
6
Non-abelian gauge symmetries and
interactions
The previous chapter showed how the fact that the phase of the electron wave-function is not
an observable quantity leads to the concept of gauge symmetry, which in turn introduces the
gauge potentials, and which then provides the basic framework for describing gauge interac-
tions. The chapter before that showed that the classification of mesons and hadrons in the quark
model uncovers that quarks have an additional degree of freedom – dubbed color, and the cor-
responding symmetry with the structure of the SU(3)c group. Since the physical states that may
be detected must be “colorless,” i.e., SU(3)c-invariant, it follows that the color of any individ-
ual quark cannot be detected either, and so can be changed arbitrarily. This arbitrariness – as
a function of space and time! – of the color change in quarks while maintaining the hadron
composed of those quarks “colorless” is the essence of the so-called gauge principle. When
applied to the local changes in the (matrix-valued) phases of wave-functions, the resulting the-
ories are called “Yang–Mills theories”; Chapter 9 will show that the application of the same
idea to local changes of parametrization of the spacetime itself leads to Einstein’s theory of
gravity.

6.1 The gauge symmetry of color

The first non-abelian (non-commutative) gauge theory was proposed by Oskar Klein in 1938, but
that proposal was too early and remained undeveloped, unapplied, and forgotten. Non-abelian
gauge theories were taken seriously only after 1954–5, after the publication of the works of
C.-N. Yang and R. L. Mills, and independently, R. Shaw’s dissertation mentored by A. Salam.
However, both of the (currently) well-known applications, the SU(2)w theory of weak nuclear
interactions and the SU(3)c theory of strong nuclear interactions, required several decades of
development and novel ideas for a general acceptance and contemporary formulation of these
theories, as well as their embedding in the “Standard Model.”

The next few sections consider the SU(3)c gauge theory as a theoretical system for describing
strong nuclear interactions. Chapter 7 will focus on the SU(2)w gauge theory of weak nuclear inter-
actions, the SU(2)w × U(1)Q theory of electroweak interactions and finally the “Standard Model,”
based on the SU(3)c × SU(2)w × U(1)Q gauge theory. Generally, all gauge theories based on a
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224 Non-abelian gauge symmetries and interactions

group of symmetries that act by local changes of some generalized phases [☞ e.g., relation (6.2)]
are called “Yang–Mills” gauge theories.

6.1.1 The SU(3)c gauge symmetry and gluons
Section 2.3.13 [☞ discussion on p. 61] showed that quarks have an additional 3-dimensional
degree of freedom called “color.” That is, the wave-function of any quark is a superposition

Ψn(x) = êαΨα
n(x) = êrΨr

n(x) + êyΨy
n(x) + êbΨb

n(x) =

[
Ψr

n(x)
Ψy

n(x)
Ψb

n(x)

]
, n = u, d, s, c, b, t. (6.1)

This matrix representation of the quark wave-functions makes it evident that a local change of the
phase (5.14b) of quark wave-functions, in general, becomes

Ψn(x) → eigcϕϕϕϕ(x)/h̄ Ψn(x), ϕϕϕϕ(x) := ϕa(x) Qa, (6.2)

where Qa, j = 1, . . ., 8 are eight 3× 3 matrices that generate the SU(3)c gauge group [☞ Ap-
pendix A.4], and equation (6.2) is the gauge transformation. This SU(3)c symmetry is exact, and
must not be confused with the approximate SU(3) f symmetry discussed in Section 4.4; the group
structure of SU(3)c is identical with that of SU(3) f but the application is quite different. One usu-
ally uses the Gell-Mann matrices (A.71) although, of course, any other basis of Hermitian 3× 3
traceless matrices serves just as well.

Digression 6.1 The non-abelian analogue of the simple formal argument in Digres-
sion 5.1 on p. 166 shows that the relation (6.2) changes the state operator for a quark
by a similarity transformation, rather than leaving it invariant as in the abelian case of
Digression 5.1 on p. 166. It is thus not as obvious that all generalized, non-abelian phase
transformations (6.2) should be symmetries. Nevertheless, the physical motivation for
requiring the transformation (6.2) to be a symmetry remains – and not just because
quarks and their particular color states are not directly observable; see Conclusion 11.8
on p. 444.

By the way, the ninth linearly independent matrix generator is proportional to the unit 3× 3
matrix and simply produces an overall, diagonal, phase-change

Ψn(x) → eigcϕ
0(x)1Q/h̄ Ψi(x) = eiqn(gc/ge)ϕ0(x)/h̄ Ψn(x), (6.3)

which looks like the transformation (5.14b). Here, Ψn(x) is the eigenfunction of the operator Q,
of which the eigenvalue equals the electric charge of the quark qn represented by Ψn(x).1 This
provides essentially the same representation of the gauge transformation of the electrodynamics
and chromodynamics interaction. It is clear that 1 commutes with all Qa, whereby the matrices
{1; Q1, . . ., Q8} generate the U(1)× SU(3)c group – except that the first factor cannot be identified
with the gauge symmetry of electrodynamics straightforwardly because of the difference in the
magnitudes of the respective charges and the corresponding factor (gc/ge) in the exponent (6.3).
In addition, one implicitly considers the phase-change (6.2) to be limited to quarks, whereby the

1 Unfortunately, the letter q is standardly used for charge, for the transfer 4-momentum, and for the general symbol-
synonym for “quark.” Herein, the 4-vector is denoted by q, and the electric charge of the quark qn is denoted by qn –
the eigenvalue of the operator Q of the eigenfunctions that are identified with the quark qn.
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6.1 The gauge symmetry of color 225

transformation (6.3) would correspond to an interaction that is limited to the hadrons and excludes
leptons. Although that is a perfectly consistent possibility, such an interaction does not exist in
Nature.

Akin to the analysis (5.5)–(5.7), replace ∂μ → Dμ in the Dirac equation (5.34), and re-
quire that with respect to the gauge transformation (6.2) this new Dirac equation should remain
unchanged:

[ih̄ /D − mc]Ψn(x) = 0 → [ih̄ /D ′ − mc]Ψ′
n(x) = 0, (6.4a)

Dμ → D ′
μ := Uϕϕϕϕ Dμ U−1

ϕϕϕϕ , (6.4b)

Uϕϕϕϕ := eigcϕϕϕϕ/h̄ , (6.4c)

where the matrix representation (6.1) is understood, so that /D = γγγγμDμ acts as a double matrix
derivative operator: both as a 4× 4-matrix upon the spinor components (because of the γγγγ-matrices)
and as a 3× 3-matrix upon colors:

/DΨn ≡ γγγγμDμΨn, i.e., ( /DΨn)α ≡ γγγγμDμ
α
β Ψβ

n, i.e., ( /DΨn)αA ≡ (γμ)A
BDμ

α
β ΨβB

n , (6.5)

where repeated α, β indices are summed over colors, red–yellow–blue. The indices A, B, which
indicate the Dirac spinor components (5.51), have been written out explicitly only in the third
version (6.5).

As in the procedure (5.5)–(5.14a), one finds that

Dμ := 1 ∂μ + igc
h̄ c Aa

μ Qa so that /D ′(eigcϕϕϕϕ(x)/h̄ Ψn) = eigcϕϕϕϕ(x)/h̄ ( /DμΨn), (6.6a)

A′a
μQa = Aa

μ Uϕϕϕϕ QaU−1
ϕϕϕϕ + h̄ c

igc
Uϕϕϕϕ(∂μU−1

ϕϕϕϕ ) = Aa
μ Uϕϕϕϕ QaU−1

ϕϕϕϕ − c(∂μϕa)Qa, (6.6b)

i.e., A′
μ = Uϕϕϕϕ AμU−1

ϕϕϕϕ − c(∂μϕϕϕϕ), Aμ := Aa
μQa and ϕϕϕϕ := ϕaQa, (6.6c)

where Qa are 3× 3 Hermitian matrices that close the SU(3)c algebra:

[Qa, Qb] = i fab
c Qc. (6.6d)

Since the single electric charge operator Q in electrodynamics is here replaced by eight oper-
ators Qa, it follows that the photon 4-vector gauge potential Aμ(x) must be replaced by eight
gluon 4-vector gauge potentials, Aa

μ(x), a = 1, . . ., 8. Of course, the parameter of electromagnetic
interaction, ge, is also replaced by the parameter of chromodynamic interactions, gc.

Linearization of equation (6.6b) – the first-order expansion in ϕa(x) – produces the gauge
transformation of the gluon 4-vector gauge potentials:

δ Aa
μ = −(Dμ ϕϕϕϕ)a := −c(∂μϕa) + igc

h̄ c Ab
μ (Q̃b)c

a ϕc = −(∂μϕa) − gc
h̄ c Ab

μ fbc
a ϕc, (6.6e)

(Q̃b)c
a = i fbc

a, where [Q̃b, Q̃c] = i fbc
a Q̃a. (6.6f)

Here, Q̃a are Hermitian 8× 8 traceless matrices that close the same SU(3)c algebra as the 3× 3
matrices Qa, i.e., the 1

2λλλλj’s in relations (A.71). Thus, the operators Qa – and, in particular, the
matrices 1

2λλλλa – provide a 3-dimensional representation of the SU(3)c group, i.e., a matrix action of
the SU(3)c group upon the 3-dimensional vector space (6.1). In turn, Q̃a provide an 8-dimensional
representation of the SU(3)c group – a matrix action of the SU(3)c group upon the 8-dimensional
vector space {ϕϕϕϕ(x) := ϕa(x) Qa}.2

2 To be precise, this matrix-valued function ϕϕϕϕ(x) represents a vector space in every spacetime point x; their union forms
a so-called vector bundle over spacetime. Gauge theories are therefore properly described by the geometry of vector
bundles and their connections, here represented by the matrix 4-vector gauge potentials Aμ.
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226 Non-abelian gauge symmetries and interactions

Comment 6.1 In the general case, when the G-covariant derivative Dμ acts upon functions
fA(x) that span the d-dimensional representation of the group G, so A = 1, . . ., d, we have
that

(Dμ f (x)
)
A :=

(
∂μ fA(x)

)
+ igG

h̄ c Aa
μ(x) [Qa]AB fB(x), (6.7)

where the d× d matrices Qa generate the group G, the 4-vectors Aa
μ(x) are the gauge

potentials, and gG is the magnitude of the charge of the corresponding gauge interaction.

