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Abstract

This paper introduces reFLect, a functional programming language with reflection features

intended for applications in hardware design and verification. The reFLect language is strongly

typed and similar to ML, but has quotation and antiquotation constructs. These may be used

to construct and decompose expressions in the reFLect language itself. The paper motivates and

presents the syntax and type system of this language, which brings together a new combination

of pattern-matching and reflection features targeted specifically at our application domain. It

also gives an operational semantics based on a novel use of contexts as expression constructors,

and it presents a scheme for compiling reFLect programs using the same context mechanism.

1 Introduction

In this paper we describe reFLect, a new programming language for applications in

hardware design and verification. The reFLect language is strongly typed and similar

to ML (Harper et al., 1986) but has quotation and antiquotation constructs. These

are used to construct and decompose expressions in the reFLect language itself and

provide a form of reflection, similar to that in LISP but in a typed setting. The

design of reFLect draws on the experience of applying an earlier reflective functional

language called FL (Aagaard et al., 1999) to large-scale verification problems at

Intel (Jones et al., 2001; Kaivola & Kohatsu, 2001; Kaivola & Narasimhan, 2001).

Hardware designs are modeled as reFLect programs. As with similar work based

on Haskell (Bjesse et al., 1998; Matthews et al., 1998) or LISP (Johnson, 1984;
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Kaufmann et al., 2000a), a key capability is simulation of hardware models by

executing functional programs. In reFLect, however, we also wish to do various oper-

ations on the abstract syntax of models written in the language – for example circuit

design transformations (Spirakis, 2003). Moreover, we want the reFLect language to

form the core of a typed higher-order logic for specifying and verifying hardware

properties (Gordon, 1985; Melham, 1993), and simultaneously the implementation

language of a theorem prover for this logic.

Formal reasoning about hardware is performed using the Forte tool (Jones et al.,

2001), which was originally designed around FL but now uses reFLect. Forte includes

a theorem prover of similar design to the HOL system (Gordon & Melham, 1993). In

higher-order logic theorem provers like HOL the logical ‘object language’ in which

reasoning is done is embedded as a data-type in the (functional) meta-language

used to control the reasoning. In HOL, the meta-language is ML. Representing

object-language expressions as a data-type makes it straightforward to implement

the various term analysis and transformation functions required by a theorem

prover. But separating the object-language and meta-language causes duplication

and inefficiency. Many theorem provers, for example, include special code for efficient

execution of object-language expressions (Barras, 2000; Berghofer & Nipkow, 2000).

In reFLect we have made the data-structure used by the underlying language

implementation to represent syntax trees available as a data-type within the language

itself. Functions on that data-structure, like evaluation, are also made available.

Our aim was to retain all the term inspection and manipulation abilities of

the conventional theorem prover approach while borrowing an efficient execution

mechanism from the meta-language implementation.

In systems like HOL, higher-order logic is constructed along the lines of Church’s

formulation of simple type theory (Church, 1940), in which the logic is defined on

top of the λ-calculus. Our theorem prover also follows this approach but constructs

a variant of higher-order logic on top of the reFLect language, rather than the

λ-calculus. The reduction rules for the language, which are given in this paper, are

among the inference rules in our higher-order logic.

The applications just described give intensional analysis a primary role in reFLect.

The design of our language is therefore different from staged functional languages

like MetaML (Taha & Sheard, 2002) and Template Haskell (Sheard & Peyton

Jones, 2002), which are aimed more at program generation and the control and

optimization of evaluation. The reFLect language also provides a native pattern

matching mechanism designed to make it easy to analyze the structure of code and

logical formulas.

In the sections that follow, we describe reFLect by presenting extensions to the

λ-calculus that implement its key features. To motivate our design decisions, we

first discuss the target applications for reFLect. We then present the syntax and type

system, and give an operational semantics of evaluation. We conclude by presenting

a scheme for compiling reFLect programs into the λ-calculus. This compilation

scheme forms the basis of the reFLect implementation used at Intel. We include a

number of propositions about the language to clarify our presentation. A more

formal presentation of reFLect, including proofs of propositions of the kind cited

here, is provided by Krstić and Matthews (2003).
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The version of reFLect presented here is a simplification of the language as it is used

within Intel. We have omitted from the presentation descriptions of standard func-

tional programming language features like (recursive) constant definitions, definitions

of algebraic data-types and mechanisms for pattern matching over them, exceptions

and exception handling, etc. This allows us to focus on presenting the novel features

of reFLect as extensions to the λ-calculus. The complete reFLect language augments

the language presented here with standard functional programming concepts in the

usual ways. An implementation of reFLect may be downloaded from Intel as part of

the public release of the forte verification system.1

2 Motivation and overview

The reFLect language augments λ-calculus with a form of quotation, written by

enclosing an expression between ‘〈〈’ and ‘〉〉’. The denotation of a quoted expression is

an abstract syntax tree. Hence, for example, while 1 + 2 is semantically equal to 3, the

quoted expression 〈〈1 + 2〉〉 is semantically different from 〈〈3〉〉. The expressions 1 + 2

and 3 both denote the same integer value, namely 3. But the expression 〈〈1 + 2〉〉
denotes the abstract syntax tree of ‘1 + 2’, which is different from the abstract syntax

tree of ‘3’.

There is also an antiquotation mechanism, written by prefixing an expression

with ‘̂ ’, that splices one abstract syntax tree into another. For example in the

quotation 〈〈1 + ˆ〈〈2〉〉〉〉 the abstract syntax for ‘2’ is spliced into the position at which

the right-hand operand of the infix + operator occurs. Using the reduction system

presented later, this quotation evaluates to 〈〈1 + 2〉〉.
Quotation and antiquotation may also be used for pattern matching abstract

syntax trees. For example, the quoted expression 〈〈1 + 2〉〉 matches the pattern

〈〈ˆx+ ˆy〉〉, with 〈〈1〉〉 for x and 〈〈2〉〉 for y. More examples are given below.

These reFLect features meet three related demands of our intended applications in

hardware modeling and theorem proving. First, antiquotation and pattern matching

make it easy to write term manipulation functions – specifically, the kinds of term

manipulation needed to implement a theorem prover, but also term manipulations

that transform embedded circuit descriptions. Second, the reflection features of

reFLect allow us to mix evaluation and theorem proving. Finally, reFLect quotation

provides a flexible framework in which to embed both logics and domain-specific

languages.

2.1 Term manipulation

Theorem proving systems like HOL have many ML functions for constructing

and destructing terms in the object language. Function applications are a typical

example: HOL provides an ML function that maps terms ‘f’ and ‘x’ to the function

application term ‘f·x’, and an ML function that takes an application term ‘f·x’ apart

and returns the subterms ‘f’ and ‘x’.

1 http://www.intel.com/software/products/opensource/tools1/verification
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Analogous functions can be implemented in reFLect for constructing and destruct-

ing quoted reFLect applications. The definitions are as follows:

let make apply f x = 〈〈ˆf ·̂ x〉〉
let dest apply 〈〈ˆf ·̂ x〉〉 = (f, x)

The make apply function shows the use of the antiquotation splicing operation to

construct a term from the supplied arguments. For example make apply ·〈〈inc〉〉·〈〈7〉〉
results in 〈〈ˆ〈〈inc〉〉·̂ 〈〈7〉〉〉〉, which under the reduction rules of reFLect reduces to

〈〈inc·7〉〉. The dest apply function first illustrates the definition of a reFLect function

by pattern matching over quoted expressions. When dest apply is applied to a

specific quotation, 〈〈inc·7〉〉 say, the pattern 〈〈ˆf ·̂ x〉〉 gets matched to this quotation –

in this case binding f to 〈〈inc〉〉 and x to 〈〈7〉〉. The result returned is the pair of terms

(〈〈inc〉〉, 〈〈7〉〉).
A more complex example is the reFLect function below, which traverses a quoted

expression and swaps the operands of any occurrence of the infix function ‘+’.

letrec comm 〈〈ˆx+ ˆy〉〉 = 〈〈 (̂comm·y) + (̂comm·x)〉〉
||| comm 〈〈ˆf ·̂ x〉〉 = 〈〈 (̂comm·f)·̂ (comm·x)〉〉
||| comm 〈〈λˆp. ˆb〉〉 = 〈〈λˆp. (̂comm·b)〉〉
||| comm 〈〈λˆp. ˆb ||| ˆa〉〉 = 〈〈λˆp. (̂comm·b) ||| (̂comm·a)〉〉
||| comm x = x

For example, the application comm·〈〈λx.m ∗ x+ c〉〉 evaluates to 〈〈λx. c+ m ∗ x〉〉.
We draw another example from our application domain of theorem proving. In

an LCF-architecture theorem prover (Gordon et al., 1979), such as the one we have

implemented in reFLect, an abstract data-type of theorems is provided by a module

that exports only functions that implement valid rules of inference for the logic

being provided. This module forms the ‘trusted core’ of the theorem prover; the

soundness of the whole system depends on this core being correctly implemented.

In this context, a merit of the reFLect pattern-matching style of programming is that

it gives compact code that is also easy to read and understand.

In the reFLect theorem prover, we use a sequent-based representation of theorems.

These are represented by values of an abstract data-type similar to the one defined

by the reFLect declarations below:

lettype thm = � (term list) term

infix 4 �

This makes � an infix data-type constructor for the type thm. The constructor maps

a list of terms Γ (representing assumptions) and a term P (representing a conclusion)

to the theorem Γ � P . In natural deduction, the rule for conjunction introduction

is stated as follows:

Γ � P ∆ � Q
Γ,∆ � P ∧ Q
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In the trusted core of reFLect, a function for this inference rule can be implemented

with pleasing syntactic directness:

let conj intro (G � P ) (D � Q) = (G union D) � 〈〈ˆP ∧ ˆQ〉〉

One aim of the reFLect pattern matching mechanism is to achieve the transparency

and simplicity of this style of programming for syntactic manipulation. Aasa,

Petersson and Synek (Aasa et al., 1988) advocate a similar mechanism, called

quotation patterns, for manipulating object-language expressions within a meta-

language.

2.2 Reflection

The object logic of systems like HOL is typically a version of higher-order logic

defined on top of the λ-calculus. The construction follows the lines of Church’s

formulation of simple type theory (Church, 1940), in which primitive symbols are

added for certain constants such as equality and the quantifiers are defined using λ

abstraction. The logic inherits a semantics for term equality from the λ-calculus; in

particular, it inherits the various reduction rules of the λ-calculus, which appear in

the logic as inference rules.

Defining a logic on top of reFLect gives a higher-order logic that includes the

reFLect reduction rules in the same way. In a theorem prover implemented in reFLect,

the data representations of the object and meta-languages are the same. Hence

reduction by execution of reFLect programs also directly implements reduction by

formal inference in the logic. Theorem provers with separate object and meta

languages, on the other hand, need to include special code for efficient execution of

object-language expressions.

This link between program execution and logical inference provides a form of

reflection (Harrison, 1995) in the reFLect theorem prover. We can do equality proofs

by term reduction in the theorem prover efficiently, just by evaluating the reFLect

expressions. In particular, we can prove certain logical theorems just by using the

reFLect evaluation mechanism to evaluate the statement of each theorem to true.

Conversely, we may obtain any reFLect program that evaluates to true as a theorem

of our logic.

In the Forte system, the invocation of a model checker is just a reFLect function

call, so reflection also provides a logically principled connection between theorems

in higher-order logic and model checking results. The source text of any call to the

model-checker that returns true becomes a theorem of the logic – in effect, making

the model checker part of the trusted core of the logic, but through the general

mechanism of reflection rather than in an ad-hoc way.

A similar mechanism called lifted-FL (Aagaard et al., 1999) was available in earlier

versions of Forte, but reFLect provides richer possibilities. For example, one can use

quantifiers to create a bookkeeping framework that cleanly separates logical content

from model-checking control parameters.

The unification of object language and meta-language data representations also

allows efficient evaluation to be incorporated into term rewriting in the theorem
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prover. Consider, for example, the following theorem about bit-vectors that represent

integers:

� ∀as bs .

