
7
Examples and applications

To expose the value of the method in the foregoing chapters, it is instructive to
apply it to a number of important and well known physical problems. Through
these examples we shall see how a unified methodology makes the solution of
a great many disparate systems essentially routine. The uniform approach does
not necessarily convey with it any automatic physical understanding, but then
no approach does. What we learn from this section is how many problems can
be reduced to the basics of ‘cause followed by effect’, or, here, ‘source followed
by field’.

7.1 Free particles

Solving Newton’s law F = ma using a Green function approach is hardly to
be recommended for any practical purpose; in fact, it is a very inefficient way
of solving the problem. However, it is useful to demonstrate how the Green
function method can be used to generate the solution to this problem. This
simple test of the theory helps to familiarize us with the working of the method
in practice. The action for a one-dimensional-particle system is

S =
∫

dt

{
−1

2
mẋ2 − Fx

}
. (7.1)

The variation of the action leads to

δS =
∫

dt {mẍ − F} δx +�(mẋ)δx = 0, (7.2)

which gives us the equation of motion

F = mẍ (7.3)

and the continuity condition

�(mẋ) = 0, (7.4)
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132 7 Examples and applications

which is the conservation of momentum. The equation of motion can be written
in the form of ‘operator acting on field equals source’,

Dx = J, (7.5)

by rearranging

∂2
t x(t) = F/m. (7.6)

Clearly, we can integrate this equation directly with a proper initial condition
x(t0) = x0, ẋ(t0) = v, to give

x(t)− x0 = F

2m
(t − t0)+ v(t − t0). (7.7)

But let us instead try to use the Green function method to solve the problem.
There are two ways to do this: the first is quite pointless and indicates a
limitation of the Green function approach, mentioned in section 5.2.4. The
second approach demonstrates a way around the limitation and allows us to see
the causality principle at work.

Method 1 The operator on the left hand side of eqn. (7.6) is ∂2
t , so we define a

Green function

∂2
t G(t, t ′) = δ(t, t ′). (7.8)

As usual, we expect to find an integral expression by Fourier transforming the
above equation:

G(t − t ′) =
∫

dω

2π

e−iω(t−t ′)

−ω2
. (7.9)

This expression presents us with a problem, however: it has a non-simple pole,
which must be eliminated somehow. One thing we can do is to re-write the
integral as follows:

G(t − t ′) =
∫

dt̃
∫

dt̃
∫

dω

2π
e−iωt̃ ,

=
∫

dt̃
∫

dt̃ δ(t̃), (7.10)

where t̃ = t − t ′. It should be immediately clear that this is just telling us to
replace the Green function with a double integration (which is how one would
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7.1 Free particles 133

normally solve the equation). We obtain two extra, unspecified integrals:

x(t) =
∫

dt ′ G(t, t ′)F/m

=
∫

dt̃dt̃dt ′ δ(t − t ′)F/m

=
∫

dt̃dt̃ F/m

=
∫

dt̃
[
F/m(t − t ′)+ v]

= F

2m
(t − t0)

2 + v(t − t0)+ x0. (7.11)

So, the result is the same as that obtained by direct integration and for the
same reason: the Green function method merely adds one extra (unnecessary)
integration and re-directs us to integrate the equation directly. The problem here
was that the denominator contained a non-simple pole. We can get around this
difficulty by integrating it in two steps.

Method 2 Suppose we define a Green function for the linear differential operator

∂t g(t, t ′) = δ(t, t ′). (7.12)

From section A.2, in Appendix A, we immediately recognize this function as the
Heaviside step function. (We could take the Fourier transform, but this would
only lead to an integral representation of the step function.) The solution has
advanced and retarded forms

gr(t, t
′) = θ(t − t ′)

ga(t, t
′) = −θ(t ′ − t). (7.13)

Now we have an integrable function, which allows us to solve the equation in
two steps:

∂t x(t) =
∫

dt ′ gr(t, t
′) F/m

= F

m
(t − t ′)+ ∂t x(t ′) (t > t ′). (7.14)

Then, applying the Green function again,

x(t) =
∫

dt ′ gr(t − t ′)
[

F

m
(t − t ′)+ ∂t x(t ′)

]

= F

2m
(t − t0)

2 + v(t − t0)+ x0. (7.15)
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Again we obtain the usual solution, but this time we see explicitly the causality
inferred by a linear derivative. The step function tells us that the solution only
exists for a causal relationship between force F and response x(t).

7.1.1 Velocity distributions

In a field of many particles, there is usually a distribution of velocities or
momenta within the field. In a particle field this refers to the momenta pi of
individual localizable particles. In other kinds of field there is a corresponding
distribution of wavenumbers ki of the wave modes which make up the field.
The action describes the dynamics of a generic particle, but it does not capture
the macroscopic state of the field. The macrostate is usually described in terms
of the numbers of components (particles or modes) with a given momentum or
energy (the vector nature of momentum is not important in an isotropic plasma).

The distribution function f is defined so that its integral with respect to the
distribution parameter gives the number density or particles per unit volume. We
use a subscript to denote the control variable:

N =
∫

dnk fk(k)

=
∫

dnp f p(p)

=
∫

dnv fv(v). (7.16)

This distribution expresses averages of the field. For example, the average
energy is the weighted average of the energies of the different momenta:

〈E〉 = 1

N

∫
dnk fk(k)E(k). (7.17)

7.2 Fields of bound particles

A field of particles, sometimes called a plasma when charged, is an effective
field, formed from the continuum approximation of discrete particles. Its
purpose is to capture some of the bulk dynamics of material systems; it should
not be confused with the deeper description of the atoms and their sub-atomic
components in terms of fundamental fields which might focus on quite different
properties, not relevant for the atoms in a bulk context. The starting point for
classical analyses of atomic systems coupled to an electromagnetic field is the
idea that matter consists of billiard-ball atoms with some number density ρN ,
and that the wavelength of radiation is long enough to be insensitive to the
particle nature of the atoms. The only important fact is that there are many
particles whose combined effect in space is to act like a smooth field. When
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7.2 Fields of bound particles 135

perturbed by radiation (which we shall represent as an abstract source Ji ) the
particles are displaced by a spatial vector si where i = 1, 2, . . . , n. The action
for this system may be written

Seff = 1

σx

∫
(dx)

{
−1

2
mṡ2 + 1

2
κs2 − mγ sṡ − J i si

}
. (7.18)

This requires some explanation. The factor of the spatial volume of the total sys-
tem, σx , reflects the fact that this is an effective average formulation. Dividing
by a total scale always indicates an averaging procedure. As an alternative to
using this explicit value, we could use the average density, ρ = m/σx , and other
parameter densities to express the action in appropriate dimensions. The first
term is a kinetic energy term, which will describe the acceleration of particles
in response to the forcing term J i . The second term is a harmonic oscillator
term, which assumes that the particles are bound to a fixed position si = 0, just
as electrons are bound to atoms or ions are bound in a lattice. The effective
spring constant of the harmonic interaction is κ . Because si (x) represents the
displacement of the particles from their equilibrium position, we use the symbol
si rather than xi , since it is not the position which is important, but the deviation
from equilibrium position. The dimensions of si (x) are position divided by the
square-root of the density because of the volume integral in the action, and si (x)
is a function of xµ because the displacement could vary from place to place and
from time to time in the system. The final term in eqn. (7.18) is a term which will
provide a phenomenological damping term for oscillations, as though the system
were leaky or had friction. As we have already discussed in section 4.2, this kind
of term is not well posed unless there is some kind of boundary in the system
which can leak energy. The term is actually a total derivative. Nevertheless,
since this is not a microscopic fundamental theory, it is possible to make sense
of this as an effective theory by ‘fiddling’ with the action. This actually forces
us to confront the reason why such terms cannot exist in fundamental theories,
and is justifiable so long as we are clear about the meaning of the procedure.

