SPLIT SUBDIRECT PRODUGTS AND PIECEWISE DOMAINS

JOHN FUELBERTH AND JAMES KUZMANOVICH

1. Preliminaries. Throughout this paper all rings will have unity and all modules will be unital.

If $X \subset R$, then $r(X)$ (respectively, $l(X)$) denotes the right (left) annihilator of x.

An element d of R is called right (left) regular if $r(d)=0(l(d)=0)$. An element which is both right and left regular is called regular. A ring Q is called the right classical quotient ring of R if (i) $R \subset Q$, (ii) every regular element of R is invertible in Q, and (iii) every element of Q is of the form $r d^{-1}$ where r, $d \in R$ and d is regular in R. In this case R is called a right order in Q.

A ring R is called a piecewise domain (PWD) [11] if it possesses a complete set of orthogonal idempotents $\left\{e_{e}, \ldots, e_{n}\right\}$ such that $x y=0$ implies that $x=0$ or $y=0$ whenever $x \in e_{i} R e_{k}$ and $y \in e_{k} R e_{j}$.
2. Split subdirect products. In this section we introduce a special subdirect product of rings which we call a (right) split subdirect product. We show that split sub-direct products preserve many (homological) properties of the factor rings. One unusual feature is that if R is a split subdirect product of rings R_{1} and R_{2}, then every left R-module canonically decomposes as a subdirect product of an R_{1}-module with an R_{2}-module.

Now let R be the subdirect product of rings R_{1} and R_{2}. The following ideas are motivated by Goodearl [5]. Define $E_{1} \subset R_{1}, E_{2} \subset R_{2}$ by the conditions $E_{1} \times 0=R \cap\left(R_{1} \times 0\right)$ and $0 \times E_{2}=R \cap\left(0 \times R_{2}\right)$. Then E_{1} and E_{2} are two-sided ideals of R_{1} and R_{2} respectively and we have the ring isomorphisms: $R /\left(0 \times E_{2}\right) \simeq R_{1}, R /\left(E_{1} \times 0\right) \simeq R_{2}$ and $R /\left(E_{1} \times E_{2}\right) \simeq R_{1} / E_{1} \simeq R_{2} / E_{2}$. Let $\pi_{i}: R \rightarrow R_{i}$ be the restriction to R of the natural projection map for $i=1,2$.

We say that R is a (right) split subdirect product of R_{1} and R_{2} provided that E_{1} and E_{2} are direct summands as right ideals of R_{1} and R_{2} respectively. In this case $E_{1} \times E_{2}$ is a direct summand of R as a right ideal.

The following proposition will be our main tool in showing that split subdirect products preserve homological properties.

Proposition 2.1. Let $I=e R$ be a two-sided ideal of a ring R where $e^{2}=e$ and let $\bar{R}=R / I$. Then
(i) $P D\left(M_{R}\right)=P D\left(M_{\bar{R}}\right)$ for all right \bar{R}-modules M.
(ii) inj. $\operatorname{dim}\left({ }_{R} M\right)=\operatorname{inj} . \operatorname{dim}\left({ }_{\bar{R}} M\right)$ for all left \bar{R}-modules M.
(iii) $W D\left(M_{R}\right)=W D\left(M_{\bar{R}}\right)$ for all right \bar{R}-modules M.

Received May 9, 1975, and in revised form, December 22, 1975.

Proof. (i) Let M be an arbitrary right \bar{R}-module. By [1, Problem 10, p. 123], $P D\left(M_{R}\right) \leqq P D\left(M_{\bar{R}}\right)$. Since \bar{R}_{R} is projective, $\operatorname{Ext}_{R}^{n}(M, N) \simeq \operatorname{Ext}_{\bar{R}^{n}}(M, N)$ for all \bar{R}-modules N by [1, Proposition 4.1.4]. Thus $P D\left(M_{\bar{R}}\right) \leqq P D\left(M_{R}\right)$.

The proofs of (ii) and (iii) follow by similar arguments using Problem 10 on page 123 along with Propositions 4.1.3 and 4.1.2 of [1].

We are now in a position to state our main results which relate the homological properties of R with those of R_{1} and R_{2} when R is a split subdirect product of R_{1} and R_{2}.

Theorem 2.2. Let R be a split subdirect product of R_{1} and R_{2}. Then r.gl.dim $R=\sup \left\{\right.$ r.gl.dim $\left.R_{i}\right\}$, l.gl.dim $R=\sup \left\{1 . g l . \operatorname{dim} R_{i}\right\}$ and $\operatorname{WGD}(\mathrm{R})=$ $\sup \left\{W G D\left(R_{i}\right)\right\}$. Furthermore R is right semihereditary (right p.p.) if and only if each R_{i} is right semihereditary (right p.p.).

Proof. We will show that r.gl.dim $R=\sup \left\{\operatorname{rgl} . \operatorname{dim} R_{i}\right\}$. By Proposition 2.1 r.gl.dim $\left(R_{i}\right) \leqq$ r.gl.dim R for $i=1,2$ Thus sup $\left\{\right.$ r.gl.dim $\left.R_{i}\right\} \leqq$ r.gl.dim R. To show the reverse equality let M be an arbitrary right R-module and consider the exact sequence

$$
0 \rightarrow M K \rightarrow M \rightarrow M / M K \rightarrow 0
$$

where $K=E_{1} \times 0$. For any right R-module X we have the exact sequence

$$
\operatorname{Ext}_{R^{k}}(M / M K, X) \rightarrow \operatorname{Ext}_{R}^{k}(M, X) \rightarrow \operatorname{Ext}_{R}^{k}(M K, X)
$$

Since $M K$ is a R_{1}-module and $M / M K$ is a R_{2}-module, by Proposition 2.1 $P D_{R_{1}}(M K)=P D_{R}(M K)$ while $P D_{R_{2}}(M / M K)=P D_{R}(M / M K)$. Thus if $k>\sup \left\{\right.$ r.gl.dim $\left.R_{i}\right\}, \operatorname{Ext}_{R}{ }^{k}(M K, X)=\operatorname{Ext}_{R}{ }^{k}(M / M K, X)=0$; hence $\operatorname{Ext}_{R^{k}}(M, X)=0$. Thus r.gl.dim $R \leqq \sup \left\{\right.$ r.gl.dim $\left.R_{i}\right\}$.

