal
clade gives the complementary information of how many individuals share the genealogy with
allele i ‘after’ time En (note that since we measure time from the leaves to the root, ‘after’ En

actually means further back in time).
The external branch length has already been well analysed for several �-n-coalescents in

the literature. Its distribution follows a recursion and its asymptotics for a sample size n → ∞
are known for various �-n-coalescents (see [4], [10], [13], [14], and [16]). For the minimal
clade size, though, only results for Kingman’s n-coalescent (� = δ0, only two blocks merge
at a time) are known (including asymptotics for n → ∞; see [4]).

The purpose of this paper is to analyse the distribution of the minimal clade size Xn in the case
of the Bolthausen–Sznitman n-coalescent and its asymptotics for a sample size n → ∞. We
will exploit the construction of the Bolthausen–Sznitman n-coalescent using a random recursive
tree introduced by Goldschmidt and Martin [17] to prove our results. First, we observe that
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it follows from this construction that the process describing the set of relatives of a randomly
chosen individual in the Bolthausen–Sznitman n-coalescent process (which is its equivalence
class without the individual itself) is equal in law to the time-reversed process describing the
set of nonrelatives of the chosen individual (all individuals in different equivalence classes to
the chosen individual). This shows that the minimal clade size is actually distributed as the
sum Mn of the sizes of all blocks not containing 1 which participate in the last collision in the
n-coalescent. Convergence in distribution of properly scaled Mn for n → ∞ has already been
shown already by Goldschmidt and Martin [17] and, thus, the same asymptotic behavior holds
for Xn, namely, (log n)−1 log Xn converges in distribution to the uniform distribution on [0,1].

Note that, owing to the connection between the random recursive tree and the standard
Chinese Restaurant process, we observe that Xn − 1 and Mn are distributed as the size of a
uniformly chosen table (not chosen by a size-biased pick!) in the Chinese restaurant process
(again for Mn in accordance to [17]). This allows us to give several formulae for the exact
distribution of Xn. Using these, we show that, for k ∈ N, (log n/nk)E(Xk

n) → 1/k for n → ∞,
which gives complementary information to the weak convergence result.

2. Minimal clade size in the Bolthausen–Sznitman n-coalescent

Set [n] := {1, . . . , n} and [n]0 := {0, . . . , n}. For a partition η of [n], let Ci(η) denote the
equivalence class of i ∈ [n] and let |Ci(η)| be its size. Let (�

(n)
t )t≥0 be a �-n-coalescent.

Since we want to look at the minimal clade size of a randomly chosen allele in the sample
whose genealogy is given by (�

(n)
t )t≥0, define I as a uniform pick from [n] independent of

the n-coalescent. Now, first define the length of a randomly chosen external branch (associated
with the randomly chosen I ∈ [n]) by

En := inf{t ≥ 0, CI (�
(n)
t ) �= {I }}.

Now we define the size of the minimal clade of the randomly chosen allele I as

Xn := |CI (�
(n)
En

)|. (1)

Note that, owing to exchangeability, we do not change the distributions of En and Xn if we
assume I = 1. Also, note that, owing to the interpretation of an n-coalescent as a genealogical
tree, we refer to {1, . . . , n} as individuals.

From now on, we will abbreviate the size of the minimal clade of I = 1 with the minimal
clade size.

The minimal clade of individual 1 is the size of the equivalence class of 1 at the first
coalescence event that the individual participates in. Goldschmidt and Martin [17] analysed the
behavior of the total mass Mn of the equivalence classes not containing 1 at the last coalescence
event in the Bolthausen–Sznitman n-coalescent (see [17, Theorem 3.1]). Note that Mn can
also be written as n − |C1(�

(n)
τn−)|, where τn is the waiting time for the last coalescence event.

Both Xn and Mn are functionals of the equivalence class of 1 in the Bolthausen–Sznitman
n-coalescent at different times. Thus, it is interesting how the equivalence class of 1 changes
over time. It will only grow by merging with other equivalence classes at coalescence times,
but not necessarily at all coalescence times. We define S

(n)
i as the equivalence class of 1 after

the ith merging event which 1 participates in. What are the properties of (S
(n)
i )i∈[κn]0 , where κn

is the number of merging events 1 participates in? The results from [17] answer this question.
There, the authors showed a construction of the Bolthausen–Sznitman n-coalescent by applying
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a cutting procedure to a random recursive tree and used it, among answering other questions,
to analyse Mn.