The variation of the action is given, after partial integration, by

δS = 1

σx

∫
(dx) {ms̈i + κsi − mγ ṡi + mγ ṡi − Ji } δsi

+ 1

σx

∫
dσ [mṡi + mγ si ] δs

i . (7.19)

The terms containing γ clearly cancel, leaving only a surface term. But suppose
we divide the source into two parts:

J i = J i
γ + J i

s , (7.20)

where J i
γ is postulated to satisfy the equation

−mγ ṡi = J i
γ . (7.21)
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This then has the effect of preventing the frictional terms from completely
disappearing. Clearly this is a fiddle, since we could have simply introduced
a source in the first place, with a velocity-dependent nature. However, this
is precisely the point. If we introduce a source or sink for the energy of the
system, then it is possible to violate the conservational properties of the action
by claiming some behaviour for J i which is not actually determined by the
action principle. The lesson is this: if we specify the behaviour of a field rather
than deriving it from the action principle, we break the closure of the system
and conservation laws. What this tells us is that dissipation in a system has to
come from an external agent; it does not arise from a closed mechanical theory,
and hence this description of dissipation is purely phenomenological. Taking
eqn. (7.21) as given, we have the equation of motion for the particles

ms̈i − mγ ṡi + κs = J i
s , (7.22)

with continuity condition

�(mṡ + mγ s) = 0. (7.23)

It is usual to define the natural frequency ω2
0 = κ/m and write

(∂2
t − γ ∂t + ω2

0)s
i (x) = J i

s

m
. (7.24)

If we consider a plane wave solution of the form

s(x) =
∫
(dk) ei(ki xi−ωt)s(k), (7.25)

then we may write

(−ω2 + iγω + ω2
0)s

i (k) = J i
s (k)

m
. (7.26)

From this we see that the Green function Gi j (x, x ′) for si (x) is

Gi j (x, x ′) = δi j

∫
(dk)

ei(ki xi−ωt)

(−ω2 + iγω + ω2
0)
. (7.27)

As long as the integral contains both positive and negative frequencies, this
function is real and satisfies retarded boundary conditions. It is often referred to
as the susceptibility, χi j . In a quantum mechanical treatment, h̄ω0 = E2− E1 is
the difference between two energy levels.

Notice that the energy density

Pi Ei =
∫

Ei (x)Gi j (x, x ′)E j (x
′) (dx ′) (7.28)
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7.3 Interaction between matter and radiation 137

cannot be expressed in terms of a retarded Green function, since the above
expression requires a spacetime symmetrical Green function. The Feynman
Green function is then required. This indicates that the energy of the field
is associated with a statistical balance of virtual processes of emission and
absorption, rather than simply being a process of emission. In general, the
interaction with matter introduces an imaginary part into the expression for the
energy, since the Green function idealizes the statistical processes by treating
them as steady state, with no back-reaction. It thus implicitly assumes the
existence of an external source whose behaviour is unaffected by the response
of our system. The energy density reduces to E2 in the absence of material
interactions and the result is then purely real.

7.3 Interaction between matter and radiation

Classical field theory is normally only good enough to describe non-interacting
field theories. A complete description of interactions requires the quantum
theory. The exception to this rule is the case of an external source. In
electromagnetism we are fortunate in having a system in which the coupling
between matter and radiation takes on the form of a linear external source Jµ,
so there are many systems which behave in an essentially classical manner.

7.3.1 Maxwell’s equations

The interaction between matter and radiation begins with the relativistically
invariant Maxwell action

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
. (7.29)

The variation of the action,

δS =
∫
(dx)

{
(∂µδAν)Fµν − JµδAµ

}
=

∫
(dx)

{
δAν(−∂µFµν)− JµδAµ

}+ ∫
dσµ

{
δAνFµν

}
= 0, (7.30)

leads immediately to the field equations for the electromagnetic field interacting
with charges in an ambient vacuum:

∂µFµν = −µ0 J ν. (7.31)

The spatial continuity conditions are

�Fiµ = 0, (7.32)
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or

�Ei = 0

�Bi = 0. (7.33)

7.3.2 Electromagnetic waves

In the Lorentz gauge, ∂µAµ = 0, Maxwell’s equations (7.31) reduce to

− Aµ = Jµ. (7.34)

The solution to this equation is a linear combination of a particular integral
with non-zero Jµ and a complementary function with Jµ = 0. The free-field
equation,

− Aµ = 0, (7.35)

is solved straightforwardly by taking the Fourier transform:

Aµ(x) =
∫

dn+1k

(2π)n+1
eikµxµ Aµ(k). (7.36)

Substituting into the field equation, we obtain the constraint

χ(k) = k2 = kµkµ =
(
−ω

2

c2
+ ki ki

)
= 0. (7.37)

This is the result we found in eqn. (2.52), obtained only slightly differently. The
retarded and Feynman Green functions for the field clearly satisfy

− Dµν(x, x ′) = gµν cδ(x, x ′). (7.38)

Thus, the solution to the field in the presence of the source is, by analogy with
eqn. (5.41),

Aµ(x) =
∫
(dx ′)Dµν(x, x ′)J ν(x ′)

=
∫
(dk) eikµ(x−x ′)µ

[
1

k2
+ X (k)δ(k2)

]
J (x ′), (7.39)

where X (k) is an arbitrary and undetermined function. In order to determine
this function, we need to make some additional assumptions and impose some
additional constraints on the system.
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7.3 Interaction between matter and radiation 139

7.3.3 Dispersion and the Faraday effect

When linearly polarized electromagnetic waves propagate through a magnetized
medium, in the direction of the applied magnetization, the plane of polarization
becomes rotated in an anti-clockwise sense about the axis of propagation by an
amount proportional to z, where z is the distance travelled through the medium.
The angle of rotation

ψ = V Bz, (7.40)

where B is the magnetic field and V is Verdet’s constant, the value of which
depends upon the dielectric properties of the material. This phenomenon is
important in astronomy in connection with the polarization of light from distant
stars. It is also related to optical activity and the Zeeman effect.

Classical descriptions of this effect usually involve a decomposition of the
electric field vector into two contra-rotating vectors which are then shown
to rotate with different angular velocities. The sum of these two vectors
represents the rotation of the polarization plane. An alternative description can
be formulated in complex coordinates to produce the same result more quickly
and without prior assumptions about the system.

Let us now combine some of the above themes in order to use the action
method to solve the Faraday system. Suppose we have a particle field, si (x), of
atoms with number density ρN , which measures the displacement of optically
active electrons −e from their equilibrium positions, and a magnetic field B =
B3, which points along the direction of motion for the radiation. In the simplest
approximation, we can represent the electrons as being charges on springs with
spring constant κ . As they move, they generate an electric current density

Ji = −eρN ṡi . (7.41)

Since the Faraday effect is about the rotation of radiation’s polarization vector
(which is always perpendicular to the direction of motion x3), we need only si

for i = 1, 2. The action then can be written

S = 1

σx

∫
(dx)

{
−1

2
m(∂t s)(∂t s)+ 1

2
eBεi j s

i (∂t s)+ ksi si − J i si

}
.

(7.42)

Here, J i is an external source which we identify with the radiation field

J i (x) = −eEi (x) = −e

c
F0i (x). (7.43)

As is often the case with matter–radiation interactions, the relativistically
invariant electromagnetic field is split into Ei , Bi by the non-relativistically
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invariant matter field si . The field equations are now obtained by varying the
action with respect to δsi :

δS =
∫
(dx)

{
ms̈i + eBεi j ṡ

j + κsi − Ji
}
δsi

+
∫

dσ
[
mṡi + eBεi j s

j
]
δsi . (7.44)

Thus, the field equations are

ms̈i + eBεi j ṡ
j + κsi = Ji = −eEi , (7.45)

and continuity of the field requires

�(mṡi ) = 0

�(eBεi j s
j ) = 0. (7.46)

The first of these is simply the conservation of momentum for the electrons.
The latter tells us that any sudden jumps in the magnitude of magnetic field
must be compensated for by a sudden jump in the amplitude of the transverse
displacement.

If we compare the action and the field equations with the example in section
7.2, it appears as though the magnetic field has the form of a dissipative term.
In fact this is not the case. Magnetic fields do no work on particles. The crucial
point is the presence of the anti-symmetric matrix εi j which makes the term well
defined and non-zero.