(length as = length bs) ⊃
bvless as bs = (bv2int as < bv2int bs)

This says that if the lists as and bs are of equal length, then the result of comparing

the bit-vectors they represent is equal to the result of converting them to integers

and comparing these integers. In our theorem prover, this fact can be used as a

conditional left-to-right rewrite rule; provided the condition about equal lengths can

be discharged, we can eliminate uses of bvless in favor of bv2int and <.

Discharging the condition requires a proof, and in general this proof may be arbit-

rarily hard. In practice, however, the instantiation of as and bs for an application of

this rule in a specific context will typically be to concrete list values, whose lengths we

can just compute. Reflection allows us to do precisely this; our rewriter can discharge

easy side conditions by doing a proof by evaluation using the reFLect interpreter.

2.3 Embeddings

The quotation construct in reFLect makes the whole of the reFLect language available

as an embedded language within the reFLect programming language itself. Quotations

are essentially a ‘deep’ embedding, in which the embedded language is represented

as a data type. This is in contrast to a ‘shallow’ embedding, in which the embedded

language is just a sublanguage of the language in which it is embedded. In a

shallow embedding, one typically defines a collection of functions to represent

various components of the language. The embedded language itself is then just the

collection of programs that can be written using these functions.

The merit of a shallow embedding is that it directly inherits an efficient execution

mechanism from the programming language in which it is defined. On the other

hand, one cannot define functions that inspect the syntactic form of phrases

in the embedded language. For example one cannot define functions that do

transformations of expressions in the embedded language. For this, the language

must be deeply embedded as a data type.

In reFLect we can have much of the power of a deep embedding in a shallow

embedding; since we have a built-in deep embedding of all of reFLect, we also have a

deep embedding of any sublanguage of it. Suppose, for example, we define a shallow

embedding of an HDL into a standard functional programming language. We could

then express circuits in the HDL as functional programs and simulate them by

execution. On the other hand, suppose we perform a deep embedding by defining

the HDL as a data type within a functional language, then we can write code

that inspects and transforms HDL programs, but we cannot evaluate them without

writing our own evaluator. In reFLect, however, we can do a shallow embedding

and get simulation-by-execution – but also use quotations and pattern matching to

inspect and transform the phrases of the embedded HDL.

Theorem provers are typically implemented by a deep embedding of the expres-

sions of some logical language. The LCF system is an example of an early theorem
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prover implemented in this style (Gordon et al., 1979). Expressions of the logic of

computable functions were represented by a data type in ML. Modern theorem

provers, like HOL (Gordon & Melham, 1993), Isabelle (Nipkow et al., 2002) and

Coq (Dowek et al., 1993), continue to use this approach. The ACL2 system for

untyped first-order logic is an exception (Kaufmann et al., 2000b). Like reFLect,

ACL2 uses reflection so that its implementation language, Applicative Common

LISP, is available as a deep embedding within itself and also serves as the language

of logical expressions. This facility allows shallowly embedded hardware models in

ACL2 to be efficiently simulated as well as reasoned about (Greve et al., 2000;

Moore, 1998). Indeed, reFLect has been developed in part to support this key benefit

of ACL2 in a theorem prover based on a typed higher-order logic.

In verification and other applications, languages are also sometimes embedded

into the logical languages of theorem provers. For example, if you wanted to reason

about designs expressed in a hardware description language, say VHDL, you would

first embed (probably a subset of) VHDL in the logic of your theorem prover. In

HOL, for instance, you would embed the language of VHDL statements in the

language of higher-order logic expressions, which is in turn embedded in the ML

programming language.

Embeddings into logics may also be deep or shallow, with similar trade-offs to

those to be considered when embedding into a programming language. A shallow

embedding in a programming language immediately confers an execution semantics

for evaluation on the embedded language. When embedding into a logic, a shallow

embedding immediately confers a logical semantics for reasoning about expressions

in the embedded language. While a shallow embedding in a programming language

immediately allows execution of the embedded language, a deep embedding is

required if you wish to support transformation of expressions in the embedded

language. Similarly, a shallow embedding in the logical expression language of a

theorem prover immediately supports reasoning about the embedded language, but

a deep embedding is required if you wish to support reasoning about functions that

transform expressions in the embedded language.

Since quotations in reFLect may be nested, the reflection features of the language

allow us to do a shallow embedding in a logic but also get many of the benefits of a

deep embedding. For example, a shallow embedding of a hardware description

language in reFLect allows efficient execution of expressions in that embedded

language, and hence efficient hardware simulation. We can also reason about the

meaning of expressions in the hardware description language using quotations and

the reFLect theorem prover. Further, with another level of quotation, we can reason

about reFLect functions that transform hardware designs expressed in the embedded

language.

3 Syntax

The syntax of reFLect is similar to that of the typed λ-calculus, but with function

abstraction constructed over general patterns, rather than just variables, and with

primitive syntax for quotations and anti-quotations.
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σ, τ, . . . : : = α | β | γ | . . . – A type variable

| (σ1, . . . σn)c – A compound type

Fig. 1. The syntax of types.

vars α = {α}
vars(σ1, . . . σn)c = vars σ1 ∪ . . . vars σn

αφ = φ α

(σ1, . . . σn)cφ = (σ1φ, . . . σnφ)c

Fig. 2. Type operations: variables and instantiation.

3.1 Types

The reFLect language is simply typed in the Hindley–Milner style, like ML. A type

may be a type variable, written with a lower-case letter from the start of the Greek

alphabet: α, β, etc.; or a compound type, made up of a type operator applied

to a list of argument types. We use lower-case letters from the end of the Greek

alphabet, σ, τ, etc., for syntactic meta-variables ranging over types. Type operators

are usually written post-fix, but certain binary type operators, such as → and ×,

are written infix. Atomic types, like int and bool, are considered to be zero-ary type

operators applied to empty lists of arguments. The reFLect type system contains one

interesting atomic type: term, the type of a quoted reFLect expression. Figure 1 shows

the syntax of the reFLect type system assuming a syntactic class of type operator

symbols, written c.

We assume the existence of a meta-linguistic function vars from types to the sets

of type variables that occur in them. We also apply vars to sets of types, implicitly

taking the union of their sets of variables. Figure 2 defines the function vars.

3.1.1 Type instantiation

A type instantiation is a mapping from type variables to types that is the identity

on all but finitely many arguments. We use the meta-variables φ and χ to stand for

type instantiations. We will write domφ for the domain of φ, meaning the set of

variables for which φ is not the identity. If domφ = {α1, . . . αn} and φ αi = σi for

1 � i � n, then we sometimes write φ as [σ1, . . . σn/α1, . . . αn].

Every type instantiation induces a map from types to types. For any type σ and

instantiation φ we will write σφ for the result of applying the map induced by φ

to σ. The induced map is described in figure 2.

3.2 Expressions

The syntax of reFLect expressions, shown in figure 3, is an extension of the syntax

of the λ-calculus. Uppercase letters from the middle of the Greek alphabet, Λ,

M, etc., range over expressions. We assume the existence of syntactic classes of

constant names and variable names, ranged over by k and v respectively. For clarity

of presentation, we will write constants such as +, ∗, ∨ and , (pairing) in infix

position. The syntax requires explicit type annotations for constants, variables, and
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Λ,M, . . . : : = k◦◦ σ – Constant

| v◦◦ σ – Variable

| λΛ.M – Abstraction

| λΛ.M ||| N – Alternation

| Λ·M – Application

| 〈〈Λ〉〉 – Quotation

| ˆΛ◦◦ σ – Antiquotation

Fig. 3. The syntax of expressions.

antiquotations. For example, v◦◦ σ is a variable with name v and type σ. We may

omit type annotations when the type is easily inferred.

Several extensions over the simple λ-calculus are apparent from the grammar.

These will be explained and motivated below. Our intent has been to keep the

abstract syntax of reFLect as simple as possible, rather than – say – designing an

abstract syntax that follows the concrete syntax more closely. Our motivation for

this is to keep the algorithms that traverse and transform abstract syntax trees as

simple as they can be.

3.2.1 Constants

Constants are not theoretically necessary in a presentation of a λ-calculus and are

therefore often omitted. Constants are, however, needed for the construction of a

logic on top of a λ-calculus. Since reFLect is intended equally as a programming

language and as the foundation for a logic, we include constants in our presentation

from the beginning.

3.2.2 Quotations

A reFLect expression may contain a quoted reFLect expression. These are written

using the form 〈〈Λ〉〉 and denote abstract syntax trees. There is also an antiquotation

operation, which is used to splice one abstract syntax tree into another. Antiquotation

of the term Λ into a context requiring an abstract syntax tree of type σ is written ˆΛ◦◦ σ.

Antiquotation may only appear inside a quotation; it is most properly thought of

as a two place operation between the antiquoted term and the quotation into which

it will be spliced. We will not always show the type annotation on an antiquotation

when the type required of the term is readily apparent. Section 6.1 will explain

how and when antiquotations may be reduced, but as an example consider the

expression 〈〈1 + ˆ〈〈2 + 3〉〉〉〉. This expression may be reduced to 〈〈1 + (2 + 3)〉〉. The

expressions are considered semantically equal, denoting the same abstract syntax

tree.

3.2.3 Abstractions

In the λ-calculus each abstraction binds a single variable. In reFLect an expression

may appear in the binding position of an abstraction, which then binds all the free
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variables of that expression. Not all such expressions will be executable, though all

are meaningful. We leave a precise description of which expressions are executable

until later. Abstractions with a quotation in the binding position are evaluated

by pattern matching. By using these facilities we may write an expression like

(λ〈〈ˆx+ ˆy〉〉. 〈〈ˆy + ˆx〉〉)·〈〈1 + 2〉〉, which is semantically equal to 〈〈2 + 1〉〉.
Not all attempts to execute an application by pattern matching will succeed,

so reFLect includes an alternation construct that can be used to try alternative

patterns. Using this construct we may write the following function that commutes

the arguments of quoted additions and multiplications:

λ〈〈ˆx+ ˆy〉〉. 〈〈ˆy + ˆx〉〉 ||| λ〈〈ˆx ∗ ˆy〉〉. 〈〈ˆy ∗ ˆx〉〉

Most languages omit pattern matching from their abstract syntax so as to simplify

their semantics. We considered doing this with reFLect, but decided against it because

we wished to be able to reason about reFLect programs – represented by their abstract

syntax trees – that perform term manipulations by pattern matching. The earlier FL

system took the traditional approach of excluding pattern matching from abstract

syntax, and so reasoning about FL programs that used pattern matching had to be

conducted on the abstract syntax trees of those programs after pattern matching had

been compiled into conditional expressions. This was inconvenient and unnatural.

By retaining pattern matching in the abstract syntax trees of reFLect we support

reasoning about reFLect programs in a form closer to the concrete syntax in which

the user wrote them. For example, the definition of the comm function described in

section 2.1 is captured directly by the following expression.

λ〈〈ˆx+ ˆy〉〉. 〈〈 (̂comm·y) + (̂comm·x)〉〉
||| λ〈〈ˆf ·̂ x〉〉. 〈〈 (̂comm·f)·̂ (comm·x)〉〉
||| λ〈〈λˆp. ˆb〉〉. 〈〈λˆp. (̂comm·b)〉〉
||| λ〈〈λˆp. ˆb ||| ˆa〉〉. 〈〈λˆp. (̂comm·b) ||| (̂comm·a)〉〉
||| λx. x

Syntactically, any reFLect expression can appear as a pattern. A natural alternative

would be to have a separate syntactic class of patterns, but this was rejected because

in the implemented language we allow a rather broad class of patterns. These

include literal constants for integers, booleans and string, as well as an open-ended

class of patterns built up from data-type constructors for free algebras. A separate

grammar for patterns would therefore have to duplicate much of the expression

language anyway. In addition, algorithms that traverse expressions would be more

complicated to write, with separate cases for patterns and other expressions. Users

often write expression-traversal code in theorem proving and design transformation

applications – unlike in a compiler, where the developers write it once.