We will show in detail that this construction enables us to analyse the behavior of S(n) and
that S(n) can be expressed in terms of a Chinese restaurant process. Note that this is just the
line of reasoning from [17]. Let us quickly recall the construction of the Bolthausen–Sznitman
n-coalescent from a random recursive tree from [17, Proposition 2.2] as well as the connection
to the Chinese restaurant process. Here, we give a simplified version just constructing the jump
chain of the n-coalescent.

We start with a random recursive tree with n vertices, i.e. a uniformly distributed random
variable on the set of all recursive trees with n vertices 1, . . . , n rooted in 1 (here the branches
carry no length information). Now construct the jump chain as follows.

• Choose an edge at random.

• Cut the tree at this edge. All labels that are in the subtree not containing the root are
added to the node of the subtree containing the root which was adjacent to the edge cut.

• Define a partition by taking the labels at each node of the subtree containing the root.
This partition has the same law as the Bolthausen–Sznitman n-coalescent after the first
jump.

• Repeat steps 1–3 with the subtree containing the root. This leads to partitions which have
the same law as the Bolthausen–Sznitman n-coalescent after the 2nd, 3rd, etc. jump.

Now, we present the connection of the random recursive tree with the Chinese restaurant process.
First, recall that the standard Chinese restaurant process is a sequential construction of a

uniform permutation of [n]. Imagine a restaurant with tables 1, 2, 3, . . . with infinitely many
chairs. Customers 1, . . . , n sit down at the tables according to the following rule.

• Customer 1 sits at table 1.

• If i − 1 customers have taken their seat, the ith customer sits with equal probability at
one of the following i places:

• on a chair directly to the left of an already seated customer (possibly between
customers),

• at a previously unoccupied table.

Writing down the customers at each table in seating order, we get the cycles of a uniform
random permutation of [n]. If we only record the customers at each table, but not the seating
order, we get an exchangeable partition of [n] whose distribution is given by the celebrated
Ewens sampling formula with mutation parameter θ = 1 (see, e.g. [1, Equation (1.3)]). More
information on this process can be found in [23, Chapter 3.1]. We will abbreviate a standard
Chinese restaurant process with n customers by CRP(n).

A CRP(n − 1) can be found in a random recursive tree with n vertices in the following way
(see [17, pp. 724–725]). We define a subtree of ‘1’ in the random recursive tree as a rooted
subtree whose root is adjacent (connected by one edge) to the root ‘1’ of the whole tree. Then
the subtrees of ‘1’ form a exchangeable partition of {2, . . . , n} which can be described as a
CRP(n − 1) with customers labeled 2, . . . , n. The following lemma is just a write-up of the
line of reasoning from [17, p. 725] and gives a discrete analog of a part of [22, Corollary 16] (in
[17], the line of reasoning presented here is a part of an alternative proof for [22, Corollary 16]).
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Lemma 1. (Practically from [17].) Letκn be the number of collisions in a Bolthausen–Sznitman
n-coalescent individual 1 participates in. For i ∈ [κn]0, let S(n)

i be the equivalence class of 1 in
the Bolthausen–Sznitman n-coalescent after the ith collision (involving 1). For a CRP(n − 1)

with Kn−1 tables and with customers labelled {2, . . . , n}, let RT1, . . . , RTKn−1 be the tables in
random order. Then S(n) = (S

(n)
i )i∈[κn]0 is distributed as ({1} ∪ ⋃

j∈[i] RTj )i∈[Kn−1].
Moreover, the process S(n) \ {1} = (S

(n)
i \ {1})i∈[κn]0 giving the relatives of individual 1

through time is distributed as the time-reversed process [n] \ S(n) = ([n] \ S
(n)
κn−i )i∈[κn]0 giving

the nonrelatives of individual 1.

If the Bolthausen–Sznitman n-coalescent is constructed via cutting a random recursive tree,
this lemma can be described more graphically: The equivalence class of 1 grows by adding
tables chosen uniformly at random from the Chinese restaurant process with n − 1 customers
given by the subtrees of ‘1’ in the random recursive tree.