The proofs for the left global dimension and weak dimension are similar.
Now let R be right semihereditary. Then since $E_{1} \times 0$ and $0 \times E_{2}$ are direct summands of R as right ideals, both R_{1} and R_{2} are right semihereditary. Assume that R_{1} and R_{2} are right semihereditary and let I be a finitely generated right ideal of R. Then we have the exact sequence

$$
0 \rightarrow I \cap K \rightarrow I \rightarrow I /(I \cap K) \rightarrow 0
$$

where $K=E_{1} \times 0$. Now $I /(I \cap K) \simeq(I+K) / K$ is a finitely generated R_{2}-ideal; hence $(I+K) / K$ is a finitely generated projective R-module by Proposition 2.1. Thus the sequence splits and $I \cap K$ is a finitely generated R_{1}-ideal. Thus again by Proposition 2.1, $I \cap K$ is R-projective. Hence I is R-projective and R is right semihereditary.

The proof for right p.p. is identical to the proof for right semihereditary.
Let R be a subdirect product of rings R_{1} and R_{2} with E_{1} and E_{2} defined as above. R is called an essential (right) subdirect product if E_{1} and E_{2} are essential as right ideals of R_{1} and R_{2} respectively. Essential products were introduced by Goodearl [5]. Among many other results he showed that the essential
product of nonsingular rings is again nonsingular and that is maximal right quotient rings was the direct product of those of the factor rings. The following easy lemma shows that a converse is true. This lemma will be used in the next section.

Lemma 2.3. Let R be a right nonsingular ring with maximal right quotient ring Q. Suppose that $Q=Q_{1} \times Q_{2}$, and let R_{i} be the projection of R in Q_{i} for $i=1,2$. Then R is the essential subdirect product of R_{1} and R_{2}.

Proof. Write elements of Q as ordered pairs.
Clearly R is the subdirect product of R_{1} and R_{2} with $E_{i}=R \cap R_{i}$ for each i. It remains to be shown that E_{i} is essential in R_{i}. Let $0 \neq(x, 0) \in R_{1}$. Since R is right essential in Q, there exists $(r, s) \in R$ for which $(x, 0)(r, s)=(x r, 0)$ is a nonzero element of R. Then $(r, 0) \in R_{1}$ and ($x r, 0$) is a nonzero element of $R \cap R_{1}=E_{1}$. Hence E_{1} is essential in R_{1}. Similarly E_{2} is essential in R_{2}.

For right split subdirect products we have the following proposition which shows that any left R-module is a subdirect product of R_{1} and R_{2} modules. For the remainder of this section R will be as in the following proposition.

Proposition 2.4. Let R be a right split subdirect product of rings R_{1} and R_{2}. Then any left R-module is isomorphic to a subdirect product of R_{1} and R_{2} modules.

Proof. Let E_{1} and E_{2} be defined as above. If M is any left R-module, then $M / I_{1} M$ and $M / I_{2} M$ are R_{1} and R_{2} modules respectively where $I_{1}=0 \times E_{2}$ and $I_{2}=E_{1} \times 0$. Furthermore there is an R-homomorphism h of M into $M / I_{1} M \oplus M / I_{2} M$ defined by $h(m)=\left(\left[m+I_{1} M\right],\left[m+I_{2} M\right]\right)$.

We first show that h is an R-monomorphism. Since I_{1} and I_{2} are direct summands of R as right ideals, $I_{1}=e_{1} R$ and $I_{2}=e_{2} R$ for orthogonal idempotents e_{1} and e_{2}. Suppose $m \in \operatorname{ker}(h)$; that is, $m \in I_{1} M \cap I_{2} M$. Since $I_{1}=$ $0 \times E_{2}$ and $I_{2}=E_{1} \times 0, e_{1} m=e_{2} m=m$. But $0=\left(e_{1} e_{2}\right) m=e_{1}\left(e_{2} m\right)=$ $e_{1} m=m$ and $m=0$. Thus ker $(h)=0$ and h is a monomorphism. Hence M can be considered as a submodule of $M / I_{1} M \oplus M / I_{2} M$. Since the projection maps restricted to M are clearly onto, M is a subdirect product of the R_{1-} module $M / I_{1} M$ with the R_{2}-module $M / I_{2} M$.

By the above proposition every R-module is a canonical subdirect product of R_{1} and R_{2} modules. Denote this representation of a left module by (M_{1}, M_{2}) and represent the elements of M as ordered pairs.

The following proposition shows that homomorphisms also decompose.
Proposition 2.5. Let $f: M \rightarrow N$ and $g: N \rightarrow P$ be R-homomorphisms for left R-modules M, N, and P. Let e_{i} and I_{i} bz as in Proposition 2.4.
(i) f decomposes as $\left(f_{1}, f_{2}\right)$ where $f_{i}: M_{i} \rightarrow N_{i}$ is an R_{i}-homomorphism for $i=1,2$. If $m \in M$ and $m=\left(m_{1}, m_{2}\right)$, then $f(m)=\left(f_{1}\left(m_{1}\right), f_{2}\left(m_{2}\right)\right)$.
(ii) $g f$ decomposes as $\left(g_{1} f_{1}, g_{2} f_{2}\right)$.
(iii) If f_{1} and f_{2} are monomorphisms, then f is a monomorphism.
(iv) If f is an epimorphism, then f_{1} and f_{2} are epimorphisms.

Proof: (i) Suppose that $f: M \rightarrow N$ is an R-homomorphism. For each i $f\left(I_{i} M\right) \subset I_{i} N$; thus f induces a map $f_{i}: M / I_{i} M \rightarrow N / I_{i} N$ such that the following diagram commutes.