We could treat patterns as a subtype of expressions, and use a runtime check

when an expression is antiquoted into a pattern position to confirm that it is a valid

pattern. We may add such a check in a future version of reFLect if we can devise

an implementation that does not degrade the performance of algorithms that make

heavy use of antiquotation for expression construction.
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3.2.4 Polymorphism

Functional programming languages are usually based on extensions of the λ-calculus

with a form of abstraction over types, giving a polymorphic λ-calculus. This can be

done by introducing quantified types and a special language construct to abstract

over types, as for example in System-F (Girard et al., 1989). Such languages are

computationally sound, in the sense that they are strongly normalizing.

The reFLect language does not support this kind of polymorphism; there is no

type quantification clause in figure 1, and this omission is deliberate. This is because

we construct a higher-order logic on top of reFLect, in the same way that Church

constructs a higher-order logic on top of the simply typed λ-calculus. If we were to

use a polymorphic λ-calculus as our basis, we would arrive at a polymorphic higher-

order logic – and such logics have been shown to exhibit paradoxes (Coquand, 1986;

Coquand, 1991; Stump, 1999).

To avoid these paradoxes, polymorphism in the underlying λ-calculus must be

restricted. In reFLect we do this by having a constant definition mechanism that can

introduce polymorphic constants – but also taking the identity of an occurrence

of such a constant to be determined by its name and type at that occurrence,

which avoids the paradoxes. The result is a calculus with a limited but useful

form of polymorphism. This is exactly the same approach taken in the HOL

system. The higher-order logic constructed on the basis of a λ-calculus with this

limited form of polymorphism has been shown to have a set theoretic semantics

by Pitts (Gordon & Melham, 1993). We could have chosen a more elaborate type

theory, like the Calculus of Constructions, as the basis for our language and its

logic, but the HOL logic has the advantage of simplicity, and previous experience

with this logic at Intel (Aagaard et al., 2000; Jones et al., 2001; Kaivola & Aagaard,

2000; Kaivola & Kohatsu, 2001; Kaivola & Narasimhan, 2001) has shown it well

suited for our applications in hardware verification.

3.3 Contexts

For later use in describing the semantics of reFLect, we introduce the notation of

a context to represent an expression with a number of holes that occur at specific

subexpression positions in the abstract syntax tree. The notion of context we use

here is similar to that readers may be familiar with from other language descriptions,

except that the holes in our contexts are typed.

Formally, contexts are described by the same grammar as expressions, with the

addition of a new production to represent a hole.

Λ,M, . . . : : = . . . (as in figure 3)

| ◦◦ σ – A hole

A hole is represented by the symbol ‘ ’ annotated by a type. We may omit type

annotations on holes in a context when they are irrelevant or easily inferred.

We use the calligraphic letters, C, D, etc., as syntactic meta-variables ranging over

contexts. We will use the notation C[ ◦◦ σ1, . . . ◦◦ σn] to indicate that the context C has

the n holes shown. The order in which the holes are indicated is unimportant, except
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that it must be fixed for any given context. We write C[Λ1, . . .Λn] to stand for the

expression resulting from a context C[ ◦◦ σ1, . . . ◦◦ σn], where σ1, . . . σn are the types

of Λ1, . . . Λn respectively, in which each hole ◦◦ σi has been filled by expression Λi.

Note that this is different from the usual notion of expression substitution, in that

there is no renaming to avoid variable capture.

4 Static semantics

In this section we introduce the two well-formedness criteria for expressions. The first

is a notion of ‘level’ which constrains the nesting of quotations and antiquotations

allowed in an expression. The second is a notion of strong typing.

4.1 Level

We use the term level to mean the number of quotations that surround a subex-

pression. The level of a quoted subexpression is one higher than the level of the

surrounding expression. The level of an antiquoted subexpression is one lower than

the level of the surrounding subexpression. The level of an entire expression is zero,

and no subexpression may occur at negative level.

Level is an important notion in reFLect because it affects variable binding and

reduction. Expressions that occur at level zero may be reduced while those that

occur at a higher level may not. For example, the normal form of the expression

(1 + 2, 〈〈1 + 2〉〉) is (3, 〈〈1 + 2〉〉) because the first occurrence of 1 + 2 occurs at level

zero in the expression and therefore may be reduced, while the second occurrence is

at level one and therefore may not.

We formalize our notion of level in relation to contexts. Since any expression may

be considered as a context with no holes, the definitions and properties we describe

for contexts also apply to expressions. We consider a context to be well formed only

if all its holes occur at level zero and no portion of the context occurs at a negative

level. We will say that such a context is level consistent. For example, ˆ + 1 is not

level consistent, but 〈〈ˆ + 1〉〉 is.

Figure 4 formalizes our notion of a level consistent context by defining judgments

of the form n � C, which should be read as ‘C is level consistent at level n’. We may

read judgments of the form 0 � C as simply ‘C is level consistent’. If the unique

derivation of 0 � C contains a subderivation with the intermediate conclusion n � D,

then we say that ‘D occurs at level n in C’.

The following properties follow from the definition of level consistency.

Proposition 1

If C contains no holes and n � C, then m � C for any m � n.

Proposition 2

For any n and C, there is at most one derivation concluding n � C.

Proposition 3

If C contains one or more holes, then there exists at most one n such that n � C.
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0 � ◦◦ σ n � k◦◦ σ n � v◦◦ σ

n � C n � D
n � λC. D

n � C n � D n � E
n � λC. D ||| E

n � C n � D
n � C·D

n+ 1 � C
n � 〈〈C〉〉

n � C
n+ 1 � (̂ C◦◦ σ)

Fig. 4. A level consistent context, n � 0.

Proposition 4

If Λ is an expression such that 1 � Λ then there is a unique context C[ ◦◦ σ1, . . . ◦◦ σn]

and set of expressions M1, . . . Mn such that C[ˆM1
◦◦ σ1, . . . ˆMn

◦◦ σn] is syntactically

identical to Λ and 0 � C[ ◦◦ σ1, . . . ◦◦ σn].

Proposition 4 allows us to treat contexts as a form of general constructor for

quoted expressions. We will use an expression of the form 〈〈C[ˆΛ1
◦◦ σ1, . . . ˆΛn

◦◦ σn]〉〉
under the condition 0 � C[ ◦◦ σ1, . . . σn] to stand for any quoted expression with level

zero subexpressions Λ1, . . . Λn. Many of the remaining figures contain recursive

definitions over the structure of expressions that use this property to give the case

for quoted expressions. Figures 5 and 7 are typical examples. This mechanism allows

us to write our structural definitions such that they traverse only the level zero

portions of an expression. This contrasts with the presentation technique used for

other reflective languages (Taha & Sheard, 2002; Sheard & Peyton Jones, 2002) in

which the entire term is traversed, and the traversal function tracks the level of the

expression.

4.2 Typing

All quoted expressions in reFLect have the same type, term. In FL, the type of a

quoted expression depended on what was inside the quote (Aagaard et al., 1999).

For example, 〈〈x+ y〉〉 had type int term, while 〈〈p ∨ q〉〉 had type bool term. The

idea was similar to the code type <σ> of MetaML (Taha & Sheard, 2002). But this

scheme means that certain functions that destruct or traverse the structure of an

expression cannot be typed. Such functions are common in our target application

domain of theorem proving; the functions in section 2 are typical examples.

Pas̆alić et al. show how to use dependent types to address the problem of typing

transformation routines (Pas̆alić et al., 2002). And for some functions, such as the

dest apply of section 2.1, existential types (Cardelli & Wegner, 1985) might suffice.

But there are still functions, such as finding a list of free variables, that are important

for implementing theorem provers and which cannot be typed with existential or even

dependent types. Even if it were possible to type such routines with dependent types,

we would reject this option because we wish to present our end-users, practicing

hardware design engineers, with the simplest type system that meets their needs.

By giving all quoted expressions the same type, term, we can type such expressions
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(mgtype k)φ = σ

� k◦◦ σ: σ � v◦◦ σ: σ
� Λ: σ � M: τ
� λΛ.M: σ → τ

� Λ: σ � M: τ � N: σ → τ
� λΛ.M ||| N: σ → τ

� Λ: σ → τ � M: σ
� Λ·M: τ

0 � C[ ◦◦ σ1, . . . ◦◦ σn] � Λ1: term . . . � Λn: term � C[v1◦◦ σ1, . . . vn◦◦ σn]: τ

� 〈〈C[̂ Λ1
◦◦ σ1, . . . ˆΛn

◦◦ σn]〉〉: term

Fig. 5. A well typed expression.

in a Hindley-Milner type system. The same decision is made for similar reasons in

Template Haskell (Sheard & Peyton Jones, 2002).

This means, of course, that in reFLect some type-checking must be done at run

time.2 For example the expression 〈〈1 + ˆx〉〉 is well-typed and requires x to be of type

term. But the further requirement that x is bound only to integer-valued expressions

cannot be checked statically; it must be enforced at run time.

This design decision goes against the common functional programming ideal of

catching as many type errors as possible statically. Our approach, however, is similar

to the way typing is handled in conventional theorem-proving systems that have

a separate meta-language and object-language, such as HOL. Both languages are

strongly typed, but evaluating a meta-language expression may attempt to construct

an ill-typed object language expression, resulting in a run-time error. Our experience

in the theorem proving domain is that this seemingly late discovery of type errors is

not a problem in practice.

4.2.1 A well typed expression

We say Λ is well-typed with type σ if it is level consistent and we may derive the

judgment � Λ: σ by the rules of figure 5. Some of the rules merit explanation:

• We suppose that each constant symbol k has an associated most-general type,

mgtype k. The type of a constant named k may be any instance of this type.

• A variable may be explicitly annotated with any type, and it is well-typed with

that type.

• A quoted expression – which can be factored into a context and a list of

antiquoted expressions – is well-typed with type term if each of the antiquoted

expressions is well-typed with type term, and filling the context with level-

consistent expressions of appropriate type yields a well-typed expression. The

simplest collection of expressions to fill the context with is a collection of fresh

variables. The type of the expression formed by filling the holes in the context

does not figure in the type of the quoted expression.

Type inference in reFLect takes user input and constructs well-typed expressions,

attaching the type annotations required to variables, constants and antiquotations.

2 This is unlike Template Haskell, where second-level type errors are caught at compile time.
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Users need not include these annotations in their input, though they may if they

wish a more restricted type than would otherwise be inferred. The type inference

algorithm used is essentially the Hindley-Milner algorithm, which performs type-

checking relative to an environment associating each variable with its type. The

algorithm is different for reFLect in that it performs type checking relative to the

typing environment on the top of a stack of such environments. A fresh environment

is pushed for each quotation. The stack is popped while traversing an antiquotation.

4.2.2 Variables and types

In reFLect the identity of a variable is determined by the combination of its name

and type. A well-typed expression may have two or more (different) variables with

the same name but different types. The type inference algorithm will never produce

such an expression, but they may arise as a result of evaluation. For example, the

expression 〈〈ˆ〈〈x◦◦ α → β〉〉·̂ 〈〈x◦◦ α〉〉〉〉 may be reduced, using rules we will describe in

section 6.1, to 〈〈x◦◦ α → β·x◦◦ α〉〉.
We could avoid the construction of expressions with multiple variables of the

same name and different type if for quoted expressions we retained not only the

information about the type of the expression, but also the type-inference environment

describing the types of the variables it contains. For antiquotations we would record

not only the expected type, but also the prevailing type-inference environment,

which describes expectations about the types of incoming variables. The operation

to splice one expression into another could then complete a conventional type

inference operation on the entire expression.

This approach is not, however, appropriate for our applications in theorem

proving. Consider again the standard logical rule for conjunction introduction, and

its implementation from section 2.1:

� P � Q
� P ∧ Q

In the rule, P and Q stand for two separate and arbitrary boolean expressions,

perhaps with free variables. Logically, the rule is valid even if P and Q contain

variables with the same name but different types.