Dividing eqn. (7.45) through by the mass, we can defined the Green function
for the si (x) field:[(

d2

dt2
+ ω2

0

)
δi j + eB

m
εi j

]
G jk(x, x ′) = δik(x, x ′), (7.47)

where ω2
0 = κ/m, so that the formal solution for the field is

si (x) =
∫
(dx ′)Gi j (x, x ′)J j (x ′). (7.48)

Since we are interested in coupling this equation to an equation for the radiation
field Ji , we can go no further. Instead, we turn to the equation of motion (7.34)
for the radiation. Because of the gauge freedom, we may use a gauge in which
A0 = 0, this simplifies the equation to

− Ai = µ0 J e
i

Ei = −∂t Ai . (7.49)

Thus, using the Green function Di j (x, x ′),

− Di j (x, x ′) = δi j cδ(x, x ′), (7.50)
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for Ai (x), we may write the solution for the electric field formally as

Ei (x) = −µ0∂t

∫
(dx ′)Di j (x, x ′)(−eρN ṡ j (x

′)) = −Ji/e. (7.51)

This result can now be used in eqn. (7.45), giving[(
d2

dt2
+ ω2

0

)
δi j + eBω

m
εi j

]
sj(x) =

−e2

m
ρNµ0 ∂t

∫
(dx ′)D jk(x, x ′)ṡk . (7.52)

Operating from the left with − x
, we have

(− )

[(
d2

dt2
+ ω2

0

)
δi j + eBω

m
εi j

]
sj(x) = −e2

m
ρNµ0s̈i . (7.53)

This is a matrix equation, with a symmetric part proportional to δi j and an anti-
symmetric part proportional to εi j . If we take plane wave solutions moving
along the x3 = z axis,

si (x) =
∫

dn+1k

(2π)n+1
ei(kz z−ωt)si (k)δ(χ)

Ei (x) =
∫

dn+1k

(2π)n+1
ei(kz z−ωt)Ei (k)δ(χ), (7.54)

for the dispersion relation χ implied by eqn. (7.53), eqn. (7.53) implies that the
wavenumber kz must be a matrix in order to find a solution. This is what will
lead to the rotation of the polarization plane for Ei . Substituting the above form
for si (x) into eqn. (7.53) leads to the replacements ∂z → ikz and ∂t → −iω.
Thus the dispersion relation is

χ =
(

k2
z −

ω2

c2

)[
(−ω2 + ω2

0)δi j + eBω

m
εi j

]
− e2

m
ρNµ0ω

2 δi j = 0,

(7.55)

or re-arranging,

k2
z i j =

ω2

c2


δi j +

e2

mε0
ρN

[
(ω2 + ω2

0)δi j + eBω
m εi j

]
(−ω2 + ω2

0)
2 − ( eBω

m )
2


 . (7.56)

This only makes sense if the wavenumber kz is itself a matrix with a symmetric
and anti-symmetric part:

kz i j = kδi j + k̃εi j . (7.57)
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It is the anti-symmetric part which leads to a rotation of the plane of polarization.
In fact, kz has split into a generator of linear translation k plus a generator or
rotations k̃ about the z axis:

kz = k ×
(

1 0
0 1

)
+ k̃ ×

(
0 1
−1 0

)
. (7.58)

The exponential of the second term is(
cos(k̃z) sin(k̃z)
− sin(k̃z) cos(k̃z)

)
, (7.59)

so k̃ is the rate of rotation. Using a binomial approximation for small B, we can
write simply

k̃z i j =
e3 B

2mε0
ρN

(−ω2 + ω2
0)

2 − ( eBω
m )

2
. (7.60)

Verdet’s constant is defined by the phenomenological relation,

k̃z = V Bz, (7.61)

so we have

V = Ne3ω2

2m2cε0|(ω2
o − ω2)2 − (eBω/m)2| . (7.62)

7.3.4 Radiation from moving charges in n = 3: retardation

The derivation of the electromagnetic field emanating from a charged particle
in motion is one of the classic topics of electrodynamics. It is an important
demonstration of the Green function method for two reasons. First of all, the
method of Green functions leads quickly to the answer using only straightfor-
ward algebraic steps. Prior to the Green function method, geometrical analyses
were carried out with great difficulty. The second reason for looking at this
example here is that it brings to bear the causal or retarded nature of the physical
field, i.e. the property that the field can only be generated by charge disturbances
in the past. This retardation property quickly leads to algebraic pitfalls, since the
dynamical variables become defined recursively in term of their own motion in
a strange-loop. Unravelling these loops demonstrates important lessons.

We begin by choosing the Lorentz gauge for the photon propagator with α =
1. This choice will give the result for the vector potential in a form which is most
commonly stated in the literature. Our aim is to compute the vector potential
Aµ(x), and thence the field strength Fµν , for a particle at position xp(t) which
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is in motion with speed v = ∂t xp(t). The current distribution for a point particle
is singular, and may be written

Jµ = qcβµ δn(x− xp(t)). (7.63)

The vector potential is therefore, in terms of the retarded propagator,

Aµ(x) = µ0

∫
(dx ′) Gr(x, x ′)Jµ(x ′)

= q

4πε0c

∫
(dx ′) βµ(t ′)

δ
(
c(t ′ − tret)

)
|x− x′| δ

(
x′ − xp(t)

)
, (7.64)

where the retarded time is defined by tret = t−|x−x′|/c. Performing the integral
over x0′ in the presence of the delta function sets t ′ → tret:

Aµ(x) = q

4πε0c

∫
dσx ′

βµ(tret)δ
(
x′ − xp(tret)

)
|x− x′| . (7.65)

Here x is a free continuous coordinate parameter, which varies over all space
around the charge, and xp(tret) is the retarded trajectory of the charge q. We may
now perform the remaining integral. Here it is convenient to change variables.
Let ∫

dσx ′δ(x′ − xp(tret)) =
∫

dσrδ(r)|J |, (7.66)

where J = det Ji j and

J−1
i j = ∂ ′i r j = ∂ ′i (x ′ − x p(tret)) j

= gi j −
∂xi

p

∂tret

∂tret

∂xi ′ , (7.67)

is the Jacobian of the transformation. At this stage, tret is given by tret = t −
|x − x′|/c, i.e. it does not depend implicitly on itself. After the integration we
are about to perform, it will. We complete the integration by evaluating the
Jacobian:

∂ ′i tret = r̂i

c

J−1
i j = gi j − v j

c
r̂i

det J−1
i j = (1− β i r̂i )

∣∣∣
tret

. (7.68)

The last line uses the fact that ri depends only on x ′i , not on x j for i �= j . In this
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instance, the determinant becomes 1+ Tr(J−1
i j ), giving

Aµ(x) = q

4πε0c

∫
dσr

βµ(tret)δ(r)
|x− xp(tret)− r|

= qβµ(tret)

4πε0cκ|x− xp| , (7.69)

where κ ≡ (1 − β · r̂), and all quantities (including κ itself) are evaluated at
tret. If we define the light ray rµ as the vector from xp to x, then rµ = (r, r)
and r = |r|, since, for a ray of light, r = c�t = c × r/c. Finally, noting that
rκ = −rµβµ, we have the Liénard–Wiechert potential in the Lorentz gauge,

Aµ(x) = −q

4πε0c

(
βµ

rµβµ

)
tret

. (7.70)

To proceed with the evaluation of the field strength Fµν , or equivalently the
electric and magnetic fields, it is useful to derive a number of relations which
conceal subtleties associated with the fact that the retarded time now depends
on the position evaluated at the retarded time. In other words, the retarded time
tret satisfies an implicit equation

tret = t − |x− xp(tret)|
c

= t − r

c
. (7.71)

The derivation of these relations is the only complication to this otherwise purely
algebraic procedure. Differentiating eqn. (7.71) with respect to tret, we obtain

1 = ∂t

∂tret
+ r̂ iβi (tret)

∂t(tret) = κ−1
∣∣∣
tret

. (7.72)

Moreover,

(∂i tret) = −1

c
(∂i r), (7.73)

(∂i r) = ∂i

√
r jr j

= r̂ j (∂i r j ), (7.74)

(∂i r j ) = gi j −
∂x p j

∂tret
(∂i tret)

= gi j + β j (∂i r) (7.75)

(∂i r j ) = gi j + β j r̂
k(∂i rk). (7.76)

The last line cannot be simplified further; however, on substituting eqn. (7.76)
into eqn. (7.74), it is straightforward to show that

(∂i r)(1− (r̂ · β)2) = r̂i (1+ r̂ · β), (7.77)
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and thus

(∂i r) = r̂i

κ
. (7.78)

This may now be substituted back into eqn. (7.75) to give

(∂i r j ) = gi j + β j r̂i

κ
. (7.79)

Continuing in the same fashion, one derives the following relations:

(∂0r) = − r̂ iβi

κ

(∂0r i ) = −β
i

κ

(∂i r) = r̂i

κ

(∂i r j ) = gi j + β j r̂i

κ
.