Note that we actually choose tables at random and not individuals sitting at tables, so we do
not make size-biased picks.

Proof of Lemma 1. We construct the Bolthausen–Sznitman n-coalescent via cutting a ran-
dom recursive tree. The equivalence class of 1 is merged with other equivalence classes as soon
as an edge adjacent to the root is cut in the random recursive tree. The equivalence class of 1
is then merged with the subtree of ‘1’ which is connected by that edge. Since the edges are
chosen at random, this means that a uniformly chosen table of the CRP(n − 1) given by the
subtrees of ‘1’ is merged with the class of 1.

Since Xn − 1 = |S(n)
1 \ {1}| and Mn = |[n] \ S

(n)
κn−1|, Lemma 1 shows that Xn − 1 and Mn

have the same distribution, namely that both are distributed as the size of a uniformly chosen
table in a CRP(n − 1). This means that the known results for the asymptotics of Mn which
are given in [17, Theorem 3.1] are valid for Xn − 1 and, owing to a Slutsky argument, are also
valid for Xn.

Theorem 1. Let n ∈ {2, 3, . . .}. Let Xn be the minimal clade size in the Bolthausen–Sznitman
n-coalescent. Then Xn −1 is distributed as the size of a randomly chosen table in a CRP(n−1)

and
log Xn

log n
→ U[0,1]

holds in distribution for n → ∞, where U[0,1] is the uniform distribution on [0, 1].
Additionally to this result, we give the complementary information of the exact law of Xn

and of the first-order behavior of all moments of Xn for n → ∞.
Theorem 1 states that the distribution of Xn can be expressed in terms of the Chinese

restaurant process. We will use this to derive three formulae for the distribution of Xn. Let us
recall two possibilities to look at the distribution of customers at tables in a CRP(n). Recall that
this distribution in a CRP(n) is given by the Ewens sampling formula with mutation parameter
θ = 1. We use two different possibilities to look at the Ewens sampling formula in (2) and (3)
below. First, we can record how many tables in a CRP(n) have exactly i customers, which we
denote by A

(n)
i for each i ∈ [n]. Then, for a1, . . . , an ∈ [n]0 with

∑
i∈[n] iai = n, we have

P(A
(n)
1 = a1, . . . , A

(n)
n = an) =

n∏
i=1

1

ai ! iai
. (2)
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On the other hand, we can record the probability that certain sets of customers sit at tables
1, 2, . . . (this forms a partition η of [n]). The probability that we find a certain partition η (with
blocks ordered by their least element) of [n] with k occupied tables and ni customers at the ith
occupied table is

P(CRP(n) = η) = 1

n!
∏
i∈[k]

(ni − 1)!. (3)

This leads to several possibilities to express the distribution of Xn.

Lemma 2. Let n ∈ {2, 3, . . .}. Let Xn be the minimal clade size in a Bolthausen–Sznitman
n-coalescent. For m ∈ N, let A

(m)
i be the number of tables with exactly i customers in a

CRP(m), and let Km = ∑
i∈[n−1] A

(m)
i be the number of occupied tables. Define K0 = 0

(‘empty restaurant’). Then, for j ∈ [n − 1], the following statements hold.

(a) Defining 	n = {a1, . . . , an−1 ∈ [n − 1]0,
∑n−1

i=1 iai = n − 1},

P(Xn = j + 1) = E

(
A

(n−1)
j

Kn−1

)
=

∑
	n

aj∑n−1
i=1 ai

n−1∏
i=1

1

ai ! iai
.

(b) Defining 
(n, k) = {n1, . . . , nk ∈ [n], ∑k
i=1 ni = n} for k ≤ n,

P(Xn = j + 1) = 1

j

n−1−j∑
k=1

1

(k + 1)!
∑


(n−1−j,k)

1

n1 · · · nk

for j < n − 1 and P(Xn = n) = 1/(n − 1).

(c) Let B1, B2, . . . be independent Bernoulli-distributed random variables with success
probability 1/i for Bi . Then

P(Xn = j + 1) = 1

j
E

(
1

1 + Kn−1−j

)
= 1

j
E

(
1

1 + ∑n−1−j
i=1 Bi

)
.