It would complicate the presentation and use of the logic if rules like this were

restricted with side-conditions to ensure the consistent typing of variables in the

result. The decision to allow well typed expressions containing variables with the

same name and different types is one that reFLect shares with the object languages

of more conventional theorem proving systems for typed logics, such as HOL.

4.2.3 Type instantiation of contexts

We may apply a type instantiation to a context by instantiating every type that

appears at level zero in the context. We write Cnφ to indicate the result of applying

the type instantiation φ to the context (or expression) C at level n. In the case

where n is zero we will simply write Cφ. Type instantiation of a context is defined

in figure 6.
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◦◦ σnφ =

{
◦◦ σ , if n > 0
◦◦ σφ , if n = 0

k◦◦ σnφ =

{
k◦◦ σ , if n > 0

k◦◦ σφ , if n = 0

v◦◦ σnφ =

{
v◦◦ σ , if n > 0

v◦◦ σφ , if n = 0

(λC. D)nφ = λCnφ. Dnφ

(λC. D ||| E)nφ = λCnφ. Dnφ ||| Enφ

(C·D)nφ = Cnφ·Dnφ

〈〈C〉〉nφ = 〈〈Cn+1φ〉〉
(̂ C◦◦ σ)nφ = ˆCn−1φ

◦◦ σ , if n > 0

Fig. 6. Type instantiation of a context, n � 0.

Proposition 5

If 0 � Λ and � Λ: σ, then for any type instantiation φ, 0 � Λφ and � Λφ: σφ

5 Abstractions

Abstractions in reFLect are more complex than in the λ-calculus because any

expression may appear in the binding position. This complicates our notion of

variable binding and therefore our notion of substitution. Binding and substitution

are further complicated by the notion of level. This section describes binding and

substitution, and gives an informal explanation of the meaning of abstraction in

reFLect.

5.1 Binding

An abstraction in the λ-calculus is an expression of the form λv. Λ. The free variables

of this expression are the free variables of Λ except for v, which the expression is

said to bind. In reFLect we allow abstractions of the form λΛ.M. We will say that

the free variables of this expression are the free variables of M except for the free

variables of Λ, which the expression is said to bind.

We now consider the effect of level on binding. Consider λv. v + 1 and λw. 1 + w.

These expressions have different syntax, but they denote the same semantic object,

namely the function that increments its argument. Now consider 〈〈λv. v + 1〉〉 and

〈〈λw. 1 + w〉〉. These expressions denote different semantic objects, namely the syntax

of two programs that compute the increment function in different ways. In fact,

we even consider the expressions 〈〈λv. v〉〉 and 〈〈λw.w〉〉 to be different. They denote

semantic objects that represent the syntax of different programs, albeit different

programs that are α equivalent.

In reFLect, therefore, the expressions λv. v and λw.w are equal while 〈〈λv. v〉〉 and

〈〈λw.w〉〉 are not. The unquoted λs in the first pair of expressions act as binders,

but the quoted λs in the second pair of expressions do not; they act like syntax

constructors. This allows us to write functions that construct lambda expressions.

Consider β-reducing the expression (λv. 〈〈λˆv. ˆv + 1〉〉)·〈〈w〉〉 to 〈〈λˆ〈〈w〉〉. ˆ〈〈w〉〉 + 1〉〉.
Section 6.1 will explain how this expression may be reduced to 〈〈λw.w + 1〉〉. We can
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free k◦◦ σ = {}
free v◦◦ σ = {v◦◦ σ}
free λΛ.M = free M − free Λ

free λΛ.M ||| N = (free M − free Λ) ∪ free N

free Λ·M = free Λ ∪ free M

free〈〈C[ˆΛ1
◦◦ σ1, . . . ˆΛn

◦◦ σn]〉〉 = free Λ1 ∪ . . . free Λn

(where 0 � C[ ◦◦ σ1, . . . ◦◦ σn])

Fig. 7. Free variables.

think of the reFLect expression 〈〈λ t̂. ˆu〉〉 as a meta-language program that constructs

an object-level abstraction. Viewed from this perspective, t is free in this expression,

at least at the meta-level, but any variables in the value t takes on will be bound at

the object level in the result.

The approach we take is to consider only those variables that appear at level

zero in the binding position of a level zero abstraction to be bound. For example,

consider the expression λ〈〈ˆx+ ˆy〉〉. 〈〈ˆy + ˆx〉〉, which binds x and y. This denotes a

function that pattern matches quoted additions and commutes them. In contrast,

consider the expression λ〈〈x+ y〉〉. 〈〈y + x〉〉, which binds no variables. This denotes a

function that pattern matches quoted additions where the first argument literally is

‘x’ and the second argument literally is ‘y’, and always returns the quoted addition

〈〈y + x〉〉. Patterns with fixed variable names – like this last one – don’t appear useful,

but they have application in searching for specific variables in a large expression.

Figure 7 shows the definition of the function free, which describes the free variables

of an expression.

5.1.1 Binding and level

An alternative binding scheme would allow abstractions to bind variables at equal

or higher level. In such a system the expression (λx. 〈〈x〉〉)·1 would evaluate to 〈〈1〉〉.
This binding scheme is used in MetaML, where it is called cross-stage persistence.

Cross-stage persistence is not appropriate for the object language of a theorem

prover for standard logics. Consider the formula ¬(〈〈x〉〉 = 〈〈1〉〉). This statement

seems transparently true, and indeed reFLect evaluates this expression to true. We

desire this behavior because we want to write programs that distinguish between

the syntax of an object-language variable x and the syntax of an object-language

constant 1. But if quantifiers were to bind variables at higher levels then we could

make the following sequence of deductions using standard logical quantifier rules,

leading to an inconsistent logic.

� ¬(〈〈x〉〉 = 〈〈1〉〉)
� ∀x. ¬(〈〈x〉〉 = 〈〈1〉〉)

� ¬(〈〈1〉〉 = 〈〈1〉〉)

Suppes (1957) also observes this problem and concludes that ‘Rule (II) [the

prohibition on binding at higher levels] . . . is to be abandoned only for profound

reasons.’ Taha (1999) observes the same problem from the perspective of including
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intensional analysis in MetaML. He notes, as we do, that intensional analysis

requires reductions to be allowed only at level zero, but that this restriction

cannot be enforced in a language with cross-stage persistence without loss of

confluence.

The derivation of the contradiction that would follow from having cross-stage

persistence in our logic relies on quantification over a cross-stage persistent value.

Since constants are not bound by quantifiers, this objection to cross-stage persistence

does not apply to them. In reFLect, therefore, constants are taken to refer to the

same value at all levels of quotation. Just as the inclusion of a constant definition

mechanism in reFLect provides a logically sound form of restricted polymorphism,

so too it provides a sound form of restricted cross-stage persistence.

5.2 The meaning of abstractions

The expression that occurs in the binding position of an abstraction in reFLect

is treated as a pattern. As discussed above, a pattern may bind several variables

simultaneously. A pattern may also be partial, in the sense that it does not match all

possible values of the relevant type. For example, the pattern in λ〈〈ˆf ·̂ x〉〉. f ranges

over only that subset of the type of terms made up of applications. When applied

to an expression outside this subset, the result of this function is unspecified.

Moreover, it is syntactically possible for a pattern to contain several instances of a

variable, as in λ〈〈ˆx+ ˆx〉〉. 〈〈2 ∗ ˆx〉〉. We do not require an implementation to evaluate

such expressions; any attempt to do so may cause a run-time error. But because

such expressions may occur in a logic based on reFLect, we need to take a position

on their semantics, so that basic operations like substitution and type instantiation

respect this semantics.

One possible approach to the semantics of duplicate pattern variables is to consider

only the rightmost occurrence of a variable in a pattern to bind the variable in the

body. Then we would expect (λ〈〈ˆx+ ˆx〉〉. 〈〈2 ∗ ˆx〉〉)·〈〈1 + 2〉〉 to be semantically equal

to 〈〈2 ∗ 2〉〉. This works for patterns that are essentially terms in a free algebra.

However, in reFLect any expression can occur in pattern position, so we instead

take the position that in the pattern of a function such as λ〈〈ˆx+ ˆx〉〉. 〈〈2 ∗ ˆx〉〉 both

occurrences of x bind the variable x in the body. The pattern then places a constraint

on which applications of the function can be reduced. In this example, the constraint

is that the expression to which the function is applied must be an addition of two

syntactically identical expressions. Hence we expect (λ〈〈ˆx+ ˆx〉〉. 〈〈2 ∗ ˆx〉〉)·〈〈1 + 1〉〉 to

be semantically equal to 〈〈2 ∗ 1〉〉. If the constraint is not satisfied, then application

of the function is not defined.

In the HOL logic, we would usually express this kind of partially-defined object

as an ‘under-specified’ total function (Müller & Slind, 1997). Formally, one uses a

selection operator (Leisenring, 1969) to construct an expression ‘ε x.P [x]’ with the

meaning ‘an x such that P [x], or a fixed but unknown value if no such x exists’.

With this approach, we can view the abstraction λΛ.M as an abbreviation for

εf. ∀ free Λ. fΛ = M
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k◦◦ σθ = k◦◦ σ

v◦◦ σθ = θ(v◦◦ σ)

(λΛ.M)θ = λΛι.Mιθ

(λΛ.M ||| N)θ = λΛι.Mιθ ||| Nθ

(Λ·M)θ = Λθ·Mθ

〈〈C[̂ Λ1
◦◦ σ1, . . . ˆΛn

◦◦ σn]〉〉θ = 〈〈C[ˆΛ1θ◦◦ σ1, . . . ˆΛnθ◦◦ σn]〉〉
(where 0 � C[ ◦◦ σ1, . . . ◦◦ σn] and ι is a renaming such that:

dom ι ⊆ free Λ, and dom θ ∩ ι(free Λ) = {}, and

(free M − free Λ) ∩ ι(dom ι) = {}, and

free(θ(free M − free Λ)) ∩ ι(free Λ) = {})

Fig. 8. Substitution.

For example, λ(x, y). y is the function εf. ∀x y. f(x, y) = y. We may then view

λΛ.M ||| N as an abbreviation for

λv. if (∀ free Λ. v �= Λ) then N v else (λΛ.M) v

where the variable v is chosen to be distinct from all variables in free{Λ,M,N}.

5.3 Substitution and type instantiation

Substitution and type instantiation in reFLect are a little more complex than in

the λ-calculus, owing to the presence of pattern matching. The two operations are

defined as follows.

5.3.1 Substituting expressions

A substitution is a mapping from variables to expressions of the same type that is

the identity on all but finitely many variables. We typically use the meta-variables θ

and ι to stand for substitutions. We write dom θ for the domain of θ, meaning

the set of variables for which θ is not the identity. If dom θ = {v1◦◦ σ1, . . . vn◦◦ σn}
and θ(vi◦◦ σi) = Λi for all 1 � i � n, then we sometimes write θ using the notation

[Λ1, . . .Λn/v1◦◦ σ1, . . . vn◦◦ σn]. A renaming is an injective substitution that maps variables

to variables.

For any expression Λ and substitution θ we may write Λθ to stand for the action

of applying the substitution to all the free variables of Λ, with appropriate renaming

of the bound variables in Λ to avoid capture. Figure 8 defines this operation.3

Note that substitution must be consistent with the interpretation we place on

repeated pattern variables. We require the result of (λ(x, x). y) [x/y] to be λ(x′, x′). x.

That is, both occurrences of x in the pattern are consistently renamed. Note also

that only bound variables, variables at level 0 in the patterns of level 0 abstractions,

need be renamed to avoid capture; quoted variables are not impacted.