(∂0βi ) = αi

κ

(∂iβ j ) = − r̂iα j

κ

∂0(rκ) = 1

κ

(
β2 − r̂ · β − α · r)

∂i (rκ) = r̂i

κ

(
1− β2 + α · r)− βi , (7.80)

where we have defined αµ = ∂0βµ = (0, v̇/c2). The field strength tensor may
now be evaluated. From eqn. (7.70) one has

Fµν = ∂µAν − ∂ν Aµ

= q

4πε0c

[
∂µβν − ∂νβµ

rκ
− (βν∂µ − βµ∂ν)(rκ)

r2κ2

]
. (7.81)

And, noting that β0 = −1 is a constant, we identify the three-dimensional
electric and magnetic field vectors:

Ei = cFi0

= −q

4πε0

[
∂0βi

rκ
− (βi∂0 − β0∂i )(rκ)

r2κ2

]

= −q

4πε0

[
αi

κ2r
+ (βi − r̂i )

r2κ3

(
α · r+ (1− β2)

)]
. (7.82)

https://doi.org/10.1017/9781009289887.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.009


146 7 Examples and applications

Bi = 1

2
εi jk Fjk

= q

4πε0c
εi jk

[
∂ jβk

rκ
− (βk∂ j )(rκ)

r2κ2

]

= −q

4πε0c
εi jkr̂ j

[
αk

κ
+ βk

r2κ3

(
α · r+ (1− β2)

)]
(7.83)

= 1

c
εi jkr̂ j Ek

= 1

c
(r̂× E)i . (7.84)

From these relations, it is clear that the magnetic field is perpendicular to both
the light ray r and the electric field. The electric field can be written as a sum of
two parts, usually called the radiation field and the near field:

Ei rad =
q

4πε0c

[
αi

κ2r
+ (βi − r̂i )(α · r̂)

κ3r

]
(7.85)

Ei near =
q

4πε0c

[
(βi − r̂i )(1− β2)

r2κ3

]
. (7.86)

The near field falls off more quickly than the long-range radiation field. The
radiation field is also perpendicular to the light ray r̂. Thus, the far-field electric
and magnetic vectors are completely transverse to the direction of propagation,
but the near-field electric components are not completely transverse except at
very high velocities β ∼ 1. Note that all of the vectors in the above expressions
are assumed to be evaluated at the retarded time.

Owing to their special relationship, the magnitude of the magnetic and electric
components are equal up to dimensional factors:

|E|2 = c2|B|2. (7.87)

Finally, the rate of work or power expended by the field is given by Poynting’s
vector,

Si = εi jk E j Hk

= (µ0c)−1εi jk E j (r̂× E)k
= ε0cεi jk E j (εklmr̂l Em)

S = −ε0c(E · E)r̂. (7.88)

7.4 Resonance phenomena and dampening fields

In the interaction between matter and radiation, bound state transitions lead to
resonances, or phenomena in which the strength of the response to a radiation
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field is amplified for certain frequencies. Classically these special frequencies
are the normal modes of vibration for spring-like systems with natural frequency
ω0; quantum mechanically they are transitions between bound state energy
levels with a definite energy spacing ω0 = (E2 − E − 1)/h̄. The examples
which follow are all cases of one mathematical phenomenon which manifests
itself in several different physical scenarios. We see how the unified approach
reveals these similarities.

7.4.1 Cherenkov radiation

The radiation emitted by charged particles which move in a medium where
the speed of light is less than the speed of the particles themselves is called
Cherenkov radiation. The effect was observed by Cherenkov [25] and given
a theoretical explanation by Tamm and Frank [127] within the framework
of classical electrodynamics. The power spectrum of the radiation may be
calculated with extraordinary simplicity using covariant field theory [122].

Using the covariant formulation in a material medium from section 21.2.4
and adapting the expression in eqn. (5.118) for the Maxwell field, we have the
Feynman Green function in the Lorentz–Feynman α = 1 gauge, given by

DF(x, x ′) = −i

4π2c2|x− x′|
∫ ∞

0
dω sin

(nω

c
|x− x′|

)
e−iω|t−t ′|,

(7.89)

where n is the refractive index of the medium. Note that this index is assumed
to be constant here, which is not the case in media of interest. One should
really consider n = n(ω). However, the expressions generated by this form will
always be correct in ω space for each value of ω, since the standard textbook
assumption is to ignore transient behaviour (t-dependence) of the medium. We
may therefore write the dissipation term as

W = µ0µr

∫
(dx)(dx ′) Ĵµ(x)D̂Fµν(x, x ′) Ĵ ν(x ′), (7.90)

and we are interested in the power spectrum which is defined by∫
dω

P(ω)

ω
= 2

h̄
Im

dW

dt
. (7.91)

Substituting in expressions for Ĵµ, we obtain

ImW = − 1

8π2

∫
dω(dx)(dx ′)

µ0µr sin( nω
c |x− x′|)

c2|x− x′|
× cos(ω|t − t ′|) Ĵµ Ĵµ, (7.92)
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from which we obtain

P(ω) = −ωµ0µr

4π2n2

∫
dσx(dx ′)

sin( nω
c |x− x′|)

n2|x− x′| cos(ω|t − t ′|)

×
[
ρ(x)ρ(x ′)− n2

c2
J i (x)Ji (x

′)
]
. (7.93)

The current distribution for charged particles moving at constant velocity is

ρ = qδ(x− vt)

J i = qviδ(x− vt); (7.94)

thus we have

P(ω, t) = q2

4π2

µ0µrωβ

c

(
1− 1

n(ω)2β2

)∫ ∞

−∞
sin(nβωτ) cos(ωτ)dτ

=
{

0 nβ < 1
q2

4π
µ0µrωβ

c

(
1− 1

n2β2

)
nβ > 1.

(7.95)

This is the power spectrum for Cherenkov radiation, showing the threshold
behaviour at nβ = 1. We have derived the Cherenkov resonance condition
for charges interacting with electromagnetic radiation. The Cherenkov effect is
more general than this, however. It applies to any interaction in which particles
interact with waves, either transverse or longitudinal.

7.4.2 Cyclotron radiation

Cyclotron, or synchrotron, radiation is emitted by particles accelerated by a
homogeneous magnetic field. Its analysis proceeds in the same manner as that
for Cherenkov radiation, but with a particle distribution executing circular rather
than linear motion. For the current, one requires

ρ = qδ(x− x0)

J i = qviδ(x− x0), (7.96)

where x0 is the position of the charged particle. Since the electromagnetic field
is not self-interacting, the Green function for the radiation field is not affected by
the electromagnetic field in the absence of a material medium. In the presence
of a polarizable medium, there is an effect, but it is small. (See the discussion
of Faraday rotation.)

The force on charges is

Fi = dpi

dt
= q(v× B)i

= q Fi jv
j , (7.97)
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and, since this is always perpendicular to the motion, no work is done; thus the
energy is a constant of the motion:

dE

dt
= 0. (7.98)

The generic equation of circular motion is

dvi

dt
= (ω × v)i , (7.99)

which, in this case, may be written as

dvi

dt
= q

m

√
1− β2(v× B)i , (7.100)

where pi = mvi/
√

1− β2 and βi = vi/c. Thus, the angular frequency of orbit
is the Larmor frequency,

ωi = −q Bi

m

√
1− β2 = −q Bi c2

E
, (7.101)

which reduces to the cyclotron frequency, ωc " eB/m, in the non-relativistic
limit βi → 0. The radius of revolution is correspondingly

R = |v|
ω
= mcβ

|q|B
√

1− β2
. (7.102)

The primary difficulty in analysing this problem is a technical one associated
with the circular functions. Taking boundary conditions such that the particle
position is given by

x1(t) = R cos(ωt)

x2(t) = R sin(ωt)

x3(t) = 0, (7.103)

one finds the velocity

v1(t) = −Rω sin(ωt)

v2(t) = Rω cos(ωt)

v3(t) = 0. (7.104)

This may be substituted into the current in order to evaluate the power spectrum.
This is now more difficult: one can use an integral representation of the delta
function, such as the Fourier transform; this inevitably leads to exponentials
of sines and cosines, or Bessel functions. We shall not pursue these details of
evaluation here. See ref. [121] for further study of this topic.
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7.4.3 Landau damping

Landau damping is the name given to the dissipative mixing of momenta in
any particle field or plasma which interacts with a wave. The phenomenon of
Landau damping is quite general and crops up in many guises, but it is normally
referred to in the context of the interaction of a plasma with electromagnetic
waves. In a collisionless plasma (no scattering by self-interaction), there is still
scattering by the interaction of plasma with the ambient electromagnetic field,
similar to the phenomenon of stimulated absorption/emission. However, any
linear perturbation or source can cause the energy in one plasma mode to be re-
channelled into other modes, thus mixing the plasma and leading to dissipation.
All one needs is a linear interaction between the waves and the plasma field, and
a resonant amplifier, which tends to exaggerate a specific frequency.