Comparing with electrodynamics, recall that the transformation operators Uϕ commute and
imply the result (5.89)

D ′
μ = Uϕ Dμ U−1

ϕ ⇒ A′
μ = Aμ − c(∂μ λ). (6.8)

For the non-abelian group of chromodynamics, SU(3)c, we have (expanding equation (6.6c) only
to first order in ϕa)

D ′
μ = Uϕϕϕϕ Dμ U−1

ϕϕϕϕ ⇒ (A′)a
μ = Aa

μ − c(Dμϕ
a) = Aa

μ − c(∂μϕa) + gc
h̄ Ab

μ fbc
a ϕc. (6.9)

Also, in electrodynamics we have
Fμν(A′) = Fμν(A), (6.10)

because the fields �E, �B are invariant with respect to the action of the electromagnetic U(1) gauge
transformation (5.14a) [☞ discussion of the definitions (5.15)]. In the non-abelian case, however,
direct computation shows that(

∂μ(A′)a
ν − ∂ν(A′)a

μ

) �= (∂μAa
ν − ∂νAa

μ), (6.11)

and even (
∂μ(A′)a

ν − ∂ν(A′)a
μ

) �= Uϕϕϕϕ(∂μAa
ν − ∂νAa

μ)U−1
ϕϕϕϕ . (6.12)

Note, however, that both in electrodynamics and in chromodynamics the derivatives Dμ are by
definition covariant:

U(1) : D ′
μ = Uϕ Dμ U−1

ϕ , SU(3) : D ′
μ = Uϕϕϕϕ Dμ U−1

ϕϕϕϕ , (6.13)

that is, the change by means of a similarity transformation. It then follows that arbitrary (opera-
torial) polynomials in the Dμ’s are also covariant. Finally, in electrodynamics we have that[

Dμ , Dν
]

=
[
∂μ + iq

h̄ c Aμ , ∂ν + iq
h̄ c Aν

]
= + iq

h̄ c (∂μAν − ∂νAμ) = iq
h̄ c Fμν. (6.14)

This result provides an interpretation of the fields �E, �B (components of the Fμν tensor) as curva-
tures in the geometry followed by electrically charged particles.3 Indeed, in the presence of an
electromagnetic field, electrically charged particles move in trajectories of which the curvature
is determined by the fields �E, �B, i.e., the components of the Fμν tensor. Nudged by this result,
and the fact that all formal operatorial functions of SU(3)c-covariant derivatives Dμ will also be
SU(3)c-covariant, we define

Fμν := h̄ c
igc

[
Dμ , Dν

]
= h̄ c

igc

[
∂μ + igc

h̄ c Ab
μ Qb , ∂ν + igc

h̄ c Ac
ν Qc

]
= (∂μAa

ν − ∂νAa
μ)Qa + h̄ c

igc
( igc

h̄ c )2 Ab
μ Ac

ν [Qb, Qc] = Fa
μνQa, (6.15a)

Fa
μν := (∂μAa

ν − ∂νAa
μ) − gc

h̄ c f a
bc Ab

μ Ac
ν, (6.15b)

where we used the defining relation (A.70) of the SU(3) group generators.

3 Many a Student may find this interpretation unusual. However, Chapter 9 about gravity will, hopefully, clarify: The
commutator of G-covariant derivatives provides the curvature stemming from G-gauge symmetry.
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6.1 The gauge symmetry of color 227

Comment 6.2 The interaction parameter, gc, is, in the literature, often absorbed by redefin-
ing the gluon 4-vector gauge potential, gc Aa

μ �→ Aa
μ, for visibility and ease of computing. In

final expressions, however, factors of gc must be returned for comparison with experiments.

It follows that this matrix Fμν transforms covariantly, as expected:

Fμν → F′
μν := ih̄ c

gc

[
D ′
μ , D ′

ν

]
= ih̄ c

gc

[
UϕϕϕϕDμU−1

ϕϕϕϕ , UϕϕϕϕDνU
−1
ϕϕϕϕ

]
= ih̄ c

gc
Uϕϕϕϕ

[
Dμ , Dν

]
U−1
ϕϕϕϕ

= Uϕϕϕϕ FμνU
−1
ϕϕϕϕ . (6.16)

Thus, the Fμν tensor is in general covariant – but not invariant – with respect to the action of
non-abelian (non-commutative) symmetries such as SU(3)c. Only the field tensor of an abelian
symmetry is invariant with respect to the action of this symmetry, as is the case with the
electromagnetic field tensor Fμν, which is invariant with respect to the U(1)Q symmetry.

The relation (6.15) also implies that these matrix-represented covariant operators Dμ act
upon other matrix-represented quantities by means of commutation. This implies that the covariant
derivative of the gauge field, Fμν, itself equals

Dμ(Fνρ) = [Dμ, Fμν] = h̄ c
igc

[
Dμ , [ Dν , Dρ ]

]
. (6.17)

Using the so-called Jacobi identity,[
A , [ B , C ]

]
+

[
B , [ C , A ]

]
+

[
C , [ A , B ]

] ≡ 0, (6.18)

the relation (6.17) implies that

εμνρσDμ(Fνρ) = h̄ c
igc
εμνρσ

[
Dμ , [ Dν , Dρ ]

]
= 0, (6.19)

which generalizes the Bianchi identity (5.87) for electrodynamics.

6.1.2 The Lagrangian density for chromodynamics
Since the SU(3) generators are Hermitian traceless matrices, Tr[Qa] = 0, it is also true that

Tr[Fμν] = Fa
μν Tr[Qa] = 0. (6.20)

However, as the trace of a product of two (Hermitian or not) traceless matrices need not be
zero, there is no group-theoretical reason for Tr[FμνFμν] to vanish. In turn, the “trace” function
is invariant with respect to similarity transformations of its argument:

Tr[X] → Tr[S X S−1] = Tr[X S−1 S] = Tr[X]. (6.21)

It follows that

Tr[FμνFμν] → Tr[F′
μνF

′ μν] = Tr[UϕϕϕϕFμνU
−1
ϕϕϕϕ UϕϕϕϕFμνU−1

ϕϕϕϕ ] = Tr[FμνFμνU−1
ϕϕϕϕ Uϕϕϕϕ]

= Tr[FμνFμν] (6.22)

is invariant with respect to SU(3)c transformations. Up to a suitably chosen sign and coeffi-
cient [☞ Exercises 5.1.3 and 5.1.4 on p. 171], this then provides a Lagrangian density for SU(3)c
gluons, analogous to the Lagrangian density for photons (5.76). Lorentz-invariance is evident since
Fμν is a rank-2 tensor, and FμνF

μν is a scalar contraction, just as in electrodynamics [☞ Digres-
sion 5.7 on p. 183].

A Lagrangian density that, via Hamilton’s principle of minimal action, produces the Dirac
equation for quarks that interact with gluons is obtained by direct generalization of the Lagrangian
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228 Non-abelian gauge symmetries and interactions

density (5.118). That is, the Ψ(x) representing an electron is replaced by Ψα
n(x), which represents

the nth species (flavor) of quark and of the color α. Using the notation (6.5), we then have

LQCD = ∑
n

Tr
[
Ψn(x) [ih̄ c /D − mnc2] Ψn(x)

]− 1
4 Tr

[
FμνF

μν
]

= ∑
n

Ψα n(x)
[
iγγγγμ

(
h̄ cδαβ∂μ + igc Aa

μ( 1
2λa)αβ

)−mnc2δαβ

]
Ψβ

n(x) − 1
4 Fa
μνFμνa . (6.23)

As in QED, variation by Aa
μ yields the equations of motion akin to Gauss’s law:

DμFa μν = gc ∑
n

ΨnαA(γν)A
B( 1

2λ
a)αβΨβB

n , (6.24)

where the right-hand side expression may be identified as the quark contribution to the color
current:

ja μ
(q) := gc ∑

n
ΨnαA(γμ)A

B( 1
2λ

a)αβΨβB
n . (6.25)

However, the left-hand side of equation (6.24) contains terms nonlinear in Aa
μ, by which this differs

fundamentally from equation (5.78). For example, in electrodynamics it is true that

∂ν jνe =
4πε0c

4π
∂ν∂μ Fμν ≡ 0, since Fμν = −Fνμ, (6.26)

which then immediately produces the continuity equation, i.e., charge conservation. For the
equations of motion (6.24) this argument is not true:

∂ν ja ν
(q) = ∂νDμ Fa μν �= 0. (6.27)

Digression 6.2 The quark current ja ν
(q) does satisfy a gauge-covariant version of the

continuity equation:

Dν ja ν
(q)

(6.24)= Dν Dμ Fa μν = − 1
2 [Dμ, Dν]Fa μν (6.15)= − 1

2 f a
bcFb

μνFc μν = 0, (6.28a)

where we used the definition of the quark current (6.25), that DνDμFa μν = −DμDνFa μν

because of the antisymmetry Fα μν = −Fa νμ, as well as that f a
bc = − f a

cb is antisym-
metric with respect to the exchange b ↔ c, whereas Fa

μνFb μν = Fa μνFb
μν = Fb

μνFa μν

is symmetric. However, the equation (6.28a) does not imply (purely quark) color
conservation; following the computation (2.67) now produces

0 = Dμ ja μ
(q) = ∂μ ja μ

(q) − gc
h̄ c f a

bc Ab
μ jc μ

(q)

⇒ d
dt

( ∫
V

d3�r ja 0
(q)

)
= −

∮
∂V

d2�r ·�ja
(q) + gc

h̄ c f a
bc

( ∫
V

d3�r Ab
μ jc μ

(q)

)
, (6.28b)

where the additional right-hand side term does not simplify and certainly does not vanish
in general.