3 In the condition of figure 8, ι, θ, and free are implicitly extended to image functions over sets where
required.
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� definition k: τ τφ = σ

� k◦◦ σ → (definition k)φ
[δ]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

� (λΛ.M)·Ξ → Mθ
[β]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

� (λΛ.M ||| N)·Ξ → Mθ
[γ]

pattern Λ Λ ready Ξ � ∃θ. (Λ, θ) matches Ξ

� (λΛ.M ||| N)·Ξ → N·Ξ [ζ]

0 � C[ ◦◦ σ1, . . . ◦◦ σn] � Λ1: σ1φ . . . � Λn: σnφ domφ ⊆ vars{σ1, . . . σn}
� 〈〈C[ˆ〈〈Λ1〉〉◦◦ σ1, . . . ˆ〈〈Λn〉〉◦◦ σn]〉〉 → 〈〈Cφ[Λ1, . . .Λn]〉〉

[ψ]

Fig. 9. Reduction.

Proposition 6

If 0 � Λ and � Λ: σ, then for any substitution θ, 0 � Λθ and � Λθ: σ.

Most HOL-style theorem provers have a more general substitution primitive,

which allows one to substitute for arbitrary subexpressions occurring free in an

expression, not just for free variables. This is also the case in the reFLect theorem

prover, but variable-substitution suffices for presenting the operational semantics.

5.3.2 Type instantiation

We may also apply a type instantiation to an expression. For any expression Λ and

type instantiation φ, we write Λφ to mean the result of applying the instantiation to

the expression. This applies the instantiation to every level zero type in the expression,

using the notion of instantiation defined in section 3.1.1. Since the identity of a

variable in reFLect consists of its name and type, we need to rename bound variables

to avoid capture during a type instantiation. For example, (λ(x◦◦ α, x◦◦ β). x◦◦ α)[β/α]

should produce λ(x′◦◦ β, x◦◦ β). x′◦◦ β or λ(x◦◦ β, x′◦◦ β). x◦◦ β.

The formal definition of type instantiation for expressions is similar to the

definition of substitution in figure 8. Note that Λφ is not the same as the context

type instantiation operation Cφ in figure 6, which does not rename variables to

avoid capture. We will not use type instantiation on expressions as described here

until section 8.1.

6 Operational semantics

Figures 9 and 10 present the reduction rules for evaluating a reFLect expression.

The rules in figure 9 describe individual reductions, while those in figure 10 describe

how reductions may be applied to subexpressions. The judgments are of the form

� Λ → Λ′, which means that Λ reduces to Λ′ in one step. These rules ensure that

reductions apply only to level zero subexpressions, and then only to those that do
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� M → M′

� λΛ.M → λΛ.M′
� M → M′

� λΛ.M ||| N → λΛ.M′ ||| N
� N → N′

� λΛ.M ||| N → λΛ.M ||| N′

� Λ → Λ′

� Λ·M → Λ′·M
� M → M′

� Λ·M → Λ·M′

0 � C[ ◦◦ σ1, . . . ◦◦ σm, . . . ◦◦ σn] � Λm → Λ′
m

� 〈〈C[̂ Λ1
◦◦ σ1, . . . ˆΛm

◦◦ σm, . . . ˆΛn
◦◦ σn]〉〉 → 〈〈C[ˆΛ1

◦◦ σ1, . . . ˆΛ
′
m

◦◦ σm, . . . ˆΛn
◦◦ σn]〉〉

Fig. 10. Reducing subexpressions.

� Λ
∗→ Λ

� Λ → M � M
∗→ N

� Λ
∗→ N

Fig. 11. Reduction closure.

not fall in the binding position of a level zero abstraction. We use the standard

notation � Λ
∗→ Λ′ to indicate that Λ can be reduced to Λ′ in zero or more steps.

This is formalized in figure 11.

The rules of figure 9 use some auxiliary meta-functions, which we briefly introduce

here and describe in more detail later. The function definition returns the definition

of a constant. The predicate pattern characterizes the expressions we consider to

be executable patterns: variables or quotations whose level zero subexpressions are

variables. The relation (Λ, θ) matches Ξ means that applying the substitution θ to

the pattern Λ causes it to match the expression Ξ (in a sense we define precisely

later). The relation Λ ready M means that the expression M has been sufficiently

evaluated to determine whether or not it matches the pattern Λ. Note that we do

not define any reduction rules for abstractions with patterns that we do not consider

to be executable.

Proposition 7

If 0 � Λ and � Λ: σ, then for any M such that � Λ
∗→ M we have 0 � M and � M: σ.

Proposition 7 is the subject reduction property for reFLect. The property states

that a level consistent and well typed expression remains so as it is reduced, and

that the expression retains the same type as it is reduced. Krstić and Matthews have

a proof of this property (Krstić & Matthews, 2003).

6.1 Reducing quotations

The rule for ψ-reduction in figure 9 allows the elimination of antiquoted quotations

at level one. The rule admits the possibility that the type variables of a quoted region

may need to be instantiated in order to be type consistent with the antiquoted regions

being spliced into it. Suppose, for example, that inc is a constant of type int → int.

The ψ rule lets us reduce 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈1〉〉◦◦ α〉〉 to 〈〈inc·1〉〉 by allowing α and β to

be instantiated to int.
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This type-instantiation behavior of ψ is the basis for run-time type checking in

reFLect. At compile time, we type-check quotation contexts at their most general

types. Then at run-time – when the expressions being spliced into the holes become

available – we check type consistency by instantiating the context’s type variables to

match the types inside the incoming expressions. For example, consider the function

comm in section 2. Type inference will annotate the antiquotations in the definition

of comm with polymorphic types so that, for example, comm·〈〈inc·(1 + 2)〉〉 reduces

at run time to 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈2 + 1〉〉◦◦ α〉〉. Then, using ψ-reduction, we get the

expected expression 〈〈inc·(2 + 1)〉〉.
The rule does not allow reductions to create badly-typed expressions. For example,

we cannot use this rule to reduce the expression 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈T〉〉◦◦ α〉〉. Note

also that the rule does not allow type instantiations of the expressions inside

the antiquotes. For example, we cannot use this rule to reduce the expression

〈〈ˆ〈〈f◦◦ α → β〉〉◦◦ int → γ·1〉〉.

6.1.1 Instantiation must affect the entire term

One might first imagine a simpler rule for ψ-reduction like the one shown below:

� Λ: τφ

� ˆ〈〈Λ〉〉◦◦ τ → Λ

Unfortunately, the effect of this rule does not cover enough of the expression to

ensure type consistency. Consider again the expression 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈T〉〉◦◦ α〉〉. We

could use this incorrect rule to reduce it to 〈〈inc◦◦ int → int·̂ 〈〈T〉〉◦◦ α〉〉 and then again

to 〈〈inc◦◦ int → int·T◦◦ bool〉〉.

6.1.2 All antiquotes eliminated simultaneously

The assumption 0 � C[ ◦◦ σ1, . . . ◦◦ σn] of the ψ-reduction rule ensures that it eliminates

every level one antiquote enclosed by a given quotation. We could imagine a version

of this rule that need not eliminate every antiquote simultaneously. We could then

reduce 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈1〉〉◦◦ α〉〉 to 〈〈inc ·̂ 〈〈1〉〉◦◦ int〉〉 and later to 〈〈inc·1〉〉. But this rule

would also allow us to reduce 〈〈ˆ〈〈inc〉〉◦◦ α → β ·̂ 〈〈T〉〉◦◦ α〉〉 to both 〈〈inc ·̂ 〈〈T〉〉◦◦ int〉〉 and

〈〈ˆ〈〈inc〉〉◦◦ int → β·T〉〉. Since these expressions may not be further reduced this would

leave reFLect with a non-confluent reduction system.4

We could, however, allow a rule that requires only that all the antiquotes occurring

at the same level within a given quoted region need be eliminated simultaneously.

For example, consider

〈〈(̂ 〈〈1〉〉, ˆ〈〈2〉〉, 〈〈(̂ ˆ〈〈〈〈3〉〉〉〉, ˆˆ〈〈〈〈4〉〉〉〉)〉〉)〉〉

The first two antiquotes must be eliminated simultaneously, and so must the second

two, but it would be possible to develop a valid semantics that did not require

all four to be eliminated together. Expressions like this, however, do not arise

4 It does have a property similar to confluence, if expressions like these are considered equivalent.
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in our applications – so we do not complicate the semantics to facilitate this

relaxation.

6.1.3 Type instantiation impacts only the context

The ψ-reduction operation ensures that it constructs a well typed expression by

type instantiating the context into which the antiquoted expressions are spliced. One

might also consider unifying the types of the context and the incoming expressions

to achieve a match. This is the approach taken in the system of Shields et al. (1998).

This option was rejected for reasons that derive from the target application of

reFLect to theorem proving and circuit transformation. In these applications most

operations that manipulate expressions are expected to preserve the types of the

manipulated expressions. In this case, unification is not appropriate. This is in

contrast to systems designed for code-generation (Sheard & Peyton Jones, 2002)

or staged evaluation (Taha & Sheard, 2002), which focus more on flexible ways of

constructing or specializing programs.

For example, a ubiquitous theorem proving application is term rewriting (Paulson,

1983), in which an expression is transformed by application of general rewrite rules

to its subexpressions. The matching that makes a general rewrite rule applicable

at a subexpression is always one-way and type unification is not appropriate. The

semantics of our hole-filling ψ rule therefore exactly achieves the reFLect design

requirement for a native mechanism to support rewriting.

In theorem proving and transformation applications, contexts are typically small

and the incoming subexpressions large. The same subexpression may be spliced into

more than one context to form several expressions. In rewriting, for example, the

original term and the rewritten term typically have many common subexpression. If

we unified types when splicing a subexpression into a context then it would not be

possible to share subexpressions, we would have to copy it. Since the efficiency of

rewriting is key to the effectiveness of a theorem prover, we would not be able to

use this splicing operation to implement our rewriter.

6.2 Patterns may not be reduced

An examination of the rules in figure 10 reveals that it is possible to reduce any

level zero subexpression, except those in the binding position of an abstraction.

Patterns may not be reduced. We might imagine a system that allowed reductions

on patterns as well. For example, it seems reasonable to reduce the expression

(λ〈〈ˆ〈〈1〉〉 + ˆx〉〉. x)·〈〈1 + 2〉〉 to (λ〈〈1 + ˆx〉〉. x)·〈〈1 + 2〉〉 and then to 〈〈2〉〉.
But unrestricted reduction of patterns is unsafe. As an example, consider the

expression λ((λy. z)·x). x, in which the pattern (λy. z)·x occurs in binding position. If

we were to allow reduction of this pattern, we could reduce the whole expression

to λz. x. But then the variable x, which was bound in the original expression, has

become free – perhaps to be captured by some enclosing scope. It might be possible

to avoid this problem by not allowing pattern reductions that change the free

variable set of the pattern. But in the absence of a compelling application, it seems

simpler just to forbid pattern reductions.
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pattern v◦◦ σ

0 � C[ ◦◦ σ1, . . . ◦◦ σn]

pattern〈〈C[ (̂v1◦◦ term)◦◦ σ1, . . . (̂vn◦◦ term)◦◦ σn]〉〉

Fig. 12. Valid pattern.

v ready Λ
0 � Λ

M ready 〈〈Λ〉〉

Fig. 13. Match readiness.

6.3 Pattern matching

The rules for β-reduction, γ-reduction, and ζ-reduction apply only to abstractions

over valid patterns. Not all expressions make valid patterns. For example, the

expressions in the binding positions of λx. x and λ〈〈ˆx+ 1〉〉. 〈〈1 + ˆx〉〉 are both valid

patterns, but the expression in the binding position of λx+ 1. x is not. This is not

to say that such bindings are without meaning, only that we do not support the

evaluation of such patterns, and so they are considered invalid for the purposes of

this operational semantics.

Figure 12 defines the predicate pattern that characterizes which patterns are

considered valid. It can be summarized by saying that a valid pattern is either

a variable or a quotation where every level zero subexpression is a variable. The

definition does not rule out patterns containing more than one instance of the same

variable. An implementation, however, may have a stricter notion of valid pattern

that disallows this. Any attempt to match an invalid pattern should lead to a failure.