In simple terms, a wave acts like a sinusoidal potential which scatters and
drags the particle field. If the phase of the field is such that it strikes the upward
slope of the wave, it is damped or reflected, losing energy. If the phase is such
that the field ‘rolls down’ the downward slope of the wave, it is enhanced and
gains energy. In a random system, the average effect is to dissipate or to dampen
the field so that all particles or field modes tend to become uniform. In short,
Landau damping is the re-organization of energy with the modes of a field due
to scattering off wavelets of another field.

Let us consider an unbound particle displacement field with action

S = 1

σx

∫
(dx)

{
−1

2
mṡ2 − J i si

}
, (7.105)

coupled through the current Ji to the electromagnetic field. The position of a
particle is

xi = xi + δxi = xi + si , (7.106)

and its velocity is

ẋ i = vi + δv. (7.107)

The velocity of a free particle is constant until the instant of its infinitesimal
perturbation by a wave, so we write

xi = vt, (7.108)

so that

kµ xµ = ki x
i − ωt = ki s

i + (kiv
i − ω)t. (7.109)

The perturbation is found from the solution to the equation of motion:

si =
∫
(dx)Gi j (x, x ′)E j (x

′), (7.110)
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or

δvi = q

m
Re

Ei
0 exp i

(
ki si + (kiv

i − ω)t ± γ t
)

i(kiv
i − ω)± γ

si = q

m
Re

Ei
0 exp i

(
ki si + (kiv

i − ω)t ± γ t
)

[
i(kiv

i − ω)± γ ]2 . (7.111)

An infinitesimal regulating parameter, γ , is introduced here in order to define a
limit in what follows. This has causal implications for the system. It means that
the field either grows from nothing in the infinite past or dissipates to nothing
in the infinite future. This is reflected by the fact that its sign determines the
sign of the work done. Eventually, we shall set γ to zero. The work done by
this interaction between the charged particle q and the electric field Ei is q Ei xi .
The rate of work is

q
d

dt

[
Ei x

i
] = q∂t Ei xi + Eiv

i . (7.112)

The two terms signify action and reaction, so that the total rate of work is zero,
expressed by the total derivative. The second term is the rate of work done
by the charge on the field. It is this which is non-zero and which leads to the
dampening effect and apparent dissipation. Following Lifshitz and Pitaevskii
[90], we calculate the rate of work per particle as follows,

dw

dt
= Re qvi Ei

= Re q(vi + δvi )E(t, x+ s)

= Re q(vi + δvi )(Ei (t, x)+ ∂ j Ei (t, x)s j + · · ·). (7.113)

To first order, the average rate of work is thus〈
dw

dt

〉
= Re qvi 〈(∂ j Ei )s

i 〉 + Re q〈δvi Ei 〉

= 1

2
qvi (∂ j E∗i )s

i + 1

2
qδvi E∗i . (7.114)

Here we have used the fact that

Re A = 1

2
(A + A∗) (7.115)

and

〈Re A · Re B〉 = 1

4
(AB∗ + A∗B) = 1

2
Re (AB∗), (7.116)
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since terms involving A2 and B2 contain e2iωt average to zero over time (after
setting γ → 0). Substituting for si and δvi , we obtain〈

dw

dt

〉
= q2

2m
Ei E j

[
ivi k j

[i(kivi − ω)± γ ]2
+ δi j

[i(kivi − ω)± γ ]

]
.

(7.117)

The tensor structure makes it clear that the alignment, ki , and polarization, Ei
0, of

the electric wave to the direction of particle motion, vi , is important in deciding
the value of this expression. Physically, one imagines a wave (but not a simple
transverse wave) moving in direction ki and particles surfing over the wave in a
direction given by vi . The extent to which the wave offers them resistance, or
powers them along, decides what work is done on them. For transverse wave
components, ki Ei = 0, the first term vanishes. From the form of eqn. (7.117)
we observe that it is possible to write〈

dw

dt

〉
= q2

2m
Ei E j

d

d(kiv j )

[ ±γ (kmv
m)

[i(kivi − ω)± γ ]

]
, (7.118)

and, using

lim
γ→0

γ

z2 + γ 2
= π δ(z) (7.119)

we have 〈
dw

dt

〉
= ±q2π

m
Ei E j

d

d(kiv j )
(kiv

i )δ(k jv
j − ω). (7.120)

To avoid unnecessary complication, let us consider the contribution to this
which is most important in the dampening process, namely a one-dimensional
alignment of ki and vi :〈

dw

dt

〉
= ±q2π

2m
|E‖|2 d

d(kv)
(kv) δ(kv − ω). (7.121)

This expression is for one particle. For the whole particle field we must perform
the weighted sum over the whole distribution, f (ω), giving the total rate of
work: 〈

dW

dt

〉
= ±q2π

2m
|E‖|2

∫
dω f (ω)

d

d(kv)
(kv)δ(kv − ω)

= ∓q2π

m
|E‖|2

∫
dω

d f (ω)

dω
(kv)δ(kv − ω)

= ∓q2piω

2m
|E‖|2 d f (ω)

dω

∣∣∣∣∣
v=ω/k

. (7.122)
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The integral over the delta function picks out contributions when the velocity
of particles, vi , matches the phase velocity of the electromagnetic wave, ω/ki .
This result can now be understood either in real space from eqn. (7.114) or
in momentum space from eqn. (7.122). The appearance of the gradient of the
electric field in eqn. (7.114) makes it clear that the dissipation is caused as a
result of motion in the potential of the electric field. Eqn. (7.122) contains
d f/dω, for frequencies where the phase velocity is in resonance with the
velocity of the particles within the particle field; this tells us that particles with
v < ω/k gain energy from the wave, whereas v > ω/k lose energy to it (γ > 0).
The electric field will be dampened if the shape of the distribution is such that
there are more particles with v < ω/k than with v > ω/k. This is typical for
long-tailed distributions like thermal distributions.

This can be compared with the discussion in section 6.1.4.

7.4.4 Laser cooling

Another example of resonant scattering with many experimental applications is
the phenomenon of laser cooling. This can be thought of as Landau damping for
neutral atoms, using the dipole force as the breaking agent. We shall consider
only how the phenomenon comes about in terms of classical fields, and sketch
the differences in the quantum mechanical formulation. By now, this connection
should be fairly familiar. The shift in energy of an electromagnetic field by virtue
of its interaction with a field of dipoles moving at fractional speed β i is the work
done in the rest frame of the atom,

�W = −1

2

∫
dσx P(x) · E(x)

= q2

2m

∫
(dx ′)dσx Ei (x)Gβ

i j (x, x ′)E j (x ′), (7.123)

where

((1− β i )2∂2
t − γ ∂t + κ)Gβ

i j (x, x ′) = δi j cδ(x, x ′) (7.124)

(see eqn. (2.88)), and therefore the dipole force F on each atom may be deduced
from dW = F · dr. The imaginary part of the energy is the power exchanged
by the electromagnetic field, which is related to the damping rate or here the
cooling rate of the atoms. The force on an atom is the gradient of the real part
of the work:

Fβi = −
q2

2m

∫
dσx

x
∂i

[
E j (x)

∫
(dx ′)Gβ

jk(x, x ′)Ek(x ′)
]
. (7.125)

If we consider a source of monochromatic radiation interacting with the particle
field (refractive index ni ),

Ei (x) = Ei
0 eikx = Ei

0 ei(k·x−ωt), (7.126)
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Table 7.1. Doppler effect on momentum.