Note that the above lemma also holds for Mn and the size RTn−1 of a randomly chosen
table in a CRP(n − 1) (just replace j + 1 with j ). Also, note that this result provides a very
rare example where an exact law is obtained for a functional of an exchangeable non-Kingman,
non-starshaped n-coalescent.

Proof of Lemma 2. Owing to Theorem 1, we know that Xn − 1 is distributed as the size
of a randomly chosen table in a CRP(n − 1). Given the table counts A

(n−1)
1 , . . . , A

(n−1)
n−1 , the

probability that we randomly choose a table with j customers is

A
(n−1)
j∑n−1

i=1 An−1
i

= A
(n−1)
j

Kn−1
.

Summing over the distribution of the table counts given by (2) gives (a).
Now look at the partition η of [n] constructed via a CRP(n − 1) whose distribution is

given by (3). We are interested in the partition not in the order of the least elements, but in
the exchangeable order (meaning that if the partition has k blocks, we order them randomly).
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Let N
(n−1)
1 , . . . , N

(n−1)
k be the table sizes in exchangeable order. By combinatorial arguments

(see [23, Equation (2.7)]), we obtain

P(N
(n−1)
1 = n1, . . . , N

(n−1)
k = nk) =

(
n − 1

n1, . . . , nk

)
1

k!
1

(n − 1)!
k∏

i=1

(ni − 1)!
︸ ︷︷ ︸

probability of η, least elements

= 1

k! ∏k
i=1 ni

. (4)

The size of a randomly picked table in the CRP is distributed as N
(n−1)
1 . This is just a marginal

distribution from the above formula, namely,

P(Xn = j + 1) = P(N
(n−1)
1 = j) =

n−1∑
k=1

1

k!
∑

n2,...,nk∈[n−1]
j+∑n

i=2 ni=n−1

1

j · n2 · · · nk

. (5)

If j = n − 1, (5) equals 1/(n − 1). For 1 ≤ j < n − 1, we have

P(Xn = j + 1) =
n−j∑
k=2

1

k! j
∑

n2,...,nk∈[n−1−j ]∑k
i=2 ni=n−1−j

1

n2 · · · nk

= 1

j

n−1−j∑
k=1

1

(k + 1)!
∑


(n−1−j,k)

1

n1 · · · nk

,

where the last equation is due to an index shift. This shows (b).
To show (c), we compare (5) with E((1 + Kn−1−j )

−1). First note that, for j = n − 1, we
have K0 = 0 and, thus,

1

n − 1
E

(
1

K0 + 1

)
= 1

n − 1
,

which matches the expression in (b). Now assume that 1 ≤ j < n − 1. If we look at the table
sizes in exchangeable order, we can compute P(Kn−1−j = k) by summing the probabilities
of all possible configurations of table sizes of exactly k occupied tables in a CRP(n − 1 − j).
Using (4), this leads to

E

(
1

1 + Kn−1−j

)
=

n−1−j∑
k=1

1

k + 1

∑

(n−1−j,k)

1

k! n1 · · · nk

=
n−1−j∑

k=1

1

(k + 1)!
∑


(n−1−j,k)

1

n1 · · · nk

.

Comparison with (5) yields

P(Xn = j + 1) = 1

j
E

(
1

1 + Kn−1−j

)
.

Recall that Kn−1−j is distributed as the number of cycles in a uniform permutation of [n−1−j ].
It is well known that the number of cycles is distributed as the sum of independent Bernoulli
variables B1, . . . , Bn−1−j with success probability 1/i for Bi (see, e.g. [1, p. 10]). This
proves (c).
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Remark 1. Let Kn be the number of occupied tables in a CRP(n). Using Kn
d= ∑

i∈[n] Bi for
independent Bernoulli variables Bi with success probability 1/i, we deduce the recursion

E

(
1

m + Kn

)
=

(
1 − 1

n

)
E

(
1

m + Kn−1

)
+ 1

n
E

(
1

m + 1 + Kn−1

)

for all m ∈ N0. This recursion gives an efficient method to compute the distribution of the
minimal clade size Xn by using the representation in Lemma 2(c).