We also make some restrictions on when we are prepared to consider matching

a pattern. If a pattern is a simple variable, then we may match it straightaway, but

if a pattern is a quotation then we must wait until the expression we are trying to

match has been reduced to a quotation with level one antiquotes eliminated. We

will say that the expression M is ready to be matched to the pattern Λ, Λ ready M,

if this condition holds. Figure 13 formalizes this notion, which is used in the rules

for β and γ-reduction in figure 9.

Consider what can happen without this restriction by contemplating the effect of

dest apply from section 2. If we apply this to the expression 〈〈g◦◦ α → β ·̂ 〈〈1〉〉◦◦ α〉〉 and

we were to evaluate the application before ψ-reducing the argument we would get

the result (〈〈g◦◦ α → β〉〉, 〈〈ˆ〈〈1〉〉◦◦ α〉〉), which reduces to (〈〈g◦◦ α → β〉〉, 〈〈1〉〉). If we were

to ψ-reduce the argument before reducing the application we would get the result

(〈〈g◦◦ int → β〉〉, 〈〈1〉〉).
As with the possible generalization to ψ-reduction discussed in section 6.1.2, we

believe there is an equally valid semantics that doesn’t force the elimination of all

level one antiquotes from an expression before it may be matched, but only those

from level contiguous regions that are in some way accessed by the match. But this

would complicate the semantics without benefit to practical applications.

6.3.1 Matching an alternative

Once we have determined that a pattern is valid and an expression is ready

to be matched by it, then we are ready to determine whether (and how) the
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v◦◦ σ θ = Ξ
(v◦◦ σ, θ) matches Ξ

0 � C[ ◦◦ σ1, . . . ◦◦ σn] φ � C[w1
◦◦ σ1, . . . wn◦◦ σn]� D[w1

◦◦ σ1φ, . . . wn◦◦ σnφ]

v1◦◦ term θ = 〈〈Ξ1〉〉 . . . vn◦◦ term θ = 〈〈Ξn〉〉
(〈〈C[ (̂v1◦◦ term)◦◦ σ1, . . . (̂vn◦◦ term)◦◦ σn]〉〉, θ) matches 〈〈D[Ξ1, . . .Ξn]〉〉

(where w1, . . . wn are fresh)

Fig. 14. Pattern matching an expression.

σφ = τ

φ � k◦◦ σ � k◦◦ τ

σφ = τ

φ � v◦◦ σ � v◦◦ τ

φ � Λ� Λ′ φ � M�M′

φ � λΛ.M� λΛ′.M′

φ � Λ� Λ′ φ � M�M′ φ � N� N′

φ � λΛ.M ||| N� λΛ′.M′ ||| N′

φ � Λ� Λ′ φ � M�M′

φ � Λ·M� Λ′·M′

σ1χ = τ1 . . . σnχ = τn
χ � C[v1◦◦ σ1, . . . vn◦◦ σn]� C′[v1◦◦ τ1, . . . vn◦◦ τn]

0 � C[ 1
◦◦ σ1, . . . n

◦◦ σn] 0 � C′[ 1
◦◦ τ1, . . . n

◦◦ τn]

φ � Λ1 � Λ′
1 . . . φ � Λn � Λ′

n

φ � 〈〈C[ˆΛ1
◦◦ σ1, . . . ˆΛn

◦◦ σn]〉〉� 〈〈C′[ˆΛ′
1

◦◦ τ1, . . . ˆΛ
′
n

◦◦ τn]〉〉
(where v1 . . . vn are fresh)

Fig. 15. Type-match relation.

expression matches the pattern. The predicate matches, defined in figure 14, makes

this determination.

When the pattern is a variable, we say that the pattern matches an expression

under a substitution precisely when the substitution maps that variable to the

expression. When the pattern is a quotation, we first find a level-consistent context

C[ ◦◦ σ1, . . . ◦◦ σn] and term variables v1, . . . vn such that the pattern we are trying to

match against is

〈〈C[ (̂v1◦◦ term)◦◦ σ1, . . . (̂vn◦◦ term)◦◦ σn]〉〉

Next we must find a level consistent context D[ ◦◦ τ1, . . . ◦◦ τn] and list of subexpres-

sions Ξ1, . . . Ξn such that the expression we are trying to match is 〈〈D[Ξ1, . . .Ξn]〉〉.
The expression matches the pattern if D is a type instance, in the sense explained

below, of C and we can match each expression Ξ1, . . .Ξn to the corresponding

variable v1, . . . vn under the same substitution.

The notation φ � Λ � M indicates that M is a type instance of Λ under some

type instantiation φ and is defined in figure 15. The role of the � relation is to

allow the types within quotations in the pattern to be more general than those of the
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argument. This allows functions on expressions to be defined by pattern matching,

as in the following example:

let len = λ〈〈Len·([]◦◦ α list)〉〉. 〈〈0〉〉
| λ〈〈Len·(̂ h::̂ t)〉〉. 〈〈(Len·̂ t) + 1〉〉

We would expect to be able to apply the first λ-abstraction in this function to

expressions such as 〈〈Len·([]◦◦ int list)〉〉, and so the pattern 〈〈Len·([]◦◦ α list)〉〉 must

match up to some instantiation of type variables.

6.3.2 Discarding an alternative

The rules for β and γ-reduction require the argument expression to be ready to match

the pattern before a match is made. Similarly, the rule for ζ-reduction requires the

argument expression to be ready to match the pattern before the match is rejected.

In general, we may have (λΛ.M ||| N)·Ξ, where Ξ has type term but has not yet been

evaluated to yield a quotation. It is not possible to tell if and how Ξ might match the

pattern Λ until Ξ has been evaluated. The assumption Λ ready M on the ζ-reduction

rule prevents a match from being discarded too early. If an expression M is ready to

match a pattern Λ, but there is no substitution θ such that (Λ, θ) matches M, then

we may safely conclude that the expression doesn’t match the pattern and discard

this alternative.

In some circumstances a pattern will never match an expression and yet may also

not be discarded. Consider the following application:

(λ〈〈ˆf ·̂ x〉〉. Λ ||| M)·〈〈ˆ〈〈inc◦◦ int → int〉〉◦◦ α → α ·̂ 〈〈T〉〉◦◦ α〉〉

In this example the argument is not ready to match the pattern, however it may not

be further reduced. The reFLect language does not let us conclude anything about

the internal structure of expressions that are not sufficiently evaluated to tell if they

are well typed. In an implementation, the inability to apply either the γ-reduction

or ζ-reduction rules would result in the argument being reduced to the point where

ψ-reduction was attempted and a run-time type error raised.

7 Compiling to λ-calculus

Given data-structures for lists, expressions and contexts – and two functions, fill

and match, for manipulating them – the special features of reFLect (quotation,

antiquotation, pattern matching) can be compiled away to produce λ-calculus.

Expressions and contexts can be represented as ordinary algebraic data-types. The

functions fill and match can then be defined on those data-types. The data-types for

expressions and contexts must be as described in section 3. This section describes

the required behavior of fill and match, and how those functions can then be used

to implement the special features of reFLect.

The implementation of reFLect used at Intel follows the technique described here,

except that the types of expressions and contexts are not implemented as ordinary

algebraic data-types. Rather, the representation of reFLect syntax trees used by the
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E �v◦◦ τ� = v

E �k◦◦ τ� = k

E �Λ·M� = (E Λ) (E M)

E �λΛ.M� = P Λ (E M) error

E �λΛ.M ||| Ξ� = P Λ (E M) (E Ξ)

E �〈〈C[̂ Λ1
◦◦ τ1, . . . ˆΛn

◦◦ τn]〉〉� = fill �〈〈C[ ◦◦ τ1, . . . ◦◦ τn]〉〉� [E Λ1, . . .E Λn]

(where 0 � C[ ◦◦ τ1, . . . ◦◦ τn])

P �v◦◦ τ�M N = λv.M

P �〈〈C[ (̂v1◦◦ term)◦◦ τ1, . . . (̂vn◦◦ term)◦◦ τn]〉〉�M N =

match �〈〈C[ ◦◦ τ1, . . . ◦◦ τn]〉〉� (λw. L [�v1◦◦ term�, . . . �vn◦◦ term�] M w) N

(where 0 � C[ ◦◦ τ1, . . . ◦◦ τn], w is fresh, and v1, . . . vn are distinct)

L [] M x = M

L [�v◦◦ τ�] M x = (λv.M) (hd x)

L (�v◦◦ τ�::vs) M x = (λv. L vs M (tl x)) (hd x)

Fig. 16. Compilation to λ-calculus.

underlying compiler is reused for these types. As a result, once an expression has

been constructed it may be evaluated directly. The functions fill and match are

implemented as primitives.

We describe the compilation process with three functions: E (for compiling

expressions), P (for compiling pattern abstractions), L (for compiling abstractions

over lists of variables). The definitions of these functions are in figure 16. Together

these functions can compile expressions in reFLect to λ-calculus that uses the functions

fill and match for constructing and destructing expressions. These functions are

explained in sections 7.1 and 7.2. The generated code also uses a constant value error

to signal the outcome of a pattern matching failure.5 We will use quasi-quotation to

separate values of the term and context data-types from the surrounding λ-calculus

expressions, with which they share much common syntax.

It must also be noted that because reFLect distinguishes variables by name and

type, while ordinary λ-calculus distinguishes variables solely by name, we must

avoid inadvertent variable capture by first α-converting any reFLect program to an

equivalent one in which distinct variables at level zero have distinct names before

compiling with the method described here.

7.1 Constructing terms

Values of the term and context types are ground expressions and therefore not

reducible. This means that the reFLect program λx. λy. 〈〈ˆx+ ˆy〉〉 is not represented

directly in the λ-calculus by the term with syntax λx. λy. 〈〈ˆx+ ˆy〉〉. To achieve the

effect of this program we assume a function fill that takes a context with n holes and

a list of n terms, and forms a new term by applying the minimal type instantiation to

5 The compiler described here requires a slightly stricter definition of valid patterns, in that it is applicable
only to linear patters, i.e. those in which no variable is repeated.
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the context that makes the type of each hole agree with the type of the corresponding

term in the list, and then replaces each hole with the corresponding term from the

list (with surrounding quotations removed). The function fails if the list does not

have the same number of the terms as there are holes in the context or if a type

instantiation cannot be found that brings the type of each hole in the context into

agreement with the type of the corresponding term in the list. The fill function is

described below.6

fill: context → term list → term

� Λ1: σ1φ . . . � Λn: σnφ domφ ⊆ vars{σ1, . . . σn}

� fill �〈〈C[ ◦◦ σ1, . . . ◦◦ σn]〉〉� [�〈〈Λ1〉〉�, . . . �〈〈Λn〉〉�]
λ→ �〈〈Cφ[Λ1, . . .Λn]〉〉�

The reFLect program 〈〈ˆx+ ˆy〉〉 can now be translated into the λ-calculus expression

fill �〈〈 + 〉〉� [x, y].

7.2 Destructing terms

For the compilation of quotation patterns we will require another built-in function

called match. The first argument to match is a context with n holes that will serve

as a pattern. The second argument is a function that takes a list of n terms as its

argument. The third argument is a function from a term to the same return type

as the second argument. The fourth argument is a term. It then attempts to match

the term to the context, producing a list of terms for the regions that were matched

to the holes. If the match was successful then the result is the application of the

second argument to this list. If the match is not successful then the third argument

is applied to the term instead.

match:

context → (term list → α) → (term → α) → term → α

(〈〈C[ (̂v1◦◦ term)◦◦ σ1, . . . (̂vn◦◦ term)◦◦ σn]〉〉, [〈〈Ξ1〉〉, . . . 〈〈Ξn〉〉/v1, . . . vn]) matches 〈〈N〉〉

� match �〈〈C[ ◦◦ σ1, . . . ◦◦ σn]〉〉� Λ M �〈〈N〉〉� λ→ Λ [�〈〈Ξ1〉〉�, . . . �〈〈Ξn〉〉�]
(where v1, . . . vn are fresh)

� ∃θ. (〈〈C[ˆv1◦◦ σ1, . . . ˆvn◦◦ σn]〉〉, θ) matches 〈〈N〉〉
� match �〈〈C[ ◦◦ σ1, . . . ◦◦ σn]〉〉� Λ M �〈〈N〉〉� λ→ M �〈〈N〉〉�

(where v1, . . . vn are fresh)

Using match the reFLect program λ〈〈ˆx+ ˆy〉〉. (x, y) can be translated into λ-calculus

as follows:

match �〈〈 + 〉〉� (λ[x, y]. (x, y)) error

6 We use
λ→ to indicate a reduction in the λ-calculus as opposed to reFLect.
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7.3 Compilation example

We illustrate the action of the compiler on the definition of the comm function from

section 2.