Resonance-enhanced Parallel Anti-parallel

(diagonal) k̂iβi > 0 k̂iβi < 0
ωβ > ω0 Fi β̂

i < 0 Fi β̂
i > 0

ωβ < ω0 Fi β̂
i > 0 Fi β̂

i < 0

where the frequency ω is unspecified but satisfies k2c2 = nω2, then we have

Fβi = −
q2

2m
E2

0ρN

∫
dσx ∂i

eix(k+k′)+ix ′(k′−k)

−ω2
β + ω2

0 + iγω

= − q2

2m
E2

0ρN

∫
dσx ∂i

ei2kx

−ω2
β + ω2

0 + iγω
. (7.127)

This expression contains forward and backward moving photons of fixed
frequency, ω, and wavenumber, ki . The sign of the force acting on the atoms
depends on the frequency relative to the resonant frequency, ω0, and we are
specifically interested in whether the force acts to accelerate the atoms or
decelerate them relative to their initial velocity. The fact that atoms in the
particle field move in all directions on average means that some will expe-
rience Doppler blue-shifted radiation frequencies and others will experience
red-shifted frequencies, relative to the direction of photon wavevector, ki . In
effect, the Doppler effect shifts the resonant peak above and below its stationary
value making two resonant ‘side bands’. These side bands can lead to energy
absorption. This is best summarized in a table (see table 7.1).

As the velocity component, vi = β i c, of a particle field increases, the value
of 1 − β i k̂i either increases (when k̂ and β i point in opposing directions) or
decreases (when k̂ and β i point in the same direction). The component of
velocity in the direction of the photons, Ei , is given by k̂iβi , and its sign has
two effects. It can bring ωβ closer to or further from the resonant frequency, ω0,
thus amplifying or attenuating the force on the particles. The force is greater
for those values which are closest to resonance. It also decides whether the sign
of the force is such that it tends to increase the magnitude of β i or decrease the
magnitude of β i . It may be seen from table 7.1 that the force is always such as to
make the velocity tend to a value which makes ωβ = ω0. Thus by sweeping the
value of ω from a value just above resonance to resonance, it should be possible
to achieve β i → 0. The lowest attainable temperature according to this simple
model is limited by the value of ω0.

In order to reduce all of the components of the velocity to minimal values, it is
desirable to bathe a system in crossed laser beams in three orthogonal directions.
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Such laser beams are called optical molasses, a kind of quagmire for resonant
particle fields. Clearly, systems with a low-frequency resonance are desirable in
order to push the magnitude of β i down to a minimum. The rate of energy loss
is simply the damping constant, γ .

7.5 Hydrodynamics

The study of the way in which bulk matter fields spread through a system is
called hydrodynamics. Because it deals with bulk matter, hydrodynamics is a
macroscopic, statistical discussion. It involves such ideas as flow and diffusion,
and is described by a number of essentially classical phenomenological equa-
tions.

7.5.1 Navier–Stokes equations

The Navier–Stokes equations are the central equations of fluid dynamics. They
are an interesting example of a vector field theory because they can be derived
from an action principle in two different ways. Fluid dynamics describes a
stationary system with a fluid flowing through it. The velocity is a function
of position and time, since the flow might be irregular; moreover, because the
fluid flows relative to a fixed pipe or container, the action is not invariant under
boosts.

Formulation as a particle field Using a ‘microscopic’ formulation, we can treat
a fluid as a particle displacement field without a restoring force (spring tension
zero). We begin by considering such a field at rest:

S =
∫
(dx)

{
1

2
ρ ṡ2 − 1

2
η(∂ i s j )

↔
∂t (∂i s,)+ si (Fi − ∂i P)

}
. (7.128)

Notice the term linear in the derivative which is dissipative and represents the
effect of a viscous frictional force (see section 7.2). η is the coefficient of
viscosity. In this form, the equations have made an assumption which relates
bulk and shear viscosity, leaving only a single effective viscosity. This is the
form often used experimentally. Varying the action with respect to si leads to
the field equation

−ρ s̈i + η∇2 ṡi + Fi − ∂i P = 0. (7.129)

Or, setting vi ≡ ṡi ,

ρv̇i − η∇2 vi + ∂i P = Fi . (7.130)

This is the equation of a velocity field at rest. In order to boost it into a moving
frame, we could re-define positions by xi → xi − vi t , but it is more convenient
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to re-define the time coordinate to so-called retarded time (see section 9.5.2).
With this transformation, we simple replace the time derivative for vi by

d

dtret
= ∂t + vi ∂ j . (7.131)

This gives

ρ
d

dtret
vi − η∇2 vi + ∂i P = Fi . (7.132)

In fluid dynamics, this derivative is sometimes called the substantive derivative;
it is just the total derivative relative to a moving frame. This transformation of
perspective introduces a non-linearity into the equation which was not originally
present. It arises physically from a non-locality in the system; i.e. the fact that
the velocity-dependent forces at a remote point lead to a delayed effect on the
velocity at local point. Put another way, the velocity at one point interacts
with the velocity at another point because of the flow, just as in a particle
scattering problem. In particle theory parlance, we say that the velocity field
scatters off itself, or is self-interacting. It would have been incorrect to apply
this transformation to the action before variation since the action is a scalar and
was not invariant under this transformation, thus it would amount to a change
of the physics. Since the action is a generator of constraints, it would have
additional consequences for the system, as we shall see below.

Formulation as an effective velocity field The description above is based upon
a microscopic picture of a fluid as a collection of particles. We need not think
like this, however. If we had never built a large enough microscope to be able to
see atoms, then we might still believe that a fluid were a continuous substance.
Let us then formulate the problem directly in terms of a velocity field. We may
write the action

S = τ
∫
(dx)

{
−1

2
ρ vi

↔
∂t vi + 1

2
η(∂ iv j )(∂iv j )− vi (Fi − ∂i P)

}
. (7.133)

The constant scale τ has the dimensions of time and is necessary on purely
dimensional grounds. The fact that we need such an arbitrary scale is an
indication that this is just an average, smeared out field theory rather than a
microscopic description. It has no physical effect on the equations of motion
unless we later attempt to couple this action to another system where the same
scale is absent or different. Such is the nature of dimensional analysis. The
linear derivatives in the action are symmetrized for the reasons discussed in
section 4.4.2. Varying this action with respect to the velocity vi , and treating ρ
as a constant for the time being, leads to

ρ ∂tvi − η∇2 vi + ∂i P = Fi . (7.134)
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Changing to retarded time, as before, we have the Navier–Stokes equation,

ρ ∂tvi + ρv j (∂ jvi )− η∇2 vi + ∂i P = Fi . (7.135)

Again, it would be incorrect to transform the action before deriving the field
equations, since the action is a scalar and it is not invariant under this transfor-
mation.

Consider what would have happened if we had tried to account for the
retardation terms in the action from the beginning. Consider the action

S = τ
∫
(dx)

{
−1

2
ρ vi

↔
∂t vi + 1

2
ρ vi (∂iv j )v

j − 1

2
ρ ∂i (v

iv j )v j

+ 1

2
η(∂ iv j )(∂iv j )− vi (Fi − ∂i P)

}
. (7.136)

The action is now non-linear from the beginning since it contains the same
retardation information as the transformed eqn. (7.132). The derivatives are
symmetrized also in spatial directions. The variation of the action is also more
complicated. We shall now let ρ depend on x . After some calculation, variation
with respect to vi leads to an equation which can be separated into parts:

(∂tρ)vi + ρvi (∂ jv
j )+ 1

2
(∂iρ)v

2 = 0

ρ (∂tvi )+ ρv j∂iv j − η∇2 vi + ∂i P = Fi . (7.137)

The first of these occurs because the density is no longer constant; it is
tantalizingly close to the conservation equation for current

−∂tρ = ∂i (ρv
i ), (7.138)

but alas is not quite correct. The equations of motion (7.137) are almost the
same as before, but now the derivative terms are not quite correct. Instead of

v j∂ jvi (7.139)

we have the symmetrical

v j∂iv j . (7.140)

This result is significant. The terms are not unrelated. In fact, since we can
always add and subtract a term, it is possible to relate them by

v j∂ jvi = v j (∂iv j )+ v j (∂ jvi − ∂iv j ). (7.141)

The latter term is the curl of the velocity. What this means is that the two terms
are equivalent provided that the curl of the velocity vanishes. It vanishes in
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the absence of eddies or other phenomena which select a preferred direction
in space or time. This is indicative of the symmetry of the action. Since the
action was invariant under space and time reversal, it can only lead to equations
of motion with the same properties. Physically, this restriction corresponds to
purely irrotational flow. Notice how the symmetry which is implicit in the action
leads directly to a symmetry in the field equations. The situation was different
in our first formulation, where we chose to transform the action to retarded time
(an intrinsically asymmetrical operation).