However, by the example of (6.6e)–(6.6f),

DμFa μν = ∂μFa μν − gc
h̄ c fbc

a Ab
μFc μν, (6.29)
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and moving the second term, − gc
h̄ c fbc

a Ab
μFc μν, from the so-written left-hand side of the rela-

tion (6.24) to its right-hand side, we obtain

DμFa μν = ja ν
(q) ⇒ ∂μFa μν = Ja ν

(c) ⇒ ∂ν Ja ν
(c) = 0, (6.30)

since Fa μν = −Fa νμ but ∂ν∂μ = +∂μ∂ν. Here,

Ja ν
(c) := ja μ

(q) + gc
h̄ c fbc

a Ab
μFc μν, (6.31)

Qa
(c) :=

∫
d3�r Ja 0

(c) = gc

∫
d3�r

(
∑
n

[Ψn γγγγ
μ 1

2λλλλ
a Ψn] + 1

h̄ c fbc
a Ab

μFc μν) (6.32)

are, respectively, the chromodynamical (gauge) current density for which the continuity equation,
i.e., color charge conservation, holds, and the corresponding chromodynamics (gauge) charge Qa

(c)
that is conserved in time according to Noether’s theorem.

Conclusion 6.1 The continuity equation for the (chromodynamics) current (6.31), i.e., the
conservation law for the (chromodynamical “color”) charge (6.32) is guaranteed by the
antisymmetry of the tensor (of chromodynamics) fields (6.15). This conclusion holds for all
gauge theories.

In contrast to this qualitative and conceptual similarity in all gauge theories, the specific
results (6.15)–(6.32) also indicate two fundamental differences in comparison with electromag-
netism:

Conclusion 6.2 The chromodynamics (non-abelian gauge) field tensor Fa
μν is nonlinear in

the gluon 4-vector potentials Aa
μ. By contrast, the electromagnetic field tensor Fμν is a linear

function of the photon 4-vector potential.

Conclusion 6.3 The chromodynamics (non-abelian gauge) current (6.31) and correspond-
ing charge (6.32) have contributions both from quarks and from gluons! By contrast,
photons have no electromagnetic charge and do not contribute to the electric current.

Example 6.1 For illustration, consider the SU(3)c-covariant equations of motion (6.24)
where we fix ν = 0, and where we use equation (6.29):

∂μFa μ0 − gc
h̄ c f a

bc Ab
μFc μ0 = ja 0

(q) , a, b, c = 1, . . . , 8. (6.33)

Just as in electrodynamics [☞ Section 5.2.2], we define

�Ea := êiF
a i0, ρa

(q) := ja 0
(q) , �Aa := −êi Aa

i , (6.34)

where we are free to absorb all numerical factors in these definitions, and where we may
fix Aa

0 = 0, a = 1, . . . , 8. The equations (6.33) then reduce to

�∇·�Ea = ρa
(q) − gc

h̄ c f a
bc �Ab·�Ec, (6.35)

where ρa
(q) is evidently a source of the chromo-electric field �Ea, but where the chromo-

dynamics vector potentials and fields – of other colors – themselves contribute to the
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source! Equation (6.35) is the generalization of Gauss’s law for non-commutative (non-
abelian) charges – here, of the chromodynamics “color.” For example, using the concrete
values (A.71) of f a

bc, we see that

�∇·�E1 = ρ1
(q) − gc

h̄ c

(
2�A[2·�E3] + �A[4·�E7] + �A[5·�E6]), (6.36)

where X[aYb] := 1
2 (XaYb − XbYa). That is, the indicated (nonlinear!) coupling of the

chromodynamics potentials and fields serves as an additional source (or sink, depending
on the overall sign) for chromodynamics fields, besides the quark source ρa

(q).

It follows that the equations of motion for non-abelian gauge theory – obtained by varying
the Lagrangian density LQCD (6.23) with respect to Aa

μ and Ψα
n:

1. cannot be expressed without explicit use of the 4-vector gauge potentials, Ak
μ,

2. form a nonlinearly coupled system of differential equations.

Because of Conclusion 6.2 above, the chromodynamics generalizations of the electric and the mag-
netic fields are rarely used in quantum chromodynamics. Chromodynamics is expressed using the
4-vector potentials Aa

μ, the quanta of which are interpreted as gluons. Conclusion 6.3 indicates a
fundamentally larger complexity and technical demand in chromodynamics – and then also the
relative simplicity of electrodynamics in comparison with chromodynamics.4

With this in mind, the fact that the exploration of chromodynamics is still a very active
research field☞ should not come as a surprise. In about four decades, many different approaches in
this exploration have been developed from the need to “extract” from this conceptually successful
theoretical model concrete quantitative predictions for precise comparison with experiments, but
also for better theoretical understanding of the model itself. Among these approaches, may it suffice
here to mention three:

Lattice QCD In this approach, the otherwise continuous spacetime is replaced by a lattice of a small
spacing. The equations of motion are then solved numerically, and one estimates the forms
of those solutions in the limit when the spacetime lattice spacing tends to zero.

Large-N QCD Since no experiment can identify any one of the colors in any one real physical
process, the contributions to the physical processes must be summed and averaged over all
colors. If N is to denote the number of “colors,” summing over colors tends to produce factors
of N while averaging tends to incur factors of 1

N . The contributions to the various processes
may thus be classified according to the exponent in the overall factor Nν. Such re-organizing
of the computations sometimes permits summing contributions that are all O(Nν), albeit
from different orders of perturbation as counted by powers of gs or h̄, and this produces
results not derivable otherwise.

QCD strings The original motivation for introducing strings into the physics of elementary particles
was the fact that hadrons (mesons and baryons) in collisions at sufficiently high energies
show a structure that appears filamentary in a first approximation. The results from the
quark model and quantum chromodynamics soon surpassed the precision of this filamentary
approximation. However, recent results in the mathematical analysis of superstrings – and

4 This insight will hopefully not discourage the Students who are already acquainted with this “relative simplicity” of
electrodynamics, and so also the “relative simplicity” of the exam problems in that course.
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6.2 Concrete calculations 231

especially the so-called AdS/CFT, i.e., gravitation/gauge duality – led to new methods, the
application of which to the original problem of hadronic physics produces new results and
new avenues for exploration.

To sum up: chromodynamics exhibits the generalization of the Maxwell equations:

DμFμν = Jν(q) and εμνρσDμ(Fνρ) = 0, (6.37)

where
Jν(q) := gc

(
∑
n

ΨnαA(γμ)A
B( 1

2λ
a)αβΨαA

n

)
Qa (6.38)

is the quark contribution to the chromodynamics current. This current density, however, does not
satisfy the continuity equation and

∫
d3�r J0

(q) is not a conserved color charge. Instead, there exists
a redefinition of the (Gaussian) first half of equations (6.37):

∂μFμν = Jν(c), where Jν(c) := Jν(q) + igc
h̄ c [Aμ, Fμν], (6.39)

so that

∂νJ
ν
(c) = 0, and so also

d
dt

∫
V

d3�r J0
(c) = −c

∮
∂V

d2�σ ·� (c). (6.40)

It should be clear that in the application to an abelian (commutative) group where fab
c = 0, the re-

lations (6.37)–(6.30) reduce to the Maxwell equations, the definition of the electric current density,
the continuity equation and the electric charge conservation in electrodynamics, respectively.

6.1.3 Exercises for Section 6.1

✎ 6.1.1 Expanding the σ = 0 component of the system of equations (6.19), obtain the chro-
modynamic equivalent of Gauss’s law for the chromomagnetic field, and show that the
nonlinear coupling of gluons also provides an effective chromomagnetic source term in this
equation.

✎ 6.1.2 Determine the gauge covariance of equation (6.24); prove that the left-hand side and
the right-hand side of the equality both transform the same.

✎ 6.1.3 As in the previous exercise, determine separately the gauge covariance of the left-hand
side and the right-hand side of the equality ∂μFa μν = Ja ν

(c) in the result (6.30), where Ja ν
(c) is

defined by the equation (6.31).