Remark 2. Goldschmidt and Martin [17] proved the weak convergence result for Mn for n →
∞ by using the construction of the Bolthausen–Sznitman n-coalescent via cutting a random
recursive tree and embedding the random recursive tree in a Yule process. However, as also
hinted at by Goldschmidt and Martin (see [17, Corollary 3.3, Remark a)]), the representation
of Mn as a uniformly chosen table in a CRP(n − 1) allows us to use results about uniform
random permutations to prove the convergence part of Theorem 1 without using the Yule
process embedding.

Alternative proof of Theorem 1. First, let us look at the distribution function of log(Xn−
1)/log(n − 1). Let x ∈ [0, 1]. Using Lemma 2(a), we obtain

P

(
log(Xn − 1)

log(n − 1)
≤ x

)
= P(Xn − 1 ≤ (n − 1)x)

=

(n−1)x�∑

j=1

E

(
A

(n−1)
j

Kn−1

)

= E

(∑
(n−1)x�
j=1 A

(n−1)
j∑n−1

i=1 A
(n−1)
i

)
, (6)

where A
(n−1)
i is the number of tables with exactly i customers in a CRP(n−1). The functional

central limit theorem of DeLaurentis and Pittel [11] (see also Hansen [18]) states that

(∑
nx�
j=1 A

(n)
j − x log n√
log n

)
x∈[0,1]

d−→(Bx)x∈[0,1]

in D[0, 1] when n → ∞, where B is a standard Brownian motion. This implies that
∑
nx�

j=1 A
(n)
j

log n

P−→x

for x ∈ [0, 1]. We apply this result to both the numerator and denominator on the right-hand
side of (6) (inside of E(·)) and get

∑
(n−1)x�
j=1 A

(n−1)
j∑n−1

i=1 A
(n−1)
i

=
∑
(n−1)x�

j=1 A
(n−1)
j

log(n − 1)

log(n − 1)∑n−1
i=1 A

(n−1)
i

P−→x

for n → ∞. Since 0 ≤ ∑
(n−1)x�
j=1 A

(n−1)
j /

∑n−1
i=1 An−1

i ≤ 1 for all x and n, we have uniform
integrability and, hence,

E

(∑
(n−1)x�
j=1 A

(n−1)
j∑n−1

i=1 A
(n−1)
i

)
→ x for n → ∞,
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which shows that log(Xn − 1)/log(n − 1)
d−→U[0,1], where U[0,1] is the uniform distribution on

[0, 1]. With a Slutsky argument we can show that log(Xn)/log n behaves in the same way.

For the asymptotics of moments of Xn (as well as Mn and RTn), we use the expression for
PXn from Lemma 2(c), namely,

P(Xn = j + 1) = 1

j
E

(
1

1 + Kn−1−j

)
,

where Kn is the number of occupied tables in a CRP(n). Note that Kn also gives the number
of cycles in a uniform permutation of {1, . . . , n}. Thus, the distribution of Kn is given by

P(Kn = k) = Sn,k

n! for k ∈ [n], (7)

where (Sn,k)k∈[n],n∈N denotes the absolute Stirling numbers of the first kind.
It is well known that (see, e.g. [23, Equation (3.2)])

Kn

log n
→ 1 almost surely (8)

for n → ∞. Since we want to use Lemma 2(c), we are more interested in the behavior of
E((1 + Kn)

−1). From (8), we immediately obtain

log n

1 + Kn

→ 1 almost surely (9)

for n → ∞. We will need a L1-version of (9).

Lemma 3. It holds that
log n

1 + Kn

→ 1 in L1 for n → ∞.