The problem of an x-dependent density ρ is not resolvable here. The
fundamental problem is that the flow equation is not reversible, whereas the
action would like to be. If we omit the non-linear terms, the problem of
finding an action which places no restriction on ρ is straightforward, though
not particularly well motivated. We shall not pursue this here. The lesson
to be learned from this exercise is that, because the action is a scalar, the
action principle will always tend to generate field equations consistent with the
symmetries of the fields it is constructed from. Here we have tried to generate
a term v j∂ jvi from an action principle, but the infinitesimal variation of this
term led to new constraints since action is spacetime-reflection-invariant. The
problem of accommodating an x-dependent density is confounded by these
other problems. In short, non-covariant analyses do not lend themselves to a
covariant formulation, but should be obtained as a special case of a more well
defined problem as in the first method.

7.5.2 Diffusion

Let us consider the rate at which conserved matter diffuses throughout a system
when unencumbered by collisions. Consider a matter current, Jµ, whose
average, under the fluctuations of the system, is conserved:

∂µ〈Jµ〉 = 0. (7.142)

We need not specify the nature of the averaging procedure, nor the origin of the
fluctuations here. Phenomenologically one has a so-called constitutive relation
[53], which expresses a phenomenological rate of flow in terms of local density
gradients:

〈Ji 〉 = −D∂i 〈ρ〉. (7.143)

Substituting this into the conservation equation gives

(∂t − D∇2)〈ρ〉 = 0. (7.144)

This is a diffusion equation, with diffusion coefficient D. If we multiply this
equation by the positions squared, x2, and integrate over the entire system,∫

dσ x2(∂t − D∇2)〈ρ〉 = 0, (7.145)
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we can interpret the diffusion constant in terms of the mean square displacement
of the field. Integrating by parts, and assuming that there is no diffusion at the
limits of the system, one obtains

∂t〈x2〉 − 2D ∼ 0, (7.146)

or

〈x2〉 ∼ 2Dt, (7.147)

which indicates that particles diffuse at a rate of
√

2D metres per unit time.
Notice that, since D characterizes the diffusion of averaged quantities, it need
not be a constant. We shall think of it as a slowly varying function of space and
time. The variation, however, must be so slow that it is effectively constant over
the dominant scales of the system. We shall derive a Kubo-type relation for this
quantity [53].

From eqn. (7.144), we may solve

〈ρ〉(x) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)ρ(k) δ(−iω − Dk2), (7.148)

or

G(±)(k) = 1

∓iω − Dk2
. (7.149)

Thus

〈ρ〉(x) =
∫

dnkdω

(2π)n+1
eik·x−Dk2tρ(k). (7.150)

To determine the effect of fluctuations in this system, consider adding an
infinitesimal source,

(∂t − D∇2)〈ρ〉 = F. (7.151)

The purely mechanical retarded response to F gives us the following relation:

〈ρ〉(x) =
∫
(dx ′) Gr(x, x ′)F(x ′), (7.152)

where the retarded Green function may be evaluated by analogy with eqn. (5.77)

Gr(x, x ′) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)

[
1

ω + iDk2 − iε
− 1

ω − iDk2 + iε

]

=
∫

dnkdω

(2π)n+1
ei(k·x−ωt) −2iDk2

(ω − iε)2 + D2k4
. (7.153)
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From eqn. (6.67) we have

〈ρ〉 = i

h̄

∫
(dx ′)〈ρ(x)ρ(x ′)〉F(x ′), (7.154)

where

i

h̄
〈ρ(x)ρ(x ′)〉 = δ

2W

δF2
= −iImGF(x, x ′). (7.155)

The Feynman Green function may be evaluated using the phase, or weight
exp(iS/h̄), by analogy with eqn. (5.95):

GF(x, x ′) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)

[
1

ω + iDk2 − iε
− 1

ω − iDk2 + iε

]

=
∫

dnkdω

(2π)n+1
ei(k·x−ωt) −2iDk2

ω2 + D2k4 − iε
. (7.156)

For thermal or other distributions it will be somewhat different. We may now
compare this (in momentum space) with the linear response equation:

〈ρ〉(k) = ImGF(k)F = 2Dk2

ω2 + D2k4
F. (7.157)

Thus, eliminating the source from both sides of this equation, we may define
the instantaneous ‘D.C.’ (ω → 0) diffusion constant, given by the Kubo-type
relation,

〈D(ω→ 0)〉 = lim
ω→0

(
lim
k→0

ω2

k2
GF(k)

)
. (7.158)

If we take GF from eqn. (7.156), we see the triviality of this relation for purely
collisionless quantum fluctuations of the field, 〈ρ〉. By taking the fluctuation
average to be exp(iS/h̄), we simply derive a tautology. However, once we
switch on thermal fluctuations or quantum interactions (for which we need to
know about quantum field theory), the Feynman Green function picks up a
temperature dependence and a more complicated analytical structure, and this
becomes non-trivial; see eqn. (6.61). Then it becomes possible to express D in
terms of independent parameters, rather than as the phenomenological constant
in eqn. (7.143).

7.5.3 Forced Brownian motion

A phenomenological description of Brownian motion for particles in a field is
given by the Langevin model. Newton’s second law for a particle perturbed by
random forces may be written in the form

m
dvi

dt
= Fi − αvi , (7.159)
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where vi is the velocity of a particle in a field and α is a coefficient of
friction, by analogy with Stokes’ law. This equation clearly expresses only a
statistical phenomenology, and it cannot be derived from an action principle,
since it contains explicitly velocity-dependent terms, which can only arise
from statistical effects in a real dynamical system. The forcing term, Fi , is a
random force. By this, we mean that the time average of this force is zero,
i.e. it fluctuates in magnitude and direction in such a way that its time average
vanishes:

〈F(t)〉 = 1

T

∫ t+T/2

t−T/2
F(t) dt = 0. (7.160)

We may solve this equation simply, in the following ways.

Green function approach Consider the general solution of

a
du

dt
+ bu = f (t), (7.161)

where a and b are positive constants. Using the method of Green functions, we
solve this in the usual way. Writing this in operator/source form,(

a
d

dt
+ b

)
u = f (t), (7.162)

we have the formal solution in terms of the retarded Green function

u(t) =
∫

dt ′Gr(t, t
′) f (t ′), (7.163)

where (
a

d

dt
+ b

)
Gr(t, t

′) = δ(t, t ′). (7.164)

Taking the Fourier transform, we have

Gr(t − t ′) =
∫

dω

2π

e−iω(t−t ′)

(−iaω + b)
. (7.165)

This Green function has a simple pole for t − t ′ > 0 at ω = −ib/a, and the
contour is completed in the lower half-plane for ω, making the semi-circle at
infinity vanish. The solution for the field u(t) is thus

u(t) =
∫

dτ
∫

dω

2π

e−iω(t−τ)

(−iaω + b)
f (τ )

=
∫ t

−∞
dτ

1

2π
− 2π i

(
1

−ia
e

b
a (τ−t) f (τ )

)

= 1

a

∫ t

−∞
dτ f (τ ) e

b
a (τ−t). (7.166)
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The lower limit of the integral is written as minus infinity since we have not
specified the time at which the force was switched on, but we could replace this
by some finite time in the past by specifying boundary conditions more fully.