Since the diagram commutes and since the vertical maps are the coordinate maps of the subdirect product representations for M and N, it follows that $f(m)_{i}=f_{i}\left(m_{i}\right)$ for $i=1,2$. Hence $f(m)=\left(f_{1}\left(m_{1}\right), f_{2}\left(m_{2}\right)\right)$.
(ii) Let $m=\left(m_{1}, m_{2}\right)$. Then $g(f(m))=g\left[\left(f_{1}\left(m_{1}\right), f_{2}\left(m_{2}\right)\right)\right]=\left(g_{1} f_{1}\left(m_{1}\right)\right.$, $\left.g_{2} f_{2}\left(m_{2}\right)\right)$. Hence $g f=\left(g_{1} f_{1}, g_{2} f_{2}\right)$.
(iii) Let $f=\left(f_{1}, f_{2}\right)$ be a monomorphism and suppose that $0=f(m)=$ $\left(f_{1}\left(m_{1}\right), f_{2}\left(m_{2}\right)\right)$. Then $f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)=0$ and hence $m_{1}=m_{2}=0$ since f_{1} and f_{2} are monomorphisms. Therefore $m=0$ and f is a monomorphism.
(iv) Let $f=\left(f_{1}, f_{2}\right)$ be an epimorphism. Since $f(M)=N$ and $N=$ $\left(N_{1}, N_{2}\right)$, then $f_{1}\left(M_{1}\right)=N_{1}$ and $f_{2}\left(M_{2}\right)=N_{2}$. Therefore f_{1} and f_{2} are epimorphisms.

The following proposition shows that the injective modules over R are completely determined by those over R_{1} and R_{2}.

Proposition 2.6. An R-module is R-injective if and only if it is the direct sum of an injective R_{1}-module and an injective R_{2}-module.

Proof. Necessity: This direction follows from Lemma 2.1 (ii).
Sufficiency: Let $E=\left(E_{1}, E_{2}\right)$ be an injective left R-module, and let H_{i} be the R_{i}-injective hull of E_{i}. Then $H_{1} \oplus H_{2}$ is an injective R-module by the above. Consider the exact sequence $0 \stackrel{f}{\rightarrow} E \rightarrow H_{1} \oplus H_{2}$ under the natural embedding f. Since E is injective, there is a map $g: H_{1} \oplus H_{2} \rightarrow E$ such that $g f=i d_{E}$. Then $g_{1} f_{1}$ is the identity function on E_{1}. Hence E_{1} is injective since it's isomorphic to a direct summand of the injective module H_{1}. The map g_{1} is the restriction of the map g to H_{1}, thus $E_{1}=\operatorname{Im}\left(g_{1}\right)$ is a submodule of E. Since E_{1} is injective, we have $E=E_{1} \oplus A . A \simeq E / E_{1} \subset\left(E_{1} \oplus E_{2}\right) / E_{1}$ and is hence isomorphic to an R-submodule of E_{2}. Every R-submodule of an R_{2} module is an R_{2}-module; therefore A is an R_{2}-module. A is injective as an R-module and hence as an R_{2}-module by Lemma 2.1 (ii).

It should be noted that the decomposition in Proposition 2.6 is not in general unique, since there are injective R-modules which are simultaneously R_{1} and R_{2} modules.
3. Split products of piecewise domains. In this section the results of Section 2 are applied to yield results concerning the structure of a $P W D$ and
its quotient rings. It is first shown that if a $P W D$ can be represented as a split subdirect product of rings, then most of its properties are determined and shared by the factor rings. It is shown that split products of $P W D$'s occur fairly naturally; in particular, if a $P W D$ is an essential subdirect product of rings, then the product is split (but not necessarily direct). Finally these results are applied to obtain that the maximal quotient ring of a $P W D$ is a direct product of finitely many rings each of which is a prime self-injective regular ring whose ideals form a well ordered chain.

Let R be a $P W D$ relative to the complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. By the proof of the Main Theorem of [10], the relation $i \sim j$ if $e_{i} R e_{j} \neq 0$ and $e_{j} R e_{i} \neq 0$ is an equivalence relation on $\{1, \ldots, n\}$. Let C_{1}, \ldots, C_{r} denote the equivalence classes and set $f_{i}=\sum_{j \in C_{i}} e_{j}$. Then the f_{1}, \ldots, f_{r} can be ordered so that R has the triangular structure:

$$
R \simeq\left[\begin{array}{ccccccc}
P_{1} & & & & & \\
P_{21} & P_{2} & & & & \\
P_{31} & P_{32} & P_{3} & & & \\
\cdot & \cdot & \cdot & & & & \\
\cdot & \cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\
P_{r 1} & P_{r 2} & P_{r 3} & \cdot & \cdot & \cdot & P_{r}
\end{array}\right]
$$

where $P_{i j}=f_{i} R f_{j}$ and $P_{i}=f_{i} R f_{i}$. This notation will be used throughout this section.

For the next three technical lemmas, $e R$ will be a two-sided ideal of R where $e^{2}=e$.

Lemma 3.1. There exists $\left\{e_{i(1)}, \ldots, e_{i(k)}\right\} \subset\left\{e_{1}, \ldots, e_{n}\right\}$ such that $e R=\oplus_{j=1}^{k} e_{i(j)} R$.

Proof. For each i consider $e_{i} e$. Since $e R$ is a two-sided ideal of $R, e_{i} e \in e R$; thus $e e_{i} e=e_{i} e$. Hence $\left(e_{i} e\right)^{2}=e_{i}\left(e e_{i} e\right)=e_{i}\left(e_{i} e\right)=e_{i} e$ and $e_{i} e$ is an idempotent element of $e_{i} R$. Since $e_{i} R$ is indecomposable, $e_{i} e R=0$ or $e_{i} e R=e_{i} R$. Thus if $e_{i} e \neq 0$, then $e_{i} R \subseteq e R$. We have $e=1 \cdot e=\left(e_{1}+\ldots+e_{n}\right) e=e_{1} e+$ $\ldots+e_{n} e$. Hence $e=\sum_{k}\left\{e_{i} e: e_{i} e \neq 0\right\}=\sum_{j=1}^{k} e_{i(j)} e$ and it follows that $e R=$ $\oplus\left\{e_{i} R: e_{i} e \neq 0\right\}=\oplus_{j=1}^{k} e_{i(j)} R$.