E �λ〈〈ˆx+ ˆy〉〉. 〈〈 (̂comm·y) + (̂comm·x)〉〉
|||λ〈〈ˆf ·̂ x〉〉. 〈〈 (̂comm·f)·̂ (comm·x)〉〉
|||λ〈〈λˆp. ˆb〉〉. 〈〈λˆp. (̂comm·b)〉〉
|||λ〈〈ˆp. ˆb ||| ˆa〉〉. 〈〈λˆp. (̂comm·b) ||| (̂comm·a)〉〉
|||λx. x�

We begin by repeatedly invoking the expression compiler E. In this first step we

have invoked E on any instances of the fourth and fifth clauses of its definition.

These clauses translate reFLect pattern matching λs into calls to the pattern compiler

P.

P �〈〈ˆx+ ˆy〉〉� (E �〈〈 (̂comm·y) + (̂comm·x)〉〉�)
(P �〈〈ˆf ·̂ x〉〉� (E �〈〈 (̂comm·f)·̂ (comm·x)〉〉�)
(P �〈〈λˆp. ˆb〉〉� (E �〈〈λˆp. (̂comm·b)〉〉�)
(P �〈〈λˆp. ˆb ||| ˆa〉〉� (E �〈〈λˆp. (̂comm·b) ||| (̂comm·a)〉〉�)
(P �x� (E �x�) error))))

Next we use E again, this time applying it to any instances of the sixth clause

of its definition. This translates the use of antiquotation to perform expression

construction into an application of the fill function.

P �〈〈ˆx+ ˆy〉〉� (fill �〈〈 + 〉〉� [E �comm·y�,E �comm·x�])
(P �〈〈ˆf ·̂ x〉〉� (fill �〈〈 · 〉〉� [E �comm·f�,E �comm·x�])
(P �〈〈λˆp. ˆb〉〉� (fill �〈〈λ . 〉〉� [E �p�,E �comm·b�])
(P �〈〈λˆp. ˆb ||| ˆa〉〉� (fill �〈〈λ . ||| 〉〉� [E �p�,E �comm·b�,E �comm·a�])
(P �x� x error))))

A few more applications of E, this time focusing on instances of the first three

clauses of its definition, remove the remaining uses of this function. In doing so we

complete the translation of the bodies of the original reFLect abstractions.

P �〈〈ˆx+ ˆy〉〉� (fill �〈〈 + 〉〉� [comm y, comm x])

(P �〈〈ˆf ·̂ x〉〉� (fill �〈〈 · 〉〉� [comm f, comm x])

(P �〈〈λˆp. ˆb〉〉� (fill �〈〈λ . 〉〉� [p, comm b])

(P �〈〈λˆp. ˆb ||| ˆa〉〉� (fill �〈〈λ . ||| 〉〉� [p, comm b, comm a])

(P �x� x error))))

We now use P to compile the pattern matching code into an application of the

match function.

match �〈〈 + 〉〉� (λk. L [�x�, �y�] (fill �〈〈 + 〉〉� [comm y, comm x]) k)

(match �〈〈 · 〉〉� (λl. L [�f�, �x�] (fill �〈〈 · 〉〉� [comm f, comm x]) l)

(match �〈〈λ . 〉〉�(λm. L [�p�, �b�] (fill �〈〈λ . 〉〉� [p, comm b]) m)

(match �〈〈λ . ||| 〉〉�
(λn. L [�p�, �b�, �a�] (fill �〈〈λ . ||| 〉〉� [p, comm b, comm a]) n)

(λx. x))))
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We complete the compilation with repeated application of the variable list abstrac-

tion compiler L.

match �〈〈 + 〉〉�
(λk. (λx. (λy.fill �〈〈 + 〉〉� [comm y, comm x]) (hd (tl k))) (hd k))

(match �〈〈 · 〉〉� (λl. (λf. (λx.fill �〈〈 · 〉〉� [comm f, comm x]) (hd (tl l))) (hd l))

(match �〈〈λ . 〉〉�(λm. (λp. (λb.fill �〈〈λ . 〉〉� [p, comm b]) (hd (tl m))) (hd m))

(match �〈〈λ . ||| 〉〉� (λn. (λp. (λb. (λa.fill �〈〈λ . ||| 〉〉� [p, comm b, comm a])

(hd (tl (tl n)))) (hd (tl n))) (hd n))

(λx. x))))

8 Reflection

Thus far we have described the core of the reFLect language. This language features

facilities for constructing and destructing expressions using quotation, antiquotation

and pattern matching. These allow reFLect to be used for applications, like theorem

prover development, that might usually be approached with a system based on a

separate meta-language and object-language. In this section we add some facilities

for reflection.

8.1 Evaluation

The reFLect language has two built-in functions for evaluation of expressions: eval

and value.7 Suppose we use the notation Λ ⇒ Λ′ to mean that Λ is evaluated

to produce Λ′. Certainly Λ ⇒ Λ′ implies Λ
∗→ Λ′, but we consider the order of

evaluation and the normal form at which evaluation stops to be implementation

specific, and so we leave these unspecified. The eval function is then described as

follows:

� eval: term → term

0 � Λ � Λ ⇒ Λ′

� eval·〈〈Λ〉〉 → 〈〈Λ′〉〉

Next we consider value. It is a slight misstatement to say that value is a function

in reFLect – rather there is an infinite family of functions valueσ indexed by type. A

call to value removes the quotes from around a term and interprets the result as a

value of the appropriate type.

� valueσ: term → σ

0 � Λ free Λ = ∅ � Λ: τ τφ = σ

� valueσ·〈〈Λ〉〉 → Λφ

Antiquotation and value may appear similar in some respects, but there are

several important differences between them:

7 Note that of the two, it is value rather than eval that most closely corresponds to the eval operation
in LISP.
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• The value function may appear at level zero, while antiquotation may not.

• Like other functions, value has no effect when quoted, while a (once) quoted

antiquote may be reduced.

• If the type required of a term is different from the actual type, then value

may instantiate the type of the term. Antiquotation may instead instantiate

the type of its context.

• Antiquotation does not alter the level of the quoted term, but value moves

the term from level one to level zero.

This last difference has important consequences for the treatment of variable

binding. In moving an expression to level zero, value could expose its free variables

to capture by enclosing lambda bindings. We restrict value to operate on closed

expressions to prevent this. The restriction is similar in motivation to the run-time

variable check of run in MetaML (Taha & Sheard, 2002) or the static check for

closed code in the system λBN (Benaissa et al., 1999).

8.2 Value reification

The reFLect language also supports a partial inverse of value through the lift function;

its purpose is to make quoted representations of values. For example, lift·1 is 〈〈1〉〉
and lift·T is 〈〈T〉〉. The function lift is strict, so lift·(1 + 2) is equal to 〈〈3〉〉. Note

also that lift may only be applied to closed expressions. Lifting quotations is easy:

just wrap another quote around them. For example, lift·〈〈x+ y〉〉 gives 〈〈〈〈x+ y〉〉〉〉.
Lifting recursive data-structures follows a recursive pattern that can be seen from

the following example of how lift works on lists.

lift·[]◦◦ σ list = 〈〈[]◦◦ σ list〉〉
lift·(::◦◦ σ → σ list → σlist)·Λ·M) =

〈〈(::◦◦ σ → σ list → σlist)·̂ (lift·Λ)◦◦ σ·̂ (lift·M)◦◦ σ list〉〉

Lifting numbers, booleans and recursive data-structures is easy because they have

a canonical form, but the same is not true of other data-types. For example, how

do we lift λx. x + 1? Naively wrapping quotations around the expressions would

result in logical inconsistencies. For example, λx. x+ 1 and λx. 1 + x are equal and

extensionality therefore requires lift·(λx. x+ 1) and lift·(λx. 1 + x) to be equal. But

the terms 〈〈λx. x+ 1〉〉 and 〈〈λx. 1 + x〉〉 are not equal. If Λ is an expression of some

type σ without a canonical form then we will use the following definition for lift.

lift·Λ = 〈〈[[Λ]]◦◦ σ〉〉

You should think of [[Λ]] as being a new and unusual constant name. These

names have the property that if Λ and M are semantically equal, then [[Λ]] and

[[M]] are considered the same name. For example evaluating lift·(λx. x+ 1) produces

〈〈[[λx. x+ 1]]〉〉 and evaluating lift·(λx. 1 + x) produces 〈〈[[λx. 1 + x]]〉〉, and the two

resulting expressions are equal since they are both quoted constants with ‘equal’

names and types.8 When we do this, we say that we have put the expression in

8 Of course, the equality of such names is not decidable.
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a black box. Since black boxes are just a kind of constant they require no special

treatment.

Note that eval is not simply the composition of value and lift. Consider the

expressions

〈〈(λx. λy. x+ y)·1)〉〉 and 〈〈(λx. λy. y + x)·1)〉〉

Applying eval to these expressions produces 〈〈λy. 1 + y〉〉 and 〈〈λy. y + 1〉〉. Applying

value then lift however must yield 〈〈[[λy. 1 + y]]〉〉 and 〈〈[[λy. y + 1]]〉〉. Because the

composition of value and lift takes a term to a term via the unquoted form that

represents its meaning, two different expressions that represent semantically equal

programs must produce the same result. By taking expressions to expressions directly

the eval operation is not so constrained.

As an example, by using lift you can write the function sum defined by

letrec sum n = if n = 0 then 〈〈0〉〉 else 〈〈 (̂lift·n) + (̂sum·(n− 1))〉〉

This maps n to an expression that sums all the numbers up to n. For example, sum·4
produces 〈〈4 + 3 + 2 + 1 + 0〉〉.

This feature addresses a shortcoming of the previous version of Forte based on

FL. Users of this system sometimes want to verify a result by case analysis that

can involve decomposing a goal into hundreds of similar cases, each of which is

within reach of an automatic solver. It is difficult in FL to write a function that will

produce (a conjunction of) all those cases. Facilities like lift make this easier, and

the implementation more transparent.

9 Application example

This section presents an example application of reFLect in which we develop the

core of an LCF-architecture theorem prover (Gordon et al., 1979). The logic of the

theorem prover is a variant of higher-order logic. The construction is similar to that

of Church’s formulation of simple type theory (Church, 1940), except that our basis

is reFLect rather than λ-calculus. In particular, we follow Harrison’s formulation of

Church’s logic used in the HOL Light system (Harrison, 2000).

The example illustrates how the term manipulation features of reFLect make for

a short and transparent theorem prover implementation. The code here is similar

to the core of the actual reFLect theorem prover used at Intel. The Eval inference

rule illustrates how reflection can be used for efficient reasoning by evaluation. We

take the liberty of sugaring the syntax somewhat so that we may reuse without

explanation the more mathematical notation already employed in this paper.