Differential equation approach Although the Green function method is straight-
forward and quite simple, this eqn. (7.161) can also be solved by an alternative
method. When f (t) = 0 it is solved by separation of variables, giving

du

dt
= −b

a
u

u(t) = u0 e−
b
a t , (7.167)

for some constant u0. This is therefore the complementary function for the
differential equation. If the forcing term f (t) is non-zero, this hints that we can
make the equation integrable by multiplying through by the integrating factor
exp(−bt/a).

d

dt

(
e

b
a t u(t)

)
= 1

a

(
a

du

dt
+ b u(t)

)
e

b
a t

e
b
a t u(t) = 1

a

∫ t

0
dτ f (τ )e

b
a τ

u(t) = 1

a

∫ t

0
dτ f (τ )e

b
a (τ−t). (7.168)

This is exactly analogous to making a gauge transformation in electrodynamics.
Note that, since the integral limits are from 0 to t , u(t) cannot diverge unless
f (t) diverges. The lower limit is by assumption. The general solution to
eqn. (7.161) is therefore given by the particular integral in eqn. (7.168) plus
an arbitrary constant times the function in eqn. (7.167). The solutions are
typically characterized by exponential damping. This reproduces the answer
in eqn. (7.166) marginally more quickly than the tried and trusted method of
Green functions. This just goes to show that it never does any harm to consider
alternative methods, even when in possession of powerful methods of general
applicability.

Diffusion and mobility Langevin’s equation plays a central role in the kinetic
theory of diffusion and conduction. Let ẋ i = vi , then, multiplying through by
x , we have

mx
dẋ

dt
= m

[
d

dt
(x ẋ)− ẋ2

]
= −αx ẋ + x F(t). (7.169)
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Taking the kinetic (ensemble) average of both sides, and recalling that the
fluctuating force has zero average, we have that

m

〈
d

dt
(x ẋ)

〉
= m

d

dt
〈x ẋ〉 = kT − α〈x ẋ〉, (7.170)

where we have used the result from kinetic theory (the equi-partition theorem)
that 1

2 m〈ẋ2〉 = 1
2 kT . We can solve this to give

〈x ẋ〉 = C e−αt/m + kT

α
. (7.171)

At large times, the first of these terms decays and the system reaches a steady
state. We may integrate this to give

〈x2〉 = 2kT

α
t. (7.172)

This tells us the mean square position. By comparing this to the diffusion
equation in eqn. (7.146) we find the effective diffusion coefficient

D = kT

α
. (7.173)

A related application is that of electrical conduction. Consider the same
diffusion process for charges e in a uniform electric field E . The average of
the Langevin equation is now

m
d〈vi 〉

dt
= eEi − α〈vi 〉, (7.174)

since 〈F〉 = 0. In a steady state, the average acceleration is also zero, even
though microscopically there might be collisions which cause fluctuations in
the velocity. Thus we have, at steady state,

eEi = α〈vi 〉. (7.175)

We define the mobility, µ, of the charges, for an isotropic system, as

µ = 〈vi 〉
Ei

= e

α
. (7.176)

The mobility is related to the diffusion constant by the Einstein relation

µ

D
= e

kT
. (7.177)

In an anisotropic system, there might be different coefficients for diffusion and
mobility in different directions. Then, eqn. (7.176) would become a tensor
relation, µi j Evi/E j .
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7.6 Vortex fields in 2 + 1 dimensions

Although one generally avoids speaking of particulate matter in field theory,
since classically it is used to describe mainly smooth, continuous fields, there are
occasions on which the solutions to the equations of motion lead unambiguously
to pointlike objects. One such situation is the case of vortices.

Vortices are charged, singular objects which arise in some physical systems
such as the non-linear Schrödinger equation. Vortices have the property that
they acquire a phase factor, by an Aharonov–Bohm-like effect, when they wind
around one another. They can usually be thought of as pointlike objects which
are penetrated by an infinitely thin line of magnetic flux. In 2 + 1 dimensions,
vortices are also referred to as anyons, and have a special relationship with
Chern–Simons field theories. It might seem strange that a field variable φ(x),
which covers all of space and time, could be made to represent such singular
objects as vortices. As we shall see in the following example, this is made
possible precisely by the singular nature of Green functions.

Consider a field, φ(x), representing pointlike objects in two spatial dimen-
sions with coordinates denoted for simplicity by r = (x, y). We define the
winding angle, θ , between any two pointlike objects in the field by

θ(r − r ′) = tan−1 �y

�x
= tan−1 y − y′

x − x ′
. (7.178)

Notice that θ(r − r ′) is a function of coordinate differences between pairs of
points. We shall, in fact, relate this winding angle to the Green function g(x, x ′),
for the Laplacian in two dimensions, which was calculated in section 5.4.4.

7.6.1 A vortex model

The study of Chern–Simons theories is motivated principally by two observa-
tions: namely that important aspects of the quantum Hall effect are described
by a Chern–Simons theory, and that a viable theory of high-temperature super-
conductivity should be characterized by a parity-violating, anti-ferromagnetic
state. Symmetry considerations lead to an action which does not possess
space-reflection symmetry. The Chern–Simons action fits this prescription.
These two physical systems are also believed to be essentially two-dimensional,
planar systems.

In its most primitive form, the action for the Chern–Simons model may be
written in (2+ 1) dimensional flat spacetime as

S =
∫

dtd2x

(
(Dµ#)†(Dµ#)+ m2#2 + λ

6
#4 + 1

2
µεµνλAµ∂ν Aλ

)
.

(7.179)
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The equation of motion is thus

1

2
µεµνλFνλ = Jµ. (7.180)

The gauge-invariant current, Jµ, is introduced for convenience and represents
the interaction with the matter fields arising from the gauge-covariant derivatives
in eqn. (7.179). We shall not consider the full dynamics of this theory here;
rather, it is interesting to see how the singular vortex phenomenon is reflected in
the field variables.

7.6.2 Green functions

The basic Green function we shall use in the description of two-dimensional
vortices is the inverse Laplacian which was derived in section 5.4.4, but it
is also useful to define and elaborate on some additional symbols which are
encountered in the literature. We shall use the symbol r i as an abbreviation for
the coordinate difference �r i = �xi = xi − xi ′, and the symbol �r for the
scalar length of this vector. Some authors define a Green function vector by

Gi (r − r ′) = εi j∂ j g(r − r ′)

= − 1

2π
εi j r̂ j

r − r ′
, (7.181)

where r̂ is a unit vector along r − r ′. The two-dimensional curl of this function
is thus

∇ ×G(r) = εi j∂i G j (r − r ′)
= εi jε jk∂i∂k g(r − r ′)
= −∇2g(r − r ′)
= δ(r − r ′). (7.182)

In other words, Gi (r − r ′) is the inverse of the curl operator.

7.6.3 Relationship between θ(r − r ′) and g(r − r ′)

To obtain a relationship between the coordinates and the winding function θ(r),
we note that

∂i tan θ(r − r ′) = ∂i

(
sin θ(r − r ′)
cos θ(r − r ′)

)
= ∂iθ(r − r ′) sec2 θ(r − r ′)
= ∂iθ(r − r ′)(1+ tan2 θ(r − r ′)). (7.183)
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From eqn. (7.178), this translates into

∂iθ =
∂i

(
�y
�x

)
1+

(
�y
�x

)2

= �x(∂i�y)−�y(∂i�x)

r2

= −εi j
r̂ j

r
. (7.184)

This last form is significant since the logarithm has a similar property, namely

εi j∂ j ln |r − r ′| = εi j r̂ j

r − r ′
, (7.185)

and thus we immediately have the relationship:

− 1

2π
(∂iθ(r − r ′)) = G(r) = −εi j∂ j g(r − r ′). (7.186)

It is understood that partial derivatives acting on r − r ′ act on the first argument
r .

7.6.4 Singular nature of θ(r − r ′)

The consistency of the above relations supplies us with an unusual, and perhaps
somewhat surprising relation, namely

εi j∂i∂ jθ(r − r ′) = 2π δ(r − r ′) (7.187)

or

[∂1, ∂2]θ(r − r ′) = 2πδ(r − r ′). (7.188)

This relation tells us that the partial derivatives do not commute when acting on
the function θ(r). This is the manifestation of a logarithmic singularity in the
field, or, physically, the non-triviality of the phase accrued by winding vortices
around one another. Although the field is formally continuous, it has this non-
analytical property at every point.

Using complex coordinates z = x1+ ix2 and conjugate variables z, the above
discussion leads to the relations in complex form:

∂z(z)
−1 = ∂z∂z ln |z|2
= πδ(|z|). (7.189)
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