Since $e^{\prime}=e_{i(1)}+\ldots+e_{i(k)}$ is an idempotent generator of $e R$, there is no loss of generality in assuming that $e=e_{i(1)}+\ldots+e_{i(k)}$.

Lemma 3.2. If $k, l \in C_{j}$, then $e_{k} e \neq 0$ if and only if $e_{l} e \neq 0$. Hence there exists $\left\{f_{i(1)}, \ldots, f_{i(m)}\right\} \subset\left\{f_{1}, \ldots, f_{r}\right\}$ such that $e=\sum_{j=1}^{m} f_{i(j)}$ and $e R=\oplus_{j=1}^{m} f_{i(j)} R$.

Proof. Suppose that $k, l \in C_{j}$ and $e_{k} e \neq 0$. By the definition of C_{j}, there exists $t, s \in R$ such that $e_{k} t e_{l} \neq 0$ and $e_{l} s e_{k} \neq 0$. Let $r=e_{k} t e_{l}+e_{l} s e_{k}$. Then $e_{k} r e_{l}=e_{k} t e_{l} \neq 0$ and $e_{l} r e_{k}=e_{l} s e_{k} \neq 0$. By the above comments $e_{k} e=e_{k}$, therefore $e_{\imath} r e_{k} e e_{k}=e_{l} r e_{k} \neq 0$. Now $r e_{k} e e_{k} \in e R$ as $e R$ is a two-sided ideal; thus $r e_{k} e e_{k}=e s$ for some $s \in R$. Therefore $e_{l} r e_{k} e e_{k}=e_{l} e s \neq 0$ so $e_{l} e \neq 0$. Thus it
follows that $e=\sum\left\{f_{i}: f_{i} e=f_{i}\right\}=\sum\left\{f_{i}: f_{i} e \neq 0\right\}$ and the last statement of the lemma is immediate.

Lemma 3.3. The f_{j} 's can be reordered, still preserving the triangular structure of R, in such a manner that $e R=\sum_{j>k} f_{j} R=\sum_{i>l} e_{i} R$ for some k, l.

Proof. Since $e=\sum\left\{f_{i}: f_{i} e \neq 0\right\}=\sum\left\{f_{i}: f_{i} e=f_{i}\right\}$ by the proof of Lemma 3.2 , let i be the first index for which $f_{i} e \neq 0$ and $f_{i+1} e=0$. If $r<i, f_{r} R f_{i}=$ $f_{r} R f_{i+1}=0$ by the triangular structure of R. Again by the triangular structure of $R, f_{i} R f_{i+1}=0$. Now $f_{i+1} R f_{i}=f_{i+1} R f_{i} e \subset f_{i+1}(e R)=0$. Thus f_{i} and f_{i+1} can be interchanged while still preserving the triangular structure of R. Continuing this process yields the desired ordering.

It is an open question whether a $P W D$ is a $P W D$ relative to every complete set of orthogonal idempotents. Hence the assumption in the following proposition that each R_{i} is a $P W D$ with respect to every complete set of orthogonal idempotents.

Proposition 3.4. Let R be a split subdirect product of R_{1} and R_{2}. If R is a $P W D$, then each R_{i} is a PWD. Conversely if each R_{i} is a $P W D$ relative to every complete set of orthogonal idempotents of R_{i}, then R is a $P W D$ relative to every complete set of orthogonal idempotents of R.

Proof. Let R be a $P W D$ relative to a complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. Since $E_{1} \times 0$ and $0 \times E_{2}$ are direct summands of R as right ideals, it follows directly that $R_{1} \simeq R /\left(0 \times E_{2}\right)$ and $R_{2} \simeq R /\left(E_{1} \times 0\right)$ are PWD's relative to the complete sets of orthogonal idempotents $\left\{\pi_{1}\left(e_{1}\right), \ldots, \pi_{1}\left(e_{n}\right)\right\}$ and $\left\{\pi_{2}\left(e_{1}\right), \ldots, \pi_{2}\left(e_{n}\right)\right\}$ respectively.

For the converse, first note that R has a complete set of orthogonal idempotents. Since $E_{1} \times 0$ is a direct summand of R as a right ideal, $E_{1} \times 0=$ $e R$ where $e^{2}=e$. Now $R /\left(E_{1} \times 0\right) \simeq R_{2}$ has a complete set of orthogonal idempotents so there exists a complete set of orthogonal idempotents of $(1-e) R$. But E_{1} has a complete set of orthogonal idempotents by Lemma 3.1, so $E_{1} \times 0=e R$ has a complete set of orthogonal idempotents. Hence R has a complete set of orthogonal idempotents.

Now let R have a complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. Since $\left\{\pi_{1}\left(e_{1}\right), \ldots, \pi_{1}\left(e_{n}\right)\right\}$ is a complete set of orthogonal idempotents of R_{1}, R_{1} is a $P W D$ relative to this set of idempotents. E_{1} is a direct summand of R_{1} as a right ideal of R_{1} so by Lemma 3.3 there is a rearrangement of $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $E_{1}=\sum_{j>k_{1}} \pi_{1}\left(e_{j}\right) R_{1}$ and $\pi_{1}\left(e_{k}\right) R_{1} \pi_{1}\left(e_{l}\right)=0$ for $k \leqq k_{1}<l$. Then $\left\{\pi_{2}\left(e_{1}\right), \ldots, \pi_{2}\left(e_{k_{1}}\right)\right\}$ is a complete set of orthogonal idempotents for R_{2} so there exists a rearrangement of $\left\{e_{1}, \ldots, e_{k_{1}}\right\}$ such that $E_{2}=\sum_{k_{1}<j \leq k_{1}} \pi_{2}\left(e_{j}\right) R_{2}$ and $\pi_{2}\left(e_{k}\right) R_{2} \pi_{2}\left(e_{l}\right)=0$ for $k \leqq k_{2}<l$ by Lemma 3.3

Thus there are integers $1 \leqq k_{2} \leqq k_{1} \leqq n$ such that $E_{1} \times 0=\sum_{j>k_{1}} e_{j} R$ and $0 \times E_{2}=\sum_{k_{2}<j \leqq k_{1}} e_{j} R$. For $k \leqq k_{2}<l, e_{k} R e_{l}=0$ and if $k_{2}<k \leqq k_{1}<$ $l \leqq n, e_{k} R e_{l} \subset E_{1} \cap E_{2}=0$ and $e_{l} R e_{k} \subset E_{1} \cap E_{2}=0$.

