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Abstract

We investigate surjective solutions of the functional equation

{‖ f (x) + f (y)‖, ‖ f (x) − f (y)‖} = {‖x + y‖, ‖x − y‖} (x, y ∈ X),

where f : X → Y is a map between two real L∞(Γ)-type spaces. We show that all such solutions are
phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on
symmetry for real L∞(Γ)-type spaces.
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1. Introduction
Let X and Y be real normed spaces. We say that a mapping f : X → Y is an isometry
if it satisfies the equality

‖ f (x) − f (y)‖ = ‖x − y‖ (x, y ∈ X).

This equality implies strong structural properties for the mapping f . The classical
Mazur–Ulam theorem [5] states that every surjective isometry between X and Y is
affine. We say that a mapping f : X→ Y is phase equivalent to a linear isometry if there
exists a function ε : X → {−1, 1} such that ε f is a linear isometry. The fundamental
theorem of Wigner on symmetry characterises the mappings that are phase equivalent
to linear isometries in real Hilbert spaces. That is, when X and Y are real Hilbert
spaces, all mappings f : X → Y that are phase equivalent to linear isometries are
precisely the solutions of the functional equation

|〈 f (x), f (y)〉| = |〈x, y〉| (x, y ∈ X).

Wigner’s theorem plays a fundamental role in quantum mechanics and has several
equivalent formulations and extensions (see, for example, [1, 2, 4, 6–10, 12]). In [4],
a real version of Wigner’s theorem was given by using the functional equation

{‖ f (x) + f (y)‖, ‖ f (x) − f (y)‖} = {‖x + y‖, ‖x − y‖} (x, y ∈ X). (1.1)
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It is easy to see that, when X and Y are real normed spaces, all mappings f : X → Y
that are phase equivalent to real linear isometries are also the solutions of the functional
equation (1.1). In [4], Maksa and Páles proved that the converse also holds provided
that X and Y are real inner product spaces, and they posed the question: what are
the solutions f : X → Y of (1.1) when X and Y are normed but not necessarily inner
product spaces? Huang and Tan [3] gave a partial answer to the above question for
real atomic Lp spaces with p > 0.

The aim of this note is to answer the above question for realL∞(Γ)-type spaces. We
will show that the surjective solutions of (1.1) are phase equivalent to linear isometries
provided that X and Y are real L∞(Γ)-type spaces. Indeed, we give a representation
theorem of surjective mappings which are phase equivalent to linear isometries in
L∞(Γ)-type spaces.

2. Main results

Throughout this section, all spaces are over the real field R. Let X and Y be normed
spaces. We use SX and SY to denote their respective unit spheres. The space of all
bounded real-valued functions on an index set Γ equipped with the supremum norm
is denoted by `∞(Γ) and any of its subspaces containing all eγ’s (γ ∈ Γ) are called
L∞(Γ)-type spaces. For example, the spaces c0(Γ), c(Γ), `∞(Γ), particularly, c0, c, `∞,
are L∞(Γ)-type spaces. The `∞(Γ)-space is

`∞(Γ) =
{
x = {ξγ}γ∈Γ : ‖x‖ = sup

γ∈Γ
|ξγ| <∞, ξγ ∈ R, γ ∈ Γ

}
.

For every x = {ξγ}γ∈Γ ∈ L
∞(Γ), we write x = {ξγ} and omit the subscripts γ ∈ Γ for

simplicity of notation. We denote the support of x by Γx, that is,

Γx = {γ ∈ Γ : x(γ) , 0}.

The star of x with respect to SL∞(Γ) is defined by

St(x) = {y : y ∈ SL∞(Γ), ‖y + x‖ = 2}.

We first cite a basic result for star sets in L∞(Γ)-type spaces.

Lemma 2.1 [11, Lemma 2]. Let x be in SL∞(Γ). If there exists an x0 ∈ St(x) satisfying
‖y − x0‖ ≤ 1 for all y ∈ St(x), then Γx0 is a singleton.

In order to prove the first main result, we need the following lemma.

Lemma 2.2. Let X = L∞(Γ) and Y = L∞(∆). Suppose that f : X → Y is a surjective
mapping satisfying (1.1). Let γ ∈ Γ and denote by ∆ f (eγ) the support of f (eγ). Then
∆ f (eγ) is a singleton.

Proof. Suppose that ∆ f (eγ) contains more than one point. Since f is surjective, by
Lemma 2.1 there is a vector x ∈ X with f (x) ∈ St( f (eγ)) such that ‖ f (x) − f (eγ)‖ > 1.
This implies that

‖ f (x) + f (eγ)‖ + ‖ f (x) − f (eγ)‖ > 3.
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By (1.1), f is norm preserving and thus x ∈ SX . Hence, for every γ ∈ Γ,

‖ f (x) + f (eγ)‖ + ‖ f (x) − f (eγ)‖ = ‖x + eγ‖ + ‖x − eγ‖ ≤ 3,

which is a contradiction. The proof is complete. �

The following theorem is a representation theorem for surjective mappings between
two real L∞(Γ)-type spaces satisfying (1.1). For any a, b ∈ R, we shall write a ∨ b =

max{a, b}.