✎ 6.1.4 As in the previous exercise and using the definition (6.31), determine the gauge
covariance of the chromodynamics continuity equation ∂ν Ja ν

(c) = 0 in the result (6.30).

6.2 Concrete calculations

Conceptually, quantum-chromodynamics processes are analyzed in the same way as the quantum-
electrodynamics ones, via computations that begin with the rules for Feynman diagrams. Adapting
Procedure 5.2 on p. 193, we then have the analogous algorithm. However, QCD computations for
diagrams with closed loops require exceptional care, additional rules and even additional, so-called
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ghost fields with so-called BRST symmetry5 – which is beyond our present scope. The presently
given algorithm therefore suffices only for chromodynamics diagrams with no gluon loops.

Procedure 6.1 The contribution to the amplitude M corresponding to a given Feynman dia-
gram (with no gluon loops) for the chromodynamics processes with quarks, antiquarks and
gluons is computed following the algorithm [☞ textbooks [445, 425, 586] for a derivation]:

1. Notation
(a) Energy–momentum: Denote incoming and outgoing 4-momenta by p1, p2, . . . , and the

spins s1, s2, . . . Denote the “internal” 4-momenta (assigned to lines that connect two
vertices inside the diagram) by q1, q2,. . .

(b) Orientation: For a spin- 1
2 particle, orient the line in the 4-momentum direction, op-

positely for antiparticles. Orient external gluon lines in the direction of time (herein,
upward). Orient the internal gluon lines arbitrarily, but use the so-chosen orientation
consistently.

(c) Polarization: Assign every external line the polarization factor:

Spin- 1
2 quark

incoming us
fχ
α s = spin projection = ↑, ↓

α = quark color = r, y, b
f = quark flavor: u, d, s, . . .outgoing u f ,s χ

†
α

Spin- 1
2 antiquark

incoming v f ,s χ
†
α (" spin- 1

2 quark, travels
backwards in time)outgoing vs

fχ
α

Gluon incoming εμχa εμpμ = 0 and ε0 = 0

outgoing εμ∗χa∗

(6.41)

2. Vertices To each vertex assign the factor according to type:
(a) Quark–gluon vertex:6

μ
i, α, f2

j, β, f1 a −→ −igcγ μ δ f1
f2

( 1
2λ a)β

α. (6.42)

This factor clearly corresponds to the term −gcΨαγγγγ
μAa

μ(λa)αβΨβ in the Lagran-
gian (6.23), and represents the elementary gluon–quark interaction.

(b) 3-gluon vertex:

(6.43)

5 The name of this symmetry is an acronym from the names of the discoverers: C. M. Becchi, A. Rouet and R. Stora [44],
and I. V. Tyutin [526]. The method of using ghost fields itself is usually called after L. Faddeev and V. Popov, the physi-
cists who were among the first to use the method; B. DeWitt, who published very similar ideas at the same time but in a
technically much more demanding fashion, is unfortunately almost never cited in the invention of this method. Unlike
electrodynamics, the non-abelian nature of the gluon interactions in quantum chromodynamics unavoidably couples
all degrees of freedom in the gluon 4-vectors Aa

μ, so that the unphysical degrees of freedom (the longitudinal polariza-
tion and the temporal component) cannot be consistently eliminated. However, the contributions of these unphysical
degrees of freedom may be consistently eliminated by introducing ghost fields and reducing correspondingly the gauge
symmetry to the BRST nilpotent symmetry. This level of technical details is beyond the scope of this book; see, e.g.,
Refs. [425, 123, 586, 316, 277] and especially the texts [268, 555, 484, 496, 589, 590].

6 In traditional normalization, just as halves of Pauli matrices generate the SU(2) group, so do halves of Gell-Mann
matrices (A.71) generate the SU(3) group.
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This factor corresponds to the terms in the Lagrangian (6.23) that are 3-linear in Aa
μ,

and represents the elementary interaction of three gluons.
(c) 4-gluon vertex:

(6.44)

This factor corresponds to the terms in the Lagrangian (6.23) that are 4-linear in Aa
μ,

and represents the elementary interaction of four gluons.
3. Propagators To each internal line with the jth 4-momentum assign the factor

(6.45)

(6.46)

As internal lines depict virtual particles, /qj \= mjc and q2
g \= 0, respectively [☞ Tables C.7 on

p. 529 and C.8 on p. 529]. Up to multiplicative coefficients, these factors also stem from the
Lagrangian (6.23); these are Fourier transforms of the Green functions for the differential
operators /D and D

μν
ab in Ψ /DΨ := −∑n Ψn,α[ih̄ c /∂− mc2]Ψα

n and Aa
μD

μν
ab Ab

ν :" − 1
4 F̊a
μν F̊μνa ,

respectively, where F̊a
μν := (∂μAa

ν − ∂n Aa
ν) is the so-called linearization of the field Fa

μν.
4. Energy–momentum conservation To each vertex assign a factor (2π)4δ4(∑j kj), where kj

are 4-momenta that enter the vertex. 4-momenta that leave the vertex have a negative
sign except for external spin- 1

2 antiparticles, since they are equivalent to particles that move
backwards in time.

5. Integration over 4-momenta Internal lines correspond to virtual particles and their

4-momenta are unknown; these variables must be integrated:
∫ d4qj

(2π)4 .
6. Reading off the amplitude The foregoing procedure yields the result

−i M (2π)4δ4(∑
j

pj), (6.47)

where the factor (2π)4δ4(∑j pj) represents the 4-momentum conservation for the entire
process, and where the amplitude (matrix element) M is read off.

7. Fermion loops To each fermion loop (closed line) assign a factor −1. A mathematically
rigorous derivation of this rule follows from Feynman’s approach using path integrals, which
is far beyond the scope of this book [☞ booklet [166] for an intuitive albeit not entirely
rigorous explanation, [434, Vol. 1, Appendix A] for a serious introduction, and [165] for
the original reference].

8. Antisymmetrization Since the amplitude of the process must be antisymmetric in pairs of
identical (external) fermions, the partial amplitudes that differ only in the exchange of two
identical external fermions must have the relative sign −1.

As in Section 3.3.4, one draws all Feynman diagrams that contribute at the desired
order in gc, and then computes the (partial) amplitudes for each of the diagrams. The
algebraic sum of these contributions yields the total amplitude, which is then inserted in
formulae (3.112) and (3.114) for decays and scatterings, respectively.

Fermion loops (closed lines) will be discussed at the end of this section.
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234 Non-abelian gauge symmetries and interactions

Digression 6.3 Fermion wave-functions, as a whole, must mutually anticommute. When
“factorizing” (4.123), Ψ = ∑i Ψi(�r, t) χi(spin) χi(flavor) χi(color), an odd number of
factors is anticommuting, and the choice is in principle arbitrary. However, because of
the spin-statistics theorem, herein we consistently choose χi(spin) to be anticommut-
ing for half-integral spin, and the other factors to be commutative functions [☞ also
Digression 10.2 on p. 360].

Unlike the computations in Sections 3.3.4 and 5.3.1–5.3.3 where the ultimate goal was
to compute the lifetime for decays or the differential and total effective cross-section for col-
lisions, for chromodynamics interactions we cannot finalize the computation. Since quarks
cannot be extracted from hadrons, detectors cannot register individual quarks, so that, e.g.,
an elastic collision u + d → u + d cannot be detected independently of the hadronic bound
states of which these quarks are the building blocks. Thus, the (differential) effective cross-
section for this collision does not have a physical meaning, as it cannot be compared with
experiments.

However, the amplitude for chromodynamics processes does have a physical meaning and
may easily be used to compare with concrete experiments, somewhat akin to familiar application
of the Wigner–Eckart theorem A.3 on p. 475. That is, in a hadronic process such as the elastic
collision [

p+ = (u, u, d)
]
+

[
n0 = (u, d, d)

] → [
p+ = (u, u, d)

]
+

[
n0 = (u, d, d)

]
, (6.48)

the dominant, O(g2
s ) contribution is chromodynamical and stems from the quark–quark interac-

tion: the dominant contributions to the amplitude of hadronic processes stem from the interaction
of one quark from each of the two hadrons; these contributions then add algebraically, depending
on the symmetries of the bound states (6.48). Since the u- and d-quark have approximately the
same mass, and may have any of the same spin states (| 1

2 , + 1
2 〉 and | 1

2 ,− 1
2 〉) and any of the same

colors (red, yellow, blue), the chromodynamics interaction does not distinguish between u–u, u–d
and d–d interactions. For the purely QCD contributions, we have

M
(QCD)
u+u→u+u ≈ M

(QCD)
u+d→u+d ≈ M

(QCD)
d+d→d+d (6.49a)

up to O( mu−md
mu+md

) and O(g4
c ) corrections and up to non-QCD contributions such as were discussed

in the computations (4.82)–(4.92). Also,

M
(QCD)
p++p+→p++p+ ≈ M

(QCD)
p++n0→p++n0 ≈ M

(QCD)
n0+n0→n0+n0 , (6.49b)

in the same approximation. The chromodynamic interaction (up to corrections of the next order
in magnitude) thus does not differentiate between protons and neutrons, and the result (6.49)
is in excellent agreement with concrete experimental data in nuclear physics. Thus, the differences
in the binding energy of protons and neutrons within a nucleus may be reduced to differences in
spin values,7 in the spatial factors that also include the orbital angular moments, as well as in the
isospin factors [☞ Section 4.3.1].