Now let $0 \neq x \in e_{i} \operatorname{Re}_{j}$ and $0 \neq y \in e_{j} R e_{k}$. In view of the remarks in the preceding paragraph, we need only consider two cases:
i) If $i, j, k \leqq k_{1}$, then $x y \neq 0$ since $R /\left(E_{1} \times 0\right) \simeq R_{2}$ is a $P W D$ relative to $\left\{\pi_{2}\left(e_{1}\right), \ldots, \pi_{2}\left(e_{k_{1}}\right)\right\}$.
(ii) If $i, j, k \in\left\{1, \ldots, k_{2}, k_{1}+1, \ldots, n\right\}$, then $x y \neq 0$ since $R /\left(0 \times E_{2}\right) \simeq$ R_{1} is a $P W D$ relative to $\left\{\pi_{1}\left(e_{1}\right), \ldots, \pi_{1}\left(e_{k_{2}}\right), \pi_{1}\left(e_{k_{1}+1}\right), \ldots, \pi_{1}\left(e_{n}\right)\right\}$.

Remark. The class of rings which are $P W D$'s relative to every complete set of orthogonal idempotents includes all p.p. rings with no infinite sets of orthogonal idempotents. Also included are those rings which have a complete set of orthogonal idempotents and which satisfy a Krull-Schmidt type theorem such as the semiperfect rings.

We now establish that split subdirect products arise fairly naturally. Let R be a $P W D$ relative to the complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ and suppose that R has a right flat overring $Q=Q_{1} \times Q_{2}$ (ring direct product). Let $\pi_{i}: Q \rightarrow Q_{i}$ be the natural projection map and $\pi_{i}(R)=R_{i}$ for $i=1,2$. Since any $P W D$ is a nonsingular ring [9], the maximal left quotient ring of R will serve as the overring Q in many cases.

We state the following well known lemma which appears in Cartan and Eilenberg [1, Problem 5, p. 122] for completeness.

Lemma 3.5. Let R be a ring and A be a right R-module. If I is a left ideal of R, then $A \otimes_{R} I \rightarrow A \otimes_{R} R$ is a monomorphism if and only if whenever $\sum_{i} a_{i} \mu_{i}=0$ for $\left\{a_{i}\right\} \subset A$ and $\left\{\mu_{i}\right\} \subset I$, there exists $\left\{b_{j}\right\} \subset A$ and $\left\{\lambda_{i j}\right\} \subset R$ such that $\sum_{j} b_{j} \lambda_{i j}=a_{i}$ for all i and $\sum_{i} \lambda_{i j} \mu_{i}=0$ for all j.

Then we have the following technical lemma.
Lemma 3.6. Let R be a $P W D$ as above. If $\pi_{i}\left(e_{k}\right) \neq 0$ and $0 \neq x \in e_{k} R e_{l}$, then $\pi_{i}(x) \neq 0$.

Proof. Without loss of generality, let us assume that $\pi_{1}\left(e_{k}\right) \neq 0$ and $0 \neq$ $x \in e_{k} R e_{l}$. If $\pi_{1}(x)=0$, then $x=\left(0, r_{2}\right)$ where $r_{2} \in R_{2}$. Let $q=\left(q_{1}, 0\right) \in Q$ be such that $q e_{k}=q$. Then $q x=0$, so by the flatness of Q_{R}, there exists $\left\{b_{j}\right\} \subset Q$ and $\left\{\lambda_{j}\right\} \subset R$ such that $q=\sum_{j} b_{j} \lambda_{j}$ and $\lambda_{j} x=0$ for all j. Since $q e_{k}=q$ and $x \in e_{k} R e_{l}$, we may assume that $\lambda_{j} \in R e_{k}$ for all j. Right multiplication by x induces a monomorphism [10] of $R e_{k}$ into $R e_{l}$. Since $\lambda_{j} x=0, \lambda_{j}=0$ for all j, a contradiction.

Corollary 3.7. Let R be a $P W D$ as above. If $\pi_{i}\left(e_{k}\right) \neq 0$ and $\pi_{i}\left(e_{l}\right)=0$, then $e_{k} R e_{l}=0$.

Proof. Assume that $0 \neq x \in e_{k} R e_{l}$. Since $\pi_{i}\left(e_{l}\right)=0$ and x is a left multiple of $e_{l}, \pi_{i}(x)=0$. But this contradicts Lemma 3.6.

We now show that R is a split subdirect product of R_{1} and R_{2}.

Proposition 3.8. Let R be a $P W D$ and suppose R has a right flat overring $Q=Q_{1} \times Q_{2}$. Then R is a split subdirect product of $P W D$'s R_{1} and R_{2}.

Proof. Let R be a $P W D$ relative to the complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ and let $\left\{f_{1}, \ldots, f_{r}\right\}$ be defined as in the beginning of this section. Then $f_{i}=\sum_{j \in C_{i}} e_{j}$ where $e_{l} R e_{k} \neq 0$ and $e_{k} R e_{l} \neq 0$ for all $k, l \in C_{i}$. Then by Corollary $3.7, \pi_{i}\left(e_{k}\right) \neq 0$ if and only if $\pi_{i}\left(e_{l}\right) \neq 0$ for all $k, l \in C_{i}$. Let j be the first index for which $\pi_{i}\left(f_{j}\right)=0$ and $\pi_{i}\left(f_{j+1}\right) \neq 0$. Then for $e_{k} \in C_{j+1}$ and $e_{l} \in C_{j}, \pi_{i}\left(e_{k}\right) \neq 0$ and $\pi_{i}\left(e_{l}\right)=0$ so $e_{k} R e_{l}=0$ by Corollary 3.7. Therefore $f_{j+1} R f_{j}=0$ so that the ordering of the idempotents $\left\{f_{1}, \ldots, f_{j+1}, f_{j}, \ldots, f_{T}\right\}$ still preserves the triangular structure of R. Then we can find integers $1 \leqq$ $k_{2} \leqq k_{1} \leqq n$ such that $f_{i} \in E_{1}$ if and only if $i>k_{1}$ and $f_{i} \in E_{2}$ if and only if $k_{2}<i \leqq k_{1}$. By Lemma 3.6, it follows that $E_{1}=\sum_{j>k_{1}} f_{j} R$ and $E_{2}=\sum_{k_{2}<j \leqq k_{1}}$ $f_{j} R$. Thus R is a split subdirect product of R_{1} and R_{2}. By Proposition $3.4 R_{1}$ and R_{2} are $P W D$'s.