Theorem 2.3. Let X = L∞(Γ) and Y = L∞(∆). Suppose that f : X → Y is a surjective
mapping satisfying (1.1). Then there exists a bijection π : Γ→ ∆ such that for every
x = {ξγ} ∈ X, we have f (x) = {ηπ(γ)} ∈ Y with |ηπ(γ)| = |ξγ| for every γ ∈ Γ.

Proof. From Lemma 2.2, we can define a map π : Γ→ ∆ by {π(γ)} = ∆ f (eγ) for each
γ ∈ Γ. We now prove that π is bijective. If π(γ1) = π(γ2), by (1.1) and Lemma 2.2,

2 = ‖ f (eγ1 ) − f (eγ2 )‖ ∨ ‖ f (eγ1 ) + f (eγ2 )‖
= ‖eγ1 − eγ2‖ ∨ ‖eγ1 + eγ2‖ ≤ 2.

So, ‖eγ1 − eγ2‖ ∨ ‖eγ1 + eγ2‖ = 2, which implies that γ1 = γ2. To see that π is surjective,
suppose on the contrary that there is a δ0 ∈ ∆/π(Γ). As f is surjective, there exists
x ∈ SX such that f (x) = eδ0 . For every γ ∈ Γ,

‖x + eγ‖ + ‖x − eγ‖= ‖ f (x) + f (eγ)‖ + ‖ f (x) − f (eγ)‖
= ‖eδ0 + f (eγ)‖ + ‖eδ0 − f (eγ)‖
= 2.

The equation ‖x + eγ‖ + ‖x − eγ‖ = 2 for all γ ∈ Γ implies that x = ±eγ1 for some γ1 ∈ Γ

or x = 0. Since δ0 ∈ ∆/π(Γ), we must have x = 0, which is a contradiction.
We shall prove that f has the desired property. Since f is norm preserving, we need

only consider the vectors in the unit sphere of X. For every x = {ξγ} ∈ SX , we can write
f (x) = {ηπ(γ)} ∈ Y . For every γ ∈ Γ, we have f (eγ) = ±eπ(γ) and so

1 + |ξγ|= ‖x + eγ‖ ∨ ‖x − eγ‖
= ‖ f (x) + f (eγ)‖ ∨ ‖ f (x) − f (eγ)‖
= 1 + |ηπ(γ)|.

Thus, |ξγ| = |ηπ(γ)| for every γ ∈ Γ. The proof is complete. �

For our second main result, we need one more lemma. For x = {ξγ} ∈ L
∞(Γ), we

shall use the notation ex = {θγ}, where θγ = sign(ξγ) for every γ ∈ Γ (if ξγ = 0, we put
θγ = 0 throughout what follows). Obviously, ex+y = ex + ey, e−x = −ex and eλx = ex for
all x, y ∈ L∞(Γ) with Γx ∩ Γy = ∅ and λ > 0.

Lemma 2.4. Let X = L∞(Γ) and Y = L∞(∆). If f : X → Y is a surjective mapping
satisfying (1.1), then e f (x) = ± f (ex) for every x ∈ L∞(Γ).
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Proof. By (1.1),

{‖ f (ex) + f (‖x‖ex)‖, ‖ f (ex) − f (‖x‖ex)‖} = {‖ex + ‖x‖ex‖, ‖ex − ‖x‖ex‖}

= {1 + ‖x‖, |1 − ‖x‖|}. (2.1)

From Theorem 2.3, for every γ ∈ Γx, | f (ex)(π(γ))| = 1 and | f (‖x‖ex)(π(γ))| = ‖x‖. This
together with (2.1) implies that

e f (‖x‖ex) = ± f (ex).

On the other hand,

{‖ f (‖x‖ex) + f (x)‖, ‖ f (‖x‖ex) − f (x)‖} = {‖ ‖x‖ex + x‖, ‖ ‖x‖ex − x‖}

=
{
2‖x‖, ‖x‖ − inf

γ∈Γx
|x(γ)|

}
.

Note that | f (x)(π(γ))| = |x(γ)| for any γ ∈ Γx. This implies that

e f (x) = ±e f (‖x‖ex) = ± f (ex). �

The next result shows that a surjective mapping satisfying (1.1) is close to linear.