We begin by defining universal and existential quantifiers as higher-order func-

tions. These are given the special ‘binder’ fixity so that, for example, ‘∀x. P’ is taken

to abbreviate ‘∀ (λx. P)’. Note that, unlike some languages, reFLect does not restrict

equality to ‘equality types’ on which equality may be decided. In reFLect equality

may be used at all types, but a runtime exception occurs if an attempt is made to

evaluate an equality that can not be decided. With this relaxation, the definitions of

the quantifiers are as follows:
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let ∀ P = (P = λx. T);

binder ∀;

let ∃ P = ∀ q. (∀x. P x ==> q) ==> q;

binder ∃;

We also define some predicates on functions that we will use later to formulate the

axiom of infinity.

let one_one f = ∀x1 x2. (f x1 = f x2) ==> (x1 = x2);

let onto f = ∀y. ∃x. y = f x;

The following module defines the abstract type of theorems and operations on

them. Only those identifiers nominated at the end of the module are exported, thus

establishing the secure, LCF style, core of the theorem prover.

begin abstype;

// Theorem data-type and projection functions

lettype thm = � (term list) term;

infix 4 �;

let asms (as � c) = as;

let concl (as � c) = c;

// Inference rules corresponding to reFLect reduction rules

let Defn k =

let l = definition k in

let ph = match_type (type l) (type k) in

if ¬(well_founded k) then error "Not well founded"

else [] � 〈〈ˆk = ˆ(inst ph l)〉〉;
let Beta tm =

let 〈〈(λˆl. ˆm) ˆx〉〉 = tm in

if ¬(pattern l) then error "Invalid pattern"

else if ¬(l ready x) then error "Not ready"

else let (SOME th) = match l x in

[] � 〈〈ˆtm = ˆ(subst th m)〉〉;
let Gamma tm =

let 〈〈(λˆl. ˆm ||| ˆn) ˆx〉〉 = tm in

if ¬(pattern l) then error "Invalid pattern"

else if ¬(l ready x) then error "Not ready"

else let (SOME th) = match l x in

[] � 〈〈ˆtm = ˆ(subst th m)〉〉;
let Zeta tm =

let 〈〈(λˆl. ˆm ||| ˆn) ˆx〉〉 = tm in

if ¬(pattern l) then error "Invalid pattern"

else if ¬(l ready x) then error "Not ready"
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else let NONE = match l x in

[] � 〈〈ˆtm = ˆn ˆx〉〉;
let Psi tm =

let (c, ls) = dest_quote tm in

if ¬(every quote ls) then error "Not ready"

else [] � 〈〈ˆtm = ˆ(fill c ls)〉〉;

// The effect of this rule may be derived by chaining the above rules,

// but using reflection here gives us proof at the speed of evaluation.

let Eval tm = [] � 〈〈ˆtm = ˆ(eval tm)〉〉;

// Equality properties

let Refl tm = [] � 〈〈ˆtm = ˆtm〉〉;
let Apply (as1 � 〈〈ˆl1 = ˆl2〉〉) (as2 � 〈〈ˆm1 = ˆm2〉〉) =

as1 U as2 � 〈〈ˆl1 ˆm1 = ˆl2 ˆm2〉〉;
let Abs1 l (as � 〈〈ˆm1 = ˆm2〉〉) =

if some (free_in l) as then error "Variable free in assumptions"

else as � 〈〈(λˆl.ˆm1) = (λˆl. ˆm2)〉〉;
let Abs2 l (as1 � 〈〈ˆm1 = ˆm2〉〉) (as2 � 〈〈ˆn1 = ˆn2〉〉) =

if some (free_in l) as1 then error "Variable free in assumptions"

else as1 U as2 � 〈〈(λˆl.ˆm1 ||| ˆn1) = (λˆl. ˆm2 ||| ˆn2)〉〉;
let Eta = [] � 〈〈∀f. (λx. f x) = f〉〉;

// Deduction rules

let Assume tm = [tm] � 〈〈ˆtm◦◦bool〉〉;
let Eq_Mp (as1 � 〈〈ˆl1 = ˆm〉〉) (as2 � l2) =

if ¬(l1 alpha l2) then error "Not alpha equivalent"

else as1 U as2 � m;

let Deduct_Antisym_Rule (as1 � l1) (as2 � l2) =

let as1’ = filter (λt. ¬(t alpha l2)) as1 in

let as2’ = filter (λt. ¬(t alpha l1)) as2 in

as1’ U as2’ � 〈〈ˆl1 = ˆl2〉〉;

// Type and term instantiation

let Inst ph (as � l) = map (inst ph) as � inst ph l;

let Subst th (as � l) = map (subst th) as � subst th l;

// Axiom of infinity

let Infinity =

[] � 〈〈∃f◦◦(num → num). one_one f ∧ ¬(onto f)〉〉;
end abstype

asms concl Defn Beta Gamma Zeta Psi Eval Refl Apply Abs1 Abs2 Eta

Assume Eq_Mp Deduct_Antisym_Rule Inst Subst Infinity;
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The quotation and antiquotation facilities of reFLect are used to good effect

here to produce a theorem prover core that transparently implements logical rules.

The inference rules, for example, use pattern matching on the structure of their

premises – making their expected form clearly evident. Likewise, term-splicing is

used to construct readable inference rule conclusions. Reflection is used too; in the

Eval rule, the eval function is invoked to implement proof by evaluation. Finally,

since the logical core of the theorem prover is itself expressed in reFLect, we could

contemplate using reFLect to formally analyze this core.

10 Related work

The reFLect language can been seen as an application-specific contribution to the field

of meta-programming. In Sheard’s taxonomy of meta-programming (Sheard, 2001),

reFLect is a framework for both generating and analyzing programs; it includes

features for run-time program generation; and it is typed, ‘manually staged’, and

‘homogeneous’. Our design decisions, however, were driven by the needs of our

target applications: symbolic reasoning in higher-order logic, hardware modeling,

and hardware transformation. So the ‘analysis’ aspect is much more important

than for the design of functional meta-programming languages aimed at optimized

program execution.

Nonetheless, reFLect has a family resemblance to languages for run-time code

generation such as MetaML (Taha & Sheard, 2002) and Template Haskell

(Sheard & Peyton Jones, 2002). A distinguishing feature of MetaML is cross-stage

persistence, in which a variable binding applies across the quotation boundary. The

motivation is to allow programmers to take advantage of bindings made in one

stage at all future stages. In reFLect, however, we wish to define a logic on top of the

language and so we take the conventional logical view of quotation and binding.

Variable bindings do not persist across levels. Constant definitions, however, are

available in all levels. They therefore provide a limited and safe form of ‘cross-level’

persistence, just as they do with polymorphism.

For reasons already given, reFLect also differs from MetaML in typing all

quotations with a universal type term. Template Haskell is similar to reFLect in

this respect. One of the ‘advertised goals’ of Template Haskell is also to support

user-defined code manipulation or optimization, though probably not logic.

Perhaps the closest framework to reFLect is the system described by Shields

et al. (1998). This has a universal term type, a splicing rule for quotation and

antiquotation similar to our ψ rule, and run-time type checking of quoted regions.

Our applications in theorem proving and design transformation have, however, led

to some key differences. We adopt a simpler notion of type-consistency when splicing

expressions into a context, ensuring only that the resulting expression is well typed,

while the Shields system ensures consistent typing of variables. This relaxation keeps

the logic we construct from reFLect simple, and the implementation of time critical

theorem proving algorithms, like rewriting, efficient.
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The reFLect language extends the notion of quotation and antiquotation, which

have been used for term construction since the LCF system (Gordon et al.,

1979), by also allowing these constructs to be used for term decomposition via

pattern matching. In this respect we follow the work of Aasa, Petersson and

Synek (Aasa et al., 1988) who proposed this mechanism for constructing and

destructing object-language expressions within a meta-language. The other reflective

languages discussed here (Sheard & Peyton Jones, 2002; Shields et al., 1998; Taha

& Sheard, 2002) do not support this form of pattern matching, which is valuable

for our applications in code inspection and transformation, but would find less

application in the applications targeted by these systems.

The Camlp4 pre-processor-pretty-printer (de Rauglaudre, 2003) implements ideas

from Mauny & de Rauglaudre (1994) by adding an initial phase to the Objective

Caml compiler (Leroy et al., 2003) in which a system of quotations and antiquo-

tations for expressions in a specified grammar can be used to extend the Objective

Caml language. This system for compile time code generation differs from systems

like Template Haskell in that it is designed to facilitate syntactic extensions to the

host language. Camlp4 is adept at providing support for language embeddings.

Shallow embeddings and deep embeddings can both be performed. In the case of

a deep embedding, quotations can be used to construct from the concrete syntax

of the embedded language Objective Caml expressions with values in a data-type

representing the abstract syntax of the embedded language. Quotations can also

be used to construct Objective Caml patterns that can be used to match values

in the data-type representing the abstract syntax of the embedded language. This

application of Camlp4 implements a system like that described by Aasa, Petersson

and Synek (Aasa et al., 1988).

The Objective Caml system is itself implemented in Objective Caml, and the

interfaces to Objective Caml abstract syntax trees and the compiler are exposed.

These interfaces can be combined with the Camlp4 to yield a system with some of

the features of reFLect. Objective Caml syntax trees are a more complex data-type

than those for reFLect. They are well suited for their role as the representation

of an advanced programming language with an efficient compiler and good error

reporting. The abstract syntax trees of reFLect are simple, their target application

being the expression of a simple and easily manipulated logical calculus. The data-

type of Objective Caml abstract syntax trees is not restricted to manipulation in

type-safe ways as values of the reFLect term type are. Although available for intrepid

users, Objective Caml syntax trees are intended to be constructed by the system,

before a final type-checking pass confirms their well-formedness. In contrast, reFLect

terms are optimized for interactive manipulation by users in such a way that they are

guaranteed to be well formed at all times. The type-safety of the value mechanism

of reFLect is not present in the Objective Caml equivalent. This reflects the intended

use of these facilities in Objective Caml by language developers. That said, the type

safe value mechanism of reFLect was influenced by work of the Objective Caml

developers on dynamic typing (Leroy & Mauny, 1993).

Lava (Bjesse et al., 1998) is another framework for describing circuits in a func-

tional language, Haskell. In the spirit of the approach pioneered by Sheeran
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in µFP (Sheeran, 1983), Lava circuit descriptions are built up from primitives

using higher-order functions that implement various ways of composing sub-circuits

together.

Lava also employs non-standard interpretation to allow the same circuit descrip-

tion to be executed in different ways. For example, under the normal interpretation

as a functional program, execution of the circuit is simulation. But under a

different interpretation, execution carries out the construction of a circuit net-

list. This provides some of the facilities for which reflection is intended in reFLect.

The net-lists resulting under non-standard interpretation are just data structures –

with ‘observable sharing’ (Claessen & Sands, 1999) – and can be inspected and

transformed by other Haskell programs. So Lava circuit descriptions can both be

executed and analyzed syntactically, though the latter is possible only at the net-list

level.

11 Conclusion

In this paper we presented the language reFLect, a functional language with strong

typing, quotation and antiquotation features for meta-programming, and reflection.

The quotation and antiquotation features can be used not only to construct

expressions, but also to transparently implement functions that inspect or traverse

expressions via pattern matching. We made novel use of contexts with a level

consistency property to give concise descriptions of the type system and operational

semantics of reFLect, as well as using them to describe a method of compiling away

the new syntactic features of reFLect.

We have completed an implementation of reFLect using the compilation tech-

nique described to translate reFLect into λ-calculus, which is then evaluated using

essentially the same combinator compiler and run-time system as the previous FL

system (Aagaard et al., 1999). The performance of FL programs that do not use the

new features of reFLect has not been impacted.

We have used reFLect to implement a mechanized reasoning system based on

inspirations from HOL (Gordon & Melham, 1993) and the Forte (Aagaard et al.,

1999; Jones et al., 2001) system, a tool used extensively within Intel for hardware

verification. The ability to pattern match on expressions has made the logical

kernel of this system more transparent and compact than those of similar systems.

The system includes evaluation as a deduction rule, and combines evaluation with

rewriting to simplify closed subexpressions efficiently.

This presentation of the type system and operational semantics for reFLect

gives a good starting point for investigation of more theoretical properties of

the language, like confluence, subject-reduction, and normalization. Sava Krstić and

John Matthews have proved these properties for the reFLect language features for

expression construction and analysis, though not those that relate to evaluation of

expressions (Krstić & Matthews, 2003). Their proofs cover the language presented

here up to, but not including, section 7.
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