The following corollary follows directly from Propositions 3.4 and 3.8.
Corollary 3.9. Let R have a right flat overring $Q=Q_{1} \times Q_{2}$. Then R is a $P W D$ relative to every complete set of orthogonal idempotents of R if and only if R is a split subdirect product of R_{1} and R_{2} which are PWD's relative to every complete set of orthogonal idempotents of R_{1} and R_{2} respectively.

We now let R be a $P W D$ and let R have a right flat overring $Q=Q_{1} \times \ldots \times$ Q_{i}. Let R_{i} be the image of R under the projection map $Q \rightarrow Q_{i}$. We then have the following theorem.

Theorem 3.10. Let R be a PWD possessing a right flat overring $Q=Q_{1} \times \ldots$ $\times Q_{t}$ where $t \geqq 2$. Then r.gl.dim $R=\sup \left\{\right.$ r.gl.dim $\left.R_{i}\right\}$, 1.gl.dim $R=$ sup $\left\{1 . g 1 . \operatorname{dim} R_{i}\right\}$, and $W G D(R)=\sup \left\{W G D\left(R_{i}\right)\right\}$. Furthermore R is right semihereditary (right p.p.) if and only if each R_{i} is right semihereditary (right p.p.).

Proof. We will prove the theorem by induction on t. If $t=2$, then R is a split subdirect product of R_{1} and R_{2}. Hence the result is just that of Theorem 2.2. Now assume the result is true for $t=r$ and let $Q=Q_{1} \times \ldots \times Q_{r+1}$. Set $A=Q_{2} \times \ldots \times Q_{r+1}$ and let $\pi_{1}: Q \rightarrow Q_{1}, \pi_{2}: Q \rightarrow A$ be the natural projection maps. Then by Proposition 3.8, R is a split subdirect product of $P W D$'s $\pi_{1}(R)=R_{1}$ and $\pi_{2}(R)=S . Q_{1}$ and A are right R-flat modules as they are direct summands of Q_{R}. Hence by Proposition $2.1 Q_{1}$ and A are respectively right R_{1} and S-flat. Hence by induction, the theorem is valid for S. Thus, in particular, r.gl.dim $S=\sup \left\{\right.$ r.gl.dim $\left.R_{i}: i \geqq 2\right\}$. Again by induction, r.gl.dirn $R=\sup \left\{\right.$ r.gl.dim R_{1}, r.gl.dim $\left.S\right\}=\sup \left\{\right.$ r.gl.dim $\left.R_{i}: i \geqq 1\right\}$. The other conclusions follow in a similar manner.

Remark. For the theorem to be of value, the ring R must have a right flat overring Q. Since any $P W D$ is nonsingular [9], an obvious candidate for Q is the maximal left quotient ring. Cateforis [2] has given necessary and suf-
ficient conditions for the maximal left quotient ring to be right flat. Left semihereditary rings are included in this class of rings. In fact the maximal quotient ring need not be flat for a similar theorem to hold as is shown by the next proposition.

Proposition 3.11. Let R be an essential right subdirect product of rings R_{1} and R_{2}. If R is a PWD, then so are R_{1} and R_{2} and the product is split (left).

Proof. Let E_{1} and E_{2} be as above. Since R is an essential product of R_{1} and R_{2}, E_{i} is an essential right ideal of R_{i}. Identify E_{i} with $E_{i} \times 0$. Without loss of generality it is sufficient to show that E_{1} is a direct summand of ${ }_{R} R$. We will do this by showing that $e_{i} \in E_{1}$ whenever $E_{1} e_{i} \neq 0$, where R is a $P W D$ with respect to the complete set of idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. Suppose that $E_{1} e_{i} \neq 0$ and $e_{i} \notin E_{1}$. Then there exists e_{j} such that $e_{j} E e_{i} \neq 0$. Since $e_{i} \notin E_{1}$, the projection of e_{i} in R_{2} is not zero. E_{2} is an essential right ideal of R_{2}, thus $e_{i} E_{2} \neq 0$ since R_{2} is right nonsingular. Hence there exists $e_{k} \in R$ such that $e_{i} E_{2} e_{k} \neq 0$. As a result $\left(e_{j} E_{1} e_{i}\right)\left(e_{i} E_{2} e_{k}\right) \neq 0$ since R is a $P W D$. This is a contradiction, for $\left(e_{j} E_{1} e_{i}\right)\left(e_{i} E_{2} e_{k}\right) \subset E_{1} E_{2} \subset E_{1} \cap E_{2}=0$. Therefore $e_{i} \in E_{1}$. Hence $E_{1}=$ $\oplus\left\{R e_{i}: E_{1} e_{i} \neq 0\right\}$ and is a direct summand of ${ }_{R} R$.
R_{1} and R_{2} are PWD's by Proposition 3.4.
Corollary 3.12. Let R be a $P W D$ with maximal right quotient ring Q. If $Q=Q_{1} \times Q_{2}$, then R is a split subdirect product of R_{1} and R_{2} where R_{i} is the projection of R in Q_{i}.

Proof. By Lemma 2.3, R is the right essential subdirect product of R_{1} and R_{2}. Then by Proposition 3.11 the subdirect product is split.