7 The (anti)symmetrization is fairly complex in baryons: recall the argument for relations (4.123) and (4.125).
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6.2.1 Quark–quark interaction
To describe the interaction between two quarks, assume that they are different, so that only one
O(g2

s ) diagram exists:

u-quark
color: α

p1

u-quark
color: γ

p3

q
(λ a)α

γ (λ b)β
δ

δab

d-quark
color: β

p2

d-quark
color: δ

p4

(6.50)

for which the amplitude is obtained following Procedure 6.1 on p. 232,

Mu+d→u+d = − g2
s

2
1
q2

[
u3 γγγγ

μ u1
][

u4 γγγγμ u1
](
χ†

3 λλλλ
a χ1

)(
χ†

4 λλλλa χ2
)
, (6.51)

which is analogous to amplitude (5.131), except that:

1. ge is replaced with gc,
2. the color factor, fc(3, 4|1, 2) = 1

4 (χ
†
3λλλλ

aχ1)(χ†
4λλλλaχ2), is inserted.

The fact that Feynman calculus from quantum electrodynamics is fairly easy to adapt to quantum
chromodynamics as well as other kinds of non-abelian gauge interactions has contributed to the
popularity of the technique.8

Since the electromagnetic interaction of two charged particles of the type (5.129) is known to
lead to the Coulomb potential αe h̄ c

r = 1
4πε0

e2

r and since the result (6.51) differs from (5.131) only
in ge → gc and the inserted factor fc, we conclude that the quantum-chromodynamics interaction
of the type (6.50) also leads to a Coulomb-like potential:

Vqq(r) = fc
αs h̄c

r
, (6.52)

and it only remains to determine the color factor:

fc(3, 4|1, 2) = 1
4 (χ†

3λλλλ
aχ1)(χ†

4λλλλaχ2) = 1
4 χ

†
3γ χ

†
4δ (λa)αγ (λa)βδ χα1 χ

β
2 . (6.53)

Use the correspondence between the index- and matrix-notation:

χr ↔ δα1 ↔
[ 1

0
0

]
, χy ↔ δα2 ↔

[ 0
1
0

]
, χb ↔ δα3 ↔

[ 0
0
1

]
. (6.54)

From the SU(3) group representation theory result (A.76a) [☞ Appendix A.4.2], we know that the
color factors for two (incoming) quarks, χα1χ

β
2 , must belong to one of two vector spaces:

1. The antisymmetric triplet (3∗) of states, i.e., the 3-dimensional vector space spanned by
two-quark color factors:{

χ12
[αβ] := 1√

2
(χα

1
χβ

2
− χβ

1
χα

2
), α, β = red, yellow, blue = 1, 2, 3

}
=

{
1√
2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)
, 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)
, 1√

2

(
δα2 δ

β
3 − δ

β
2 δ
α
3
)}

, (6.55)

8 The insolubility of quantum chromodynamics stems from the fact that αs varies with energy much faster than the
electrodynamics fine structure parameter, αe, and oppositely, αs diminishes with energy [☞ Section 6.2.4]. Moreover,
perturbative computations indicate that below about 200 MeV, αs becomes larger than 1, so the perturbative approach
to quantum chromodynamics where αs is the perturbative parameter makes neither practical nor conceptual sense when
the interaction energy is less than about 200 MeV [☞ Section 6.3]. Here we then focus on sufficiently high energies.
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236 Non-abelian gauge symmetries and interactions

where the black subscripts 1 and 2 in the first row indicate the first and second quark, respec-
tively. In the second row, we dispensed with these subscripts,9 so as not to confuse them with
the color labels 1 = r, 2 = y and 3 = b, which were needed in the second row.

2. The symmetric 6-tuplet (6) of states, i.e., the 6-dimensional vector space spanned by two-
quark color factors:{

χ12
(αβ) := 1√

(1+δαβ)
(χα

1
χβ

2
+ χβ

1
χα

2
), α, β = r, y, b = 1, 2, 3

}
=

{(
δα1 δ

β
1

)
,
(
δα2 δ

β
2
)
,
(
δα3 δ

β
3
)
, 1√

2

(
δα1 δ

β
2 + δ

β
1 δ
α
2
)
, 1√

2

(
δα1 δ

β
3 + δ

β
1 δ
α
3
)
, 1√

2

(
δα2 δ

β
3 + δ

β
2 δ
α
3
)}

.

(6.56)

The quantum-mechanical normalization10 of the color factors was used (so that ‖χ12
[αβ]‖2 = 1 as

well as ‖χ12
(αβ)‖2 = 1 for every choice of α, β) and the numerical identification α, β = r, y, b =

1, 2, 3 for the basis in which the Gell-Mann matrices (A.71) are given. For outgoing quarks the
Hermitian conjugate factors (6.55)–(6.56) must be used, but note that Hermitian conjugation
preserves the (anti)symmetry of the two-particle color factors.

That is, in the process (6.50), the color factor for the incoming quarks (with colors α and
β) may be in any linear combination of either the antisymmetrized elements (6.55), or the sym-
metrized elements (6.56). The color factor for the outgoing quarks (with colors γ and δ) may be –
independently of the incoming quarks – in any one of the Hermitian conjugates of those states. In
principle then, one must compute the color factors (6.53) for each of the combinations

fc(3, 4|1, 2) = fc(3∗
A|3∗

A), fc(3∗
A
′|3∗

A), fc(6S|3∗
A), fc(3∗

A|6S), fc(6S|6S), fc(6′S|6S), (6.57)

where 3∗
A denotes some concrete antisymmetrized state, 6S denotes some concrete symmetrized

state, and prime simply indicates some other such concrete state.

Example 6.2 A concrete computation of the first type (6.57), i.e., fc(3∗
A|3∗

A) is done
taking, e.g., the red–blue 1√

2
(δ1
γδ

3
δ − δ1

δδ
3
γ) ∈ 3∗ element:

{ 1
4 (χ†

3γ χ
†
4δ)3 (λa)αγ (λa)βδ (χα1 χ

β
2 )3∗

} ⊃ 1
4

1√
2

(
δ1
γδ

3
δ − δ1

δδ
3
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

3 − λa
3

1 λa1
3 − λa

1
3 λa3

1 + λa
3

3 λa1
1] = 1

4

[
λa

1
1 λa3

3 − λa
3

1 λa1
3]. (6.58a)

The sums over Gell-Mann matrices, a = 1, . . . , 8 simplify, as there is only one matrix for
which (λa1

1 �= 0 �= λa3
3), and only two matrices for which (λa3

1 �= 0 �= λa1
3):

= 1
4

[
λ8

1
1 λ83

3 − λ4
3

1 λ41
3 − λ5

3
1 λ51

3] = 1
4

[ 1√
3
· −2√

3
− 1·1 − i·(−i)

]
= − 2

3 . (6.58b)

9 We imply that the first factor in every monomial – whether formally χα or the Kronecker symbol – refers to the first
quark, and the second factor to the second quark.

10 In mathematical sources, if such explicit constructions are given at all, one mostly finds combinatorial functions, the
normalization of which refers to their use in probability theory. However, wave-functions are not probabilities but
probability amplitudes, so the desired normalization mostly requires factors of the type 1√

2
(for a probability amplitude)

instead of 1
2 (for a probability), etc.
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Similarly, the type fc(3∗
A
′|3∗

A) computation yields{ 1
4 (χ†

3γ χ
†
4δ)3′ (λ

a)αγ (λa)βδ (χα1 χ
β
2 )3∗

} ⊃ 1
4

1√
2

(
δ1
γδ

2
δ − δ1

δδ
2
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

2 − λa
3

1 λa1
2 − λa

1
2 λa3

1 + λa
3

2 λa1
1]

= 1
4

[
λa

1
1 λa3

2 − λa
3

1 λa1
2] = 0, (6.58c)

since there is no Gell-Mann matrix for which (λa1
1 �= 0 �= λa3

2) or (λa3
1 �= 0 �= λa1

2).
Also, for the fc(6S|3∗

A) type, one checks

{ 1
4 (χ†

3γ χ
†
4δ)6 (λa)αγ (λa)βδ (χα1 χ

β
2 )3∗

} ⊃ four characteristic cases:{
1
4

(
δ1
γδ

1
δ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)

= 1
4
√

2

[
λa

1
1 λa2

1 − λa
2

1 λa1
1] = 0, (6.58d)

1
4

(
δ3
γδ

3
δ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)

= 1
4
√

2

[
λa

1
3 λa2

3 − λa
2

3 λa1
3] = 0, (6.58e)

1
4

1√
2

(
δ1
γδ

3
δ + δ1

δδ
3
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

3 − λa
3

1 λa1
3 + λa

1
3 λa3

1 − λa
3

3 λa1
1] = 0, (6.58f)

1
4

1√
2

(
δ1
γδ

2
δ + δ1

δδ
2
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

2 − λa
3

1 λa1
2 + λa

1
2 λa3

1 − λa
3

2 λa1
1] = 0

}
. (6.58g)

The complete collection of values of the function fc(6S|3∗
A) of course consists of 6× 3 =

18 cases, but these may all be obtained from the above four concrete cases by permuting
the values α, β,γ, δ = 1, 2, 3. It follows that the outgoing pair of quarks is always in the
same concrete antisymmetric state as was the incoming pair. (That also follows from the
SU(3)c color conservation, but it is reassuring to confirm this by direct computation.)