Lemma 2.5. Let X = L∞(Γ) and Y = L∞(∆). Suppose that f : X → Y is a surjective
mapping satisfying (1.1). Then:

(a) f (λx) = ±λ f (x) for every x ∈ X, λ ∈ R;
(b) there exist two real numbers α and β with |α| = |β| = 1 such that

f (x + y) = α f (x) + β f (y)

for all nonzero vectors x and y in X with Γx ∩ Γy = ∅.

Proof. (a) It suffices to show that the conclusion holds for every x in the unit sphere of
X. From (1.1), f (−ex) = ± f (ex). Applying Lemma 2.4,

e f (λx) = ± f (eλx) = ± f (ex) = ±e f (x).

This and Theorem 2.3 imply that

f (λx) = ±λ f (x).

(b) By Theorem 2.3, we only need to check that

e f (x+y) = αe f (x) + βe f (y)

for some real numbers α and β with |α| = |β| = 1. This is equivalent to showing that

f (ex + ey) = f (ex+y) = α f (ex) + β f (ey)

for some real numbers α and β with |α| = |β| = 1. Write

f (ex) = {ξ′π(γ)}, f (ey) = {η′π(γ)}, f (ex + ey) = {ξ′′π(γ) + η′′π(γ)},
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where |ξ′′π(γ)| = |ξ
′
π(γ)| = 1 for every γ ∈ Γx and |η′′π(γ)| = |η

′
π(γ)| = 1 for every γ ∈ Γy. By

Lemma 2.4 and (1.1),{
sup
γ∈Γx

|ξ′′π(γ) + ξ′π(γ)| ∨ 1, sup
γ∈Γx

|ξ′′π(γ) − ξ
′
π(γ)| ∨ 1

}
= {‖ f (ex + ey) + f (ex)‖, ‖ f (ex + ey) − f (ex)‖} = {2, 1}.

It follows that {ξ′′π(γ)} = ± f (ex) and, similarly, {η′′π(γ)} = ± f (ey). This completes the
proof. �

Theorem 2.6. Let X = L∞(Γ) and Y = L∞(∆). Suppose that f : X → Y is a surjective
mapping satisfying (1.1). Then f is phase equivalent to a linear isometry.

Proof. We first show that f is phase equivalent to a homogeneous map. It follows
from the axiom of choice that there is a set L ⊂ X such that for any x ∈ X with x , 0,
there exists exactly one element y ∈ L such that x = λy for some λ ∈ R. The desired
map f ′ : X → Y can be defined by

f ′(x) = f ′(λy) = λ f (y) for all x = λy ∈ X.
Therefore, we may assume that f is homogeneous. Fix γ0 ∈ Γ and let

Z = {x ∈ X : Γx ∩ {γ0} = ∅}.

By Lemma 2.5, for every z ∈ Z, we can write
f (z + eγ0 ) = α(z) f (z) + β(z) f (eγ0 ), |α(z)| = |β(z)| = 1.

We shall show that for all z ∈ Z with z , 0 and λ ∈ R with λ , 0,
α(z)β(z) = α(λz)β(λz). (2.2)

It suffices to show that (2.2) holds for every z in the unit sphere of Z. Then, by (1.1), if
|λ| > 1,

{|λ(α(z) + α(λz))| ∨ |λβ(z) + β(λz)|, |λ(α(z) − α(λz))| ∨ |λβ(z) − β(λz)|}
= {‖ f (λz + λeγ0 ) + f (λz + eγ0 )‖, ‖ f (λz + λeγ0 ) − f (λz + eγ0 )‖}
= {|λ − 1|, 2|λ|}.

This proves the equation (2.2) in the case of |λ| > 1. If |λ| < 1, by considering
f (λz + eγ0 ) and f (z + eγ0 ) instead of f (λz + λeγ0 ) and f (λz + eγ0 ), respectively, we
can also derive (2.2). The case |λ| = 1 follows from these two cases.

Define a mapping g : X → Y as follows:
g(z) = α(z)β(z) f (z), g(z + λeγ0 ) = g(z) + λ f (eγ0 )

for all z ∈ Z and λ ∈ R with λ , 0. By (2.2), g is phase equivalent to f and, for all z1, z2
in Z with ‖z1‖ ≤ 1, ‖z2‖ ≤ 1,

{2, ‖g(z1) − g(z2)‖}= {‖g(z1 + eγ0 ) + g(z2 + eγ0 )‖, ‖g(z1 + eγ0 ) − g(z2 + eγ0 )‖}
= {‖z1 + z2 + 2eγ0‖, ‖z1 − z2‖}

= {2, ‖z1 − z2‖}.

Since g is homogeneous, we conclude from this that ‖g(z1) − g(z2)‖ = ‖z1 − z2‖ for all
z1, z2 ∈ Z. This and its definition are enough to show that g is an isometry from X onto
Y . The Mazur–Ulam theorem implies that g is a linear isometry. �
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