The following corollary shows that information about Q can sometimes be used to represent R as a ring direct product.

Proposition 3.13. Let $R, Q, Q_{1}, Q_{2}, R_{1}$, and R_{2} be as in Corollary 3.12. If Q is also the maximal left quotient ring of R, or if Q_{R} is flat, then $R=R_{1} \times R_{2}$.

Proof. Each E_{i} is right essential by Lemma 2.3. If Q is the maximal left quotient ring of R (or Q_{R} is flat), then E_{i} is a right direct summand of R by Corollary 3.12 (Proposition 3.8). This can only happen if $E_{i}=R_{i}$; it follows that $R=R_{1} \times R_{2}$.

The following theorem characterizes the maximal right quotient ring of a $P W D$.

Theorem 3.14. Let R be a PWD with maximal right quotient ring Q. Then $Q=Q_{1} \times \ldots \times Q_{t}$ where each Q_{i} is an indecomposable prime self-injective regular ring whose ideals form a well ordered chain.

Proof. We will first show that Q is a ring direct product of finitely many indecomposable rings. Let $n(R)$ be the smallest positive integer for which R
has a complete set of $n(R)$ idempotents with respect to which R is a $P W D$. The proof is by induction on $n(R)$.

If $n(R)=1$, then R is a domain since R is a $P W D$. If $Q=Q_{1} \times Q_{2}$, then by Corollary $3.12 R$ is the split subdirect product of rings R_{1} and R_{2}. This cannot happen since R is a domain.

Inductively assume the result for all $P W D$'s S for which $n(S)<n(R)$. If the maximal right quotient ring of R is indecomposable, then the result trivially holds. Otherwise $Q=Q_{1} \times Q_{2}$, and by Corollary $3.12 R$ is a split subdirect product of rings R_{1} and R_{2}. It is easy to see using reasoning similar to that of Lemma 2.3 that Q_{i} is the maximal right quotient ring of R_{i} for each i. Also, it is shown in the proof of Proposition 3.4 that $n\left(R_{i}\right)<n(R)$. Hence the induction hypothesis implies that Q_{1} and Q_{2} are each ring direct products of finitely many indecomposable rings. It follows that Q is a direct product of finitely many rings, say $Q=Q_{1} \times \ldots \times Q_{t}$ where each Q_{i} is indecomposable.

Since a $P W D$ is nonsingular [9], Q is a right self-injective regular ring [3]. Hence each Q_{i} is a self-injective regular ring. By Goodearl [6, Proposition 3] each Q_{i} is a prime ring since it is indecomposable. By [6, Theorem 6] the ideals of Q_{i} are linearly ordered. The zero ideal is a closed prime ideal in Q_{i}, hence by [$\mathbf{6}$, Theorem 8] the ideals of Q_{i} are well ordered.

The following definitions are those of Handelman and Lawrence [11]. A (right) insulator of an element a of R is a finite subset $S \subset R$ such that $r(a S)=$ 0 . The ring R is called (right) strongly prime (SP) if every nonzero element of R has a right insulator.

The maximal right quotient ring of a domain is simple. The next proposition shows that this property is shared by a prime piecewise domain.

Proposition 3.15. If R is a prime $P W D$ with maximal right quotient ring Q, then Q is a simple right self-injective regular ring.

Proof. As in Theorem $3.14 Q$ is a right self-injective regular ring.
Let R be a prime $P W D$ with respect to the complete set of idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. Since R is prime, $e_{i} R e_{j} \neq 0$ for all i and j. Let $a \in R$. There exists an e_{i} such that $a e_{i} \neq 0$. For all k there exists $r_{k} \in R$ such that $e_{i} r_{k} e_{k} \neq 0$. Since R is a $P W D, a e_{i} r_{k} e_{k} \neq 0$ for each k. Let $S=\left\{e_{i} r_{k} e_{k}: k=1, \ldots, n\right\}$. Since R is a $P W D, r\left(a e_{i} r_{k} e_{k}\right)=\oplus_{j \neq k} e_{j} R=A_{k}$. Hence $r(a S)=\bigcap_{k=1}^{n} A_{k}=0$. Thus S is a right insulator for the arbitrary element a, and the ring R is strongly prime. The ring Q is then simple by Proposition 1.1 of Goodearl and Handelman [7].

We now turn our attention to the classical right quotient ring of a $P W D$. Gordon [8] has given necessary and sufficient conditions for a $P W D$ to be a right order in a semiprimary ring. We will make use of the next theorem which is due to Gordon [8, Theorem A].

Theorem 3.16. Suppose e and fare nonzero idempotents in a ring R which is
a right order in a semiprimary ring Q. Then $e Q f=e R f f Q f$ and the semiprimary ring $f Q f$ is the classical right quotient ring of $f R f$.

The next theorem shows that the classical quotient ring of a $P W D$ which is a split product can be represented as a split product of the quotient rings of the factor rings.

Theorem 3.17. Let a PWD R be a split subdirect product of $P W D$'s R_{1} and R_{2}. Then R has a semiprimary classical right quotient ring Q if and only if each R_{i} has a semiprimary classical right quotient ring Q_{i}. Each Q_{i} is a $P W D$, and Q is a split subdirect product of Q_{1} and Q_{2}.

Proof. Since R is a split product of R_{1} and $R_{2}, E_{i}=e_{i} R$ for $i=1,2$ where each e_{i} is an idempotent. Let $e_{3}=1-e_{1}-e_{2}, h_{1}=e_{1}+e_{3}$, and $h_{2}=e_{2}+e_{3}$. Then R has the following triangular structure:

$$
R \simeq\left[\begin{array}{ccc}
e_{1} R e_{1} & & \\
0 & e_{2} R e_{2} & \\
e_{3} R e_{1} & e_{3} R e_{2} & e_{3} R e_{3}
\end{array}\right]
$$

Furthermore R_{i} can be identified with $h_{i} R h_{i}$.
All of the Q 's are $P W D$'s since by Gordon [8, page 40] a semiprimary classical quotient ring of a $P W D$ is again a $P W D$.