Direct computation [☞ Example 6.2 on p. 236, and Exercise 6.2.1] confirms that

fc(3∗
A|3∗

A) = − 2
3 and fc(6S|6S) = + 1

3 , (6.59)

while fc(3∗
A
′|3∗

A), fc(6S|3∗
A), fc(3∗

A|6S) and fc(6′S|6S) vanish for all cases.

Conclusion 6.4 These results indicate that a gluon exchange between two quarks does not
change the color combination for two-quark states.11 Besides, the sign in the result (6.59)
indicates the one-gluon exchange chromodynamics force, computed in the standard fashion
as �Fqq = −�∇(Vqq) from the relation (6.52), to be:

1. attractive if the quark colors are antisymmetrized,
2. repulsive if the quark colors are symmetrized.

Comment 6.3 The emphasis that this amounts to only a single-gluon exchange contribution
to the chromodynamics force is very important: It does not follow that the exchange of

11 The computation is of course shown only for the exchange of a single gluon, but its direct iteration is applicable to the
exchange of an arbitrary finite number of gluons. Extending this to a formally infinite number of exchanged gluons,
including gluon condensation, remains an open issue☞ .
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238 Non-abelian gauge symmetries and interactions

more gluons follows the same regularity, and so it does not follow that the total chromody-
namics force follows the same regularity. Several further contributions, however, have been
computed and they preserve the qualitative character of the result (6.59).

A baryon, of course, has three quarks, and the options for the color factor are (A.78):

1. totally symmetric, so-called “10” (10-dimensional) representation,
2. mixed symmetric, so-called “8” (8-dimensional) representation (in two distinct ways),
3. totally antisymmetric, so-called “1” (1-dimensional) representation

of the SU(3)c group, where only the last one is SU(3)c-invariant. Also, only in the last case is
the system antisymmetric (i.e., the wave-function of the baryon as a three-particle bound state
is antisymmetric) with respect to the exchange of any two quarks. Conclusion 6.4 then indicates
that this is the only case in which the chromodynamics force between all quarks in the baryon is
attractive.

Also, since O(g2
c ) computations indicate that the chromodynamic interaction is binding (at-

tractive) only when the factor χ(color) in the factorization (4.123) is totally antisymmetric, it
follows that the bound state (i.e., its wave-function) for every baryon must be totally symmetric in
the remaining three factors:

Ψ(baryon) =
[
Ψ(�r, t) χ(spin) χ(flavor)

]
S χA(color).

Since the factor χ(flavor) is determined by the choice of the hadron [☞ Section 4.4] as totally
symmetric for the 10-plet of flavors and mixed symmetric [☞ relation (4.125)] for the 8-plet, for
each of these baryons the symmetries determine the correlation between spin and orbital angular
momentum. In ground states, the angular momenta in the three-quark system all vanish, so the
spin factor is unambiguously determined to be:

1. spin- 3
2 and totally symmetric for the decuplet {Δ, Σ∗, Ξ∗, Ω},

2. spin- 1
2 , with a rather more complicated symmetry (4.125) with (4.119)–(4.120) for the octet

{p+, n0, Λ, Σ, Ξ} of baryons.

Conclusion 6.5 Furthermore, the chromodynamics interaction between two SU(3)c-
invariant bound states cannot happen via the exchange of a single gluon [☞ Example 6.3
on p. 240], but must involve a simultaneous exchange of at least two gluons, and so is of
the order of at least O(g4

s ), or a gluon and a quark pair; see process (6.77). Indeed, if the
baryon that emits any particle is to remain SU(3)c-invariant both before and after emitting,
it follows that the emitted intermediary itself must be SU(3)c-invariant. As none of the eight
gluons are SU(3)c-invariant, the intermediary must be an SU(3)c-invariant state composed
of at least two gluons or a quark–antiquark pair.

It then follows that the simplest chromodynamics interaction between two nucleons within
an atomic nucleus is about O(g2

c ) times weaker than the strong interaction between two quarks.12

(This reminds us a little of the fact that the dipole–dipole interaction between two neutral hydrogen
atoms is weaker than the Coulomb interaction between the electron and the proton within one
atom.)

12 At this introductory level, we have no means of assessing the contribution to the effective strength of interaction
provided by the exchange of quarks between two hadrons. However, the SU(3)c-invariance requirement on the par-
ticle mediating the strong interaction between two hadrons clearly forces it to be of higher order than the direct,
SU(3)c-variant one-gluon-mediated interaction between quarks.
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Digression 6.4 SU(3)c-invariant states composed entirely of gluons are called “glueballs”
and in principle may be observed, but no such state has so far been reliably detected.
However, all quantum numbers of such purely gluon SU(3)c-invariant bound states are
identical to quantum numbers of electrically neutral mesons such as π0, ρ0, etc., with
which they mix. This mixing makes experimental differentiation of “glueballs” from
ordinary mesons extremely difficult, and no “glueball” state has yet been conclusively
detected.

6.2.2 Quark–antiquark interaction
Mesons are much easier to study than baryons, as they are bound states of a quark and an anti-
quark. However, with this simplification also comes a complication – at least when the meson is
neutral with respect to all interactions, so the bound state is of the type

u u + d d + s s + · · · . (6.60)

Indeed, now the quark and the antiquark may mutually annihilate. We first consider differently
flavored quark–antiquark mesons, where not even virtual annihilation can happen; the next section
will consider the possible annihilation in a type (6.60) system.

The amplitude of a single-gluon exchange has a contribution only from one Feynman
diagram:

u-quark
color: α

p1

u-quark
color: γ

p3

q
(λ a)α

γ (λ b)δ
β

δab

d antiquark
color: anti-β

p2

d antiquark
color: anti-δ

p4

(6.61)

Following Procedure 6.1 on p. 232, and analogously to the result for the first part of (5.147b), we
have

Mu+d→u+d = − g2
c

4q2 [u3γγγγ
μu1][v2γγγγμv4]

(
χ†

3 λλλλ
a χ1

)(
χ†

2 λλλλa χ4
)
, (6.62)

where q = (p1−p3) is the 4-momentum exchange, and the result differs from the electrodynamics
one only in that:

1. ge is replaced by gc,
2. the color factor, fc(3, 4|1, 2) = 1

4 (χ
†
3λλλλ

aχ1)(χ†
2λλλλaχ4), is inserted.

The color factor for the incoming quark–antiquark pair again must belong to one of the two vector
spaces:

1. The Hermitian octet (8) of states, i.e., the 8-dimensional vector space spanned by the color
factors,{

χ12
α
β =

√
1+ 1

2δ
α
β(χ

α
1χ

†
2β − 1√

3
δαβ χ̊χχχ), α, β = red, yellow, blue = 1, 2, 3

}
=

{√
3
2 (δ

α
1 δ

1
β−χ̊χχχ),

√
3
2 (δ

α
2 δ

2
β−χ̊χχχ),

√
3
2 (δ

α
3 δ

3
β−χ̊χχχ),

(δα1 δ
2
β), (δα1 δ

3
β), (δα2 δ

1
β), (δα2 δ

3
β), (δα3 δ

1
β), (δα3 δ

2
β)
}

, (6.63)

which form a traceless Hermitian matrix, where χ̊χχχ := 1√
3

Tr(χ1χ
†
2
) = 1√

3
(χα

1
χ†

2α
).
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2. The SU(3)c-invariant (1), where χ12
α
β = δαβ χ̊χχχ is a multiple of the unit matrix.

Normalization is again quantum mechanical, so ‖χ12
α
β‖2 = 1 for every choice α, β.

Similarly to the result (6.57), for u + d → u + d we have

fc(3, 4|1, 2) = fc(8|8), fc(8′|8), fc(8|1), fc(1|8), fc(1|1). (6.64)

Also, just as in electrodynamics, the gluon exchange gives rise to a potential of the form

Vqq(r) = − fc
αc h̄c

r
, (6.65)

where the sign is now negative, since the color charges of a quark and an antiquark are “opposite”:
one is the (chromodynamics) “color” the other the “anticolor.”13

Example 6.3 To compute the functions fc(8|8), fc(8′|8) and fc(1|1), we pick the sim-
plest particular cases for each; the diligent Student will convince themselves by direct
computation that all cases give the same quantitative results.

For fc(8|8), the incoming and the outgoing quark–antiquark pair have the same
combination of color–anticolor; take, e.g., the red–antiblue (δ1

γδ
δ
3) ∈ 8 element:{ 1

4 (χ†
3γ χ

δ
4)8 (λa)αγ (λa)δβ (χα1 χ

†
2β)8

} ⊃ 1
4 (δ1

γδ
δ
3) (λa)αγ (λa)δβ (δα1 δ

3
β)

= 1
4 λ

a
1

1 λa3
3 = 1

4 λ
8

1
1 λ83

3 = 1
4

1√
3

−2√
3

= − 1
6 , (6.66)

since only the eighth Gell-Mann matrix has (λa
1

1 �= 0 �= λa3
3). For fc(8′|8) we take, e.g.,

(δ1
γδ
δ
3) ∈ 8 and (δ3

γδ
δ
1) ∈ 8′:

{ 1
4 (χ†

3γ χ
δ
4)8′ (λ

a)αγ (λa)δβ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ3

γδ
δ
1) (λa)αγ (λa)δβ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
3 = 1

4 (λ4
1

3 λ41
3 + λ5

1
3 λ51

3) = 1
4 (1·1 + (−i)·(−i)) = 0. (6.67)

Since the representation 1 has only one dimension, for fc(1|1) there is a single
contribution:

1
4 (χ†

3γ χ
δ
4)1 (λa)αγ (λa)δβ (χα1 χ

†
2β)1

= 1
4

1√
3
(δ1
γδ
δ
1 + δ2

γδ
δ
2 + δ3

γδ
δ
3) (λa)αγ (λa)δβ 1√

3
(δα1 δ

1
β + δα2 δ

2
β + δα3 δ

3
β)

= 1
12 λ

a
α
γ λaγ

α = 1
12 δab Tr(λλλλa λλλλb) = 1

12 δab 2δab = 1
6 8 = 4

3 , (6.68)

where we used the relation (A.72). This coefficient, fc(1|1) = 4
3 , has shown up in the

relation (4.102).