Proof. The result follows from (9) and the uniform integrability of log n/(1 + Kn), which we
now show. Note that since log n/(1 + Kn) ≤ log n/Kn for all n ∈ N, it suffices to show uniform
integrability for log n/Kn. Let A > 0, and let Hn be a Poisson-distributed random variable
with parameter log n. Note that Hn

d= ∑
i∈
log n� H

(1)
i + Rn, where (H

(1)
i )i∈N are independent

and identically distributed random variables that are Poisson distributed with parameter 1, and
Rn is Poisson distributed with parameter log n−
log n�, independent of (H

(1)
i )i∈N. For A > 1,

we have∫
{log n/Kn≥A}

∣∣∣∣ log n

Kn

∣∣∣∣ dP = log n


A−1 log n�∑
k=1

1

k
P(Kn = k)

(7)= log n


A−1 log n�∑
k=1

Sn,k

n! k

=

A−1 log n�∑

k=1

(log n)k

k! e− log n

(
1

	(1 + r)
+ O

(
k

(log n)2

))

≤ CP

(
Hn ≤ log n

A

)

≤ CP

(∑
i∈
log n� H

(1)
i

log n
≤ A−1

)

→ 0 for n → ∞,
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where r = (k − 1)(log n)−1 and C is a suitable constant. Here, we use the uniform asymptotic
expansion of Hwang (see Theorem 2 of [19]) for the absolute Stirling numbers Sn,k of the first
kind for 1 ≤ k ≤ A−1 log n (we actually use the cruder version from [1, Equation (1.30)]). The
convergence to 0 follows from the law of large numbers for (H

(1)
i )i∈N.

This computation shows the uniform integrability of log n/(1 + Kn), completing the proof.

Theorem 2. For n ∈ {2, 3, . . .}, let Xn be the minimal clade size in the Bolthausen–Sznitman
n-coalescent. For all k ∈ N, we have

log n

nk
E(Xk

n) → 1

k

for n → ∞.

Again, this theorem is also true for Mn and RTn instead of Xn.

Proof of Theorem 2. Using Lemma 2(c), we obtain

E((Xn − 1)k) =
n−1∑
j=1

jk−1
E

(
1

1 + Kn−1−j

)

=
n−2∑
l=0

(n − 1 − l)k−1
E

(
1

1 + Kl

)

=
k−1∑
i=0

(
k − 1

i

)
(n − 1)k−1−i (−1)i

n−2∑
l=0

liE

(
1

1 + Kl

)
.

We will now use Karamata’s Tauberian theorem for power series (see [3, Corollary 1.7.3]).
It states (among other things) that if al ∼ clρ−1L(l)/	(ρ) for n → ∞, where c, ρ > 0
and L is a slowly varying function, then

∑
k∈[n] ak ∼cnρL(n)/	(1 + ρ). We define al :=

liE(1/(1 + Kl)). Note that al ∼ li/log l for l → ∞ due to Lemma 3, which enables us to use
the Tauberian theorem for al with c := 	(i + 1) = i!, ρ = i + 1, and L(n) = (log n)−1. For
each i ∈ [k − 1]0, we thus have

n−2∑
l=0

liE

(
1

1 + Kl

)
∼ 1

i + 1

ni+1

log n

for n → ∞. This shows that

log n

nk
E((Xn − 1)k) =

k−1∑
i=0

(
k − 1

i

)
(n − 1)k−1−i log n

nk
(−1)i

n−2∑
l=0

liE

(
1

1 + Kl

)

∼
k−1∑
i=0

(
k − 1

i

)
log n

ni+1 (−1)i
1

i + 1

ni+1

log n

=
k−1∑
i=0

(
k − 1

i

)
(−1)i

i + 1

= 1

k
for n → ∞,
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where the last equation follows by elementary calculations. Thus, for each k ∈ N, we have
established that

log n

nk
E((Xn − 1)k) → 1

k

for n → ∞. The theorem is now proven as

log n

nk
E(Xk

n) =
∑

i∈[k]0

(
k

i

)
log n

nk
E((Xn − 1)i) → 1

k

for n → ∞.

Remark 3. This last result fits well with the notion that Xn can heuristically be seen as nU

when n is large (U uniformly distributed on [0, 1]) following from Theorem 1, since the kth
moment of nU is nk/k log n.

Let us compare this heuristic to the results for Xn in Kingman’s n-coalescent from [4, p. 4],
where the authors stated that Xn, without scaling, converges to a Yule distribution of parameter
ρ = 2. In the Bolthausen–Sznitman n-coalescent, the minimal clade size is much bigger than in
Kingman’s coalescent. This agrees with the more starlike shape of a non-Kingman n-coalescent
compared to Kingman’s n-coalescent.
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