Suppose R has a classical right semiprimary quotient ring Q. Then by Theorem 3.16 $Q_{i}=h_{i} Q h_{i}$ is the classical right quotient ring of $R_{i}=h_{i} R h_{i}$.

Conversely suppose that each R_{i} has a semiprimary classical right quotient ring Q_{i}. We may identify $e_{3} Q_{1} e_{3}$ with $e_{3} Q_{2} e_{3}$ since each is the classical quotient ring of $e_{3} R e_{3}$. Consider the collection Q of "matrices" of the following form:

$$
Q=\left[\begin{array}{ccc}
e_{1} Q_{1} e_{1} & & \\
0 & e_{2} Q_{2} e_{2} & \\
e_{3} Q_{1} e_{1} & e_{3} Q_{2} e_{2} & e_{3} Q_{1} e_{3}\left(=e_{3} Q_{2} e_{3}\right)
\end{array}\right]
$$

Q is a semiprimary ring since it is merely the "matrix" representation of the split subdirect product of Q_{1} and Q_{2} via the identification of $e_{3} Q_{1} e_{3}$ with $e_{3} Q_{2} e_{3}$. Let $d=\left[\begin{array}{lll}a_{1} & & \\ 0 & a_{2} & \\ c_{1} & c_{2} & a_{3}\end{array}\right]$ be a regular element of R. Then $\left[\begin{array}{ll}a_{1} & \\ c_{1} & a_{3}\end{array}\right]$ is a right regular element of R_{1}, for if $\left[\begin{array}{ll}a_{1} & \\ c_{1} & a_{3}\end{array}\right]\left[\begin{array}{ll}x_{1} & \\ x_{2} & x_{3}\end{array}\right]=0$, then $\left[\begin{array}{lll}a_{1} & & \\ 0 & a_{2} & \\ c_{1} & c_{2} & a_{3}\end{array}\right]$ $\left[\begin{array}{lll}x_{1} & & \\ 0 & 0 & \\ x_{2} & 0 & x_{3}\end{array}\right]=0$. Similarly $\left[\begin{array}{ll}a_{2} & \\ c_{2} & a_{3}\end{array}\right]$ is a right regular element of R_{2}. Since R_{1} and R_{2} have classical right quotient rings Q_{1} and Q_{2} respectively, $\left[\begin{array}{ll}a_{1} & \\ c_{1} & a_{3}\end{array}\right]$
and $\left[\begin{array}{ll}a_{2} & \\ c_{2} & a_{3}\end{array}\right]$ are right regular in Q_{1} and Q_{2} respectively. They are then invertible since each Q_{i} is semiprimary. Let their respective inverses be $\left[\begin{array}{ll}x_{1} & \\ d_{1} & x_{3}\end{array}\right]$ and $\left[\begin{array}{ll}x_{2} & \\ d_{2} & x_{3}\end{array}\right]$ (we are using the identification of $e_{3} Q_{1} e_{3}$ and $e_{3} Q_{2} e_{3}$). Then $\left[\begin{array}{lll}a_{1} & & \\ 0 & a_{2} & \\ c_{1} & c_{2} & a_{3}\end{array}\right]\left[\begin{array}{ccc}x_{1} & & \\ 0 & x_{2} & \\ d_{1} & d_{2} & x_{3}\end{array}\right]=\left[\begin{array}{lll}1 & & \\ 0 & 1 & \\ 0 & 0 & 1\end{array}\right]$ in $Q ; Q$ is semiprimary so right invertible elements are invertible and d has an inverse in Q.

Let $x=\left[\begin{array}{ccc}x_{11} & & \\ 0 & x_{22} & \\ x_{31} & x_{32} & x_{33}\end{array}\right]$ be an element of Q. Applying Theorem 3.16 separately to Q_{1} and Q_{2} yields that $e_{i} Q e_{j}=e_{i} R e_{j} e_{j} Q e_{j}$ for all i and j; hence $x_{i j}=a_{i j} b_{i j}{ }^{-1}$ where $b_{i j}$ is a regular element of $e_{j} R e_{j}$ and $a_{i j} \in e_{i} R e_{j}$. Let d_{1} be a common denominator for b_{11} and b_{31} (an element such that $b_{11}{ }^{-1} d_{1}$ and $b_{31}{ }^{-1} d_{1}$ are elements of R), let d_{2} be a common denominator for b_{22} and b_{32}, and let $d=\left[\begin{array}{lll}d_{1} & & \\ 0 & d_{2} & \\ 0 & 0 & b_{33}\end{array}\right]$. The element d is invertible in Q and hence must be regular in R. By the choice of $d, x d=r$ an element of R. Hence $x=\operatorname{rd}^{-1}$.

We've now shown that every regular element of R is invertible in Q and that every element of Q is of the form $r d^{-1}$ for $r \in R$ and d a regular element of R; hence Q is the classical right quotient ring of R. Hence if each R_{i} has a semiprimary classical right quotient ring, then so does R; furthermore, if R is a split subdirect product, then so is its classical quotient ring.

References

1. H. Cartan and S. Eilenberg, Homological algebra (Princeton University Press, Princeton, New Jersey, 1956).
2. V. C. Cateforis, Flat regular quotient rings, Trans. Amer. Math. Soc. 138 (1969), 241-249.
3. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag (1967).
4. J. Fuelberth and J. Kuzmanovich, The structure of splitting rings, Comm. in Algebra 3 (1975), 913-949.
5. K. R. Goodearl, Essential products of nonsingular rings, Pac. J. Math. 45 (1973), 493-505.
6. -_ Prime ideals in regular self-injective rings, Can. J. Math. 25 (1973), 829-839.
7. R. Gordon, Classical quotient rings of PWD's, Proc. Amer. Math. Soc. 36 (1972), 39-46.
8. - Semi-prime right Goldie rings which are direct sums of uniform right ideals, Bull. London Math. Soc. 3 (1971), 277-282.
9. R. Gordon and L. Small, Piecewise domains, J. Algebra 23 (1972), 553-564.
10. D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975), 209-224.

Wake Forest University, Winston-Salem, North Carolina;
University of Northern Colorado, Greeley, Colorado