13 In electrodynamics, of course, there is only one kind of charge – electric – and the opposite charge is simply the
negative charge. For chromodynamics colors, “anticolor” is not simply negative “color,” but the opposite “color”; i.e., the
color that together with the original one produces a colorless, i.e., an SU(3)c-invariant whole. This we may write, e.g.,
(χα (red))† = (χ†)α (green). We will not use this notational possibility, as it additionally complicates the tensor algebra rules
and necessitates printing in color; with the current convention, computations may be followed even in monochromatic
printout.
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Direct computation shows also that fc(8|1), fc(1|8) = 0, and we have:

Conclusion 6.6 These results show that the single-gluon exchange14 between a quark and
an antiquark preserves the color state: incoming and outgoing quark–antiquark pairs have
the same color combination. Besides, the chromodynamics force (6.65) between a quark
and an antiquark is

1. attractive when both the incoming and the outgoing pair are in the SU(3)c-
invariant state, and

2. repulsive otherwise.

6.2.3 Quark–antiquark annihilation
The single-gluon exchange amplitude now has two contributions, corresponding to the two
Feynman diagrams:

u+u→u+u =

1

3

2

4

−

1

3

2

4

(6.69)

where the relative minus sign follows from the fact that the amplitude for the second sub-process
(the virtual annihilation and re-creation of the u u pair) equals the first, upon exchanging the
incoming antiquark, 2, and the outgoing quark 3 [☞ discussion of the Bhabha scattering and
procedure (5.145)]. Adapting the result (5.147b), we have that the amplitude of this process equals

Mu+u→u+u = − g2
c

4(p1 − p3)2 [u3γγγγ
μu1][v2γγγγμv4](χ†

3λλλλ
aχ1)(χ†

2λλλλaχ4)

+
g2

c
4(p1 + p2)2 [v2γγγγ

μu1][u3γγγγμv4](χ†
2λλλλ

aχ1)(χ†
3λλλλaχ4), (6.70)

where we used that the color factor, fc, for the first diagram is identical to the factor in the
result (6.62), and the factor for the second diagram, f̃c, is obtained by swapping 2 ↔ 3.

Example 6.4 We will compute one sample value of each of f̃c(8|8), f̃c(8′|8) and f̃c(1|1),
and we choose the simplest cases to this end; the diligent Student should verify by direct
computation that all cases produce quantitatively the same results. Alternatively, this may
also be proven by SU(3)c group action from the results presented here [☞ Exercise 6.2.2].

For f̃c(8|8), the incoming and outgoing quark–antiquark pair have the same color–
anticolor combination; fix this to be the red–antiblue combination:{ 1

4 (χ†
3γ χ

δ
4)8 (λa)αβ (λa)δγ (χα1 χ

†
2β)8

} ⊃ 1
4 (δ1

γδ
δ
3) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa3
1 = 1

4 (λ4
1

3 λ43
1 + λ5

1
3 λ53

1) = 1
4 (1·1 + (−i)·(i)) = 1

2 , (6.71)

14 See Footnote 11 on p. 237.
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since only λλλλ4 and λλλλ5 have (λa
1

3 �= 0 �= λa3
1). For f̃c(8′|8) we have, e.g.,{ 1

4 (χ†
3γ χ

δ
4)8′ (λ

a)αβ (λa)δγ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ3

γδ
δ
1) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
3 = 1

4 (λ4
1

3 λ41
3 + λ5

1
3 λ51

3) = 1
4 (1·1 + (−i)·(−i)) = 0, (6.72)

or, e.g.,{ 1
4 (χ†

3γ χ
δ
4)8′ (λ

a)αβ (λa)δγ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ2

γδ
δ
1) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
2 = 0, (6.73)

as no Gell-Mann matrix has a nonzero 1st entry in both the 2nd and 3rd row (or column).
In turn, since the representation 1 has only one dimension, for f̃c(1|1) there is a single
case,

1
4 (χ†

3γ χ
δ
4)1 (λa)αβ (λa)δγ (χα1 χ

†
2β)1

= 1
4

1√
3
(δ1
γδ
δ
1 + δ2

γδ
δ
2 + δ3

γδ
δ
3) (λa)αβ (λa)δγ 1√

3
(δα1 δ

1
β + δα2 δ

2
β + δα3 δ

3
β)

= 1
12 λ

a
α
α λaγ

γ = 1
12 Tr(λλλλa) Tr(λλλλa) = 0, (6.74)

which is very similar to the reasoning in Conclusion 6.5, at the end of Section 6.2.1: an
SU(3)c-invariant state cannot turn into a single gluon, as SU(3)c-invariant gluons do not
exist.

Using the direct computations from Example 6.3, we have that

Mu+u→u+u = − g2
c

(p1 − p3)2

{ − 1
6

+ 4
3

}
[u3γγγγ

μu1][v2γγγγμv4]

+
g2

c
(p1 + p2)2

{ 1
2

0

}
[v2γγγγ

μu1][u3γγγγμv4], if
{
χχχχ

12
⊂ 8,

χχχχ
12

= 1. (6.75)

If a concrete incoming quark–antiquark pair in fact form a meson, the color factors χχχχ
12

= χχχχ
34

must be SU(3)c-invariant, so that the second diagram (6.69) in fact contributes nothing because
of color conservation. However, in hadronic elastic collisions of the type n0 +π− → n0 +π−, both
diagrams contribute:

)b()a(

(d,d,u)

(d,d,u)

u
d

u
d

3× 2 = 6
combinations

d

d u

d

d u

u
d

u
d

(6.76)

The diagram (a) contributes in six ways (either of the three quarks in the neutron may exchange a
gluon with either the u antiquark, or the d quark within the pion); the diagram (b) contributes in
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only one way. Except, the processes depicted in diagram (a) are prohibited by Conclusion 6.5, i.e.,
either at least one more gluon and/or a d quark (being common to both incoming hadrons) must
be exchanged, as for example in

(d,d,u)

(d,d,u)

u
d

u
d

2× 3× 2 = 12
combinations

(6.77)

This then is still O(g 2
c ), up to the undetermined d-quark exchange factor; additional gluon ex-

change would increase the order. Note that the exchanged state (propagating in the horizontal
direction in this Feynman diagram) may well be interpreted as the exchange of a virtual pion, π0 –
vindicating in part Yukawa’s original proposal for strong interactions.

6.2.4 Renormalization and asymptotic freedom
In Section 5.3.3, we obtained the relation (5.202),

αe,R(|q2|) ≈ αe,R(0)

1 − αe,R(0)
3π ln

( |q2|
m2

e c2

) , |q2|  m2
e c2, (5.202)

which indicates the electromagnetic fine structure constant to in fact be a variable, and to depend
on the transfer 4-momentum q at which the measurement takes place.

In the analogous analysis of O(g4
s ) corrections to the amplitude of the collision (6.50) new

diagrams appear, precisely because of the non-abelian (non-commutative) nature of the chromo-
dynamics interaction. Ignoring diagrams that only correspond to renormalizing the parameters of
the incoming and outgoing particles, for O(g4

s ) contributions we have

(6.78)

The computation of the contributions depicted by the last three diagrams requires additional rules
that involve the introduction of ghost fields and the so-called BRST nilpotent symmetry [☞ Foot-
note 5 on p. 232]. That level of technical details is beyond the scope of this book, and we simply
cite [445] the final result:

αs,R(|q2|) ≈ αs,R(μ2c2)

1 + αs,R(μ2c2)
3π

11n−2n f
4 ln

( |q2|
μ2c2

) , |q2|  μ2c2. (6.79)

This holds for all SU(n)-gauge interactions, where n f is the total number of Dirac spin- 1
2 fermions

that possess such an n-dimensional SU(n) charge. The fermion loop (6.78) contributions are the
opposite of the gauge boson loop contributions.15 The precise computation produces the coefficient

15 Recall that fermion loops require an additional −1 factor in the amplitude, as well as that both quarks and gluons
contribute to the chromodynamics color charge (6.32) [☞ Conclusion 6.3 on p. 229].
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11n−2n f
4 , which in our case is +5 1

4 : we have n = 3 colors and n f = 6 quark flavors. Since the relative
sign in the denominator (6.79) is opposite from the relative sign in the denominator (5.202), it
follows that αs(|q2|) diminishes as |q2| grows.

Example 6.5 Effectively, the opposite contributions from the quarks and the gluons in
the relation (6.79) imply that virtual quark–antiquark pairs screen, and virtual gluons
enhance the chromodynamics color charge. The example of quantum electrodynam-
ics [☞ Section 5.3.3] has already explained the first part of this phenomenon. For the
second part – except, of course, detailed computation – there also exists a qualitative ar-
gument [425], depicted in Figure 6.1. Suppose we have a chromodynamic charge source

1

ρ1>0

�E1

�A 2

θ12
1 3

�E3

1 3
1

1 �E3

1
1

1
�E1

�E1
dip

(a) (b) (c) (d)

Figure 6.1 A qualitative depiction of the mechanism by which virtual gluons enhance the
chromodynamic charge

of the color ρ1, depicted by the “central” circle labeled “1” in Figures 6.1(a)–(d).
By Gauss’s law (6.35), this creates a chromo-electric field �E1; see Figure 6.1(a). Let
somewhere nearby a virtual quantum of the chromodynamics field appear; in Fig-
ures 6.1(a)–(c), this is depicted by the vector �A2, at an angle of θ12 = 60◦ from the
positive direction of �E1. This virtual quantum �A2 couples to the pre-existing field �E1 and
produces via the non-abelian (non-commutative) part of equation (6.35) a virtual source
for the field �E3:

�∇·�E3 = − gc
h̄ c f 3

21 �A2·�E1 = − gc
h̄ c (−1)|�A2||�E1|(cos θ12 = + 1

2 ) = + gc
2h̄ c |�A2||�E1|. (6.80)

This virtual source ρ3 is localized at the position of the virtual potential �A2, i.e., somewhat
removed from the real source ρ1. It is depicted by a circle labeled “3” in Figures 6.1(b)–
(c). By Gauss’s law (6.35) again, the virtual source ρ3 creates a virtual chromo-electric
field �E3, depicted in Figures 6.1(b)–(c). Iterating, the coupling of this virtual field �E3 and
the virtual potential �A2 serves as an additional source (or sink) for the field �E1. Indeed,
just outside the location of the “bare” source ρ1 and near the virtual source ρ3, we have

�∇·�E1 = − gc
h̄ c f 1

23 �A2·�E3 = − gc
h̄ c (+1)|�A2||�E3| cos θ32, (6.81)

where θ32 is the angle between the virtual potential �A2 and the virtual field �E3. In
Figure 6.1(c), p. 244, we see that:

1. cos θ32 > 0 north-east from the virtual source ρ3, and
2. cos θ32 < 0 south-west from the virtual source ρ3.

Thus, the coupling of the virtual field �E3 and the virtual potential �A2 serves as an
additional sink for �E1 near the virtual source ρ3 and a little further away from the “bare”
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source ρ1, and as an additional source for �E1 near the virtual source ρ3 and a little closer to
the “bare” source ρ1. This additional source-and-sink form a small dipole of the �E1

dip field,
at the location of the virtual potential �A2. Such additional dipoles result in a vacuum
polarization owing to the nonlinear coupling of chromodynamics fields and potentials.

For clarity, Figure 6.1(d), p. 244, depicts the contributions of only the chromo-
electric field �E1, where we see that the coupling of the virtual potentials �A2 with the
induced virtual field �E3 has produced the additional field �E1

dip, and just so that the “bare”
source “1” is effectively enhanced (anti-screened) rather than screened, i.e., diminished:
In the induced virtual dipole, the source is closer to the “bare” source, and the sink is
further away.

Repeating the analysis with any other combination of distribution and value of
the initial “bare” source and the virtual potential, as well as the further iterations of
this nonlinear coupling, confirms this qualitative conclusion. The virtual quanta of the
chromodynamics field of course appear with a random distribution around the “bare”
source, but the so-induced vacuum polarization uniformly enhances the “bare” source.

The transfer 4-momentum q := (p1−p2) between the left- and the right-hand particles in
each diagram (6.78) is

q2 = p 2
1 +p 2

2 − 2p1·p2 = (m2
1+m2

2)c2 + 2�p1·�p2 − 2
E1E2

c2 =
(E1−E2)2

c2 − (�p1−�p2)2. (6.82)

The distance covered by the virtual particles, which occurs predominantly in the horizontal, me-
diating portion of the diagram (6.78), is inversely proportional to this transfer momentum. Thus,
αs,R(| q2|) grows with the distance at which the interaction occurs, which confirms earlier given
qualitative arguments and is in full accord with experimental observations; see Section 2.3.14.

Digression 6.5 The careful Reader will have noticed that the relation (6.79) gives the
chromodynamics fine structure parameter at the energy c

√|q2| as a function of two
quantities: the mass μ and the value of the chromodynamics fine structure parameter at
the transfer momentum μc. These two quantities may be “collected,” by defining

ΛQCD : ln(Λ2
QCD) := ln(μ2c2) − 12π

(11n−2n f )αs,R(μ2c2)
, (6.83)

the substitution of which into the result (6.79) yields

αs,R(|q2|) ≈ 12π

(11n−2n f ) ln
( |q2|

Λ2
QCD

) , (6.84)

where ΛQCD is the magnitude of the transfer 4-momentum at which αs,R(|q2|) diverges;
this divergence is called the Landau pole, after L. D. Landau. The importance of this
divergence is only formal, since perturbative computations fail to make sense before
that, when αs,R(|q2|) � 1. Experimental estimates give only an approximate region
100 MeV/c < ΛQCD < 500 MeV/c, and one typically uses ΛQCD ≈ 220 MeV/c as the
approximate value of the geometric mean of the experimental bounds.
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Finally, it is worth noting that for quantum electrodynamics, in relation (5.202), the reference
value of αe,R(0) ≈ 1

137 is an excellent choice. That is the value of the fine structure parameter –
and so also the intensity of the electromagnetic interaction (5.122), ge =

√
4παe = |e|/√ε0 h̄ c –

that is measurable in experiments where the interacting electric charges are at a distance much
larger than the typical (sub-)atomic distances. Those are, of course, all “classical” experiments with
electric charges.

By contrast, in quantum chromodynamics, αs,R(0) makes no sense. Perturbative computations
wherein the parameter αs,R(|q2|) and the relation (6.79) are defined fails to be valid at 4-momenta
below ∼200 MeV/c, i.e., at distances bigger than ∼10−15 m. Perturbative computations in quan-
tum chromodynamics make sense only at distances smaller than ∼10−15 m, i.e., at energies larger
than ∼200 MeV. That makes the introduction of an arbitrary reference value, such as αs,R(μ2c2),
necessary. For sufficiently large μ, αs,R(μ2c2) can even be measured, whereupon the relation (6.79)
is of better practical use than the simpler relation (6.84).

A moment’s thought reveals that this striking difference between αs,R(|q2|) and αe,R(|q2|) in
their dependence on the transfer 4-momentum fully supports two of the experimentally noted
properties of quarks:

Asymptotic freedom the limit lim|q2|→∞ αs,R(|q2|) = 0 agrees with the experimentally observed
fact that the strong interaction between quarks is vanishingly small at vanishingly small
distances.

Confinement the limit lim|q2|→ΛQCD
αs,R(|q2|) = ∞ agrees with the experimentally observed fact

that the strong interaction between quarks grows as the distance between two quarks is being
increased, e.g., so as to separate them.

Note that this is not a proof of confinement, since perturbation theory, used to compute αs,R(|q2|),
breaks down as |q2| → ΛQCD; nevertheless, this perturbative result is encouraging and gives good
hope that other methods will eventually provide a rigorous proof☞ .

6.2.5 Exercises for Section 6.2

✎ 6.2.1 Following Example 6.2 on p. 236, compute all possible cases of the color factors
fc(3∗

A|6S), fc(6S|6S) and fc(6′S|6S).

✎ 6.2.2 Using all elements (6.63) and by explicit computation – or using the SU(3)c action –
show that the results of Example 6.3 on p. 240 are independent of the choice of the concrete
case(s).

✎ 6.2.3 Following Example 6.3 on p. 240, compute all possible cases of fc(8|1).

✎ 6.2.4 For all six elastic collisions of a nucleon (p+, n0) and a pion (π±, n0), determine the
relative contribution of the diagrams of type (a) and type (b) in the display (6.76).

✎ 6.2.5 Redoing the analysis of Example 6.5 on p. 244, verify that a virtual gauge vector �A2

oriented, however, at an angle 120◦ will produce the same effect of anti-screening of the
initial source ρ1.

6.3 Non-perturbative comments
Field theory is – in practice – a perturbative discipline, and most of the detailed work in quantum
chromodynamics indeed relies on perturbative computations. Because the fine structure parameter
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and the interaction intensity depend on the distance at which the interaction takes place (mediated
by exchange of gluons) [☞ result (6.79)–(6.84)], perturbative computations do not suffice. A
complete solution of quantum chromodynamics must include essentially non-perturbative effects.
Here, we mention a few themes that appear in attempts at non-perturbative analysis.

6.3.1 Strong CP-violation, “topological” solutions and the ϑ-vacuum
The chromodynamics analogue of the question at the end of Digression 5.7 on p. 183, about the ex-
pression (5.80c), is as follows: In the most general (both gauge- and Lorentz-invariant) Lagrangian
density for quantum chromodynamics,

LQCD+ = −∑
n

Tr
[
Ψn(x) [ih̄ c /D − mneiϑ′γ̂c2] Ψn(x)

]
− 1

4 Tr
[
FμνF

μν
]− n f g2

s ϑ

32π2 ε
μνρσ Tr

[
FμνFρσ

]
, (6.85)

why are the parameters ϑ′ ∼ ϑ < 3× 10−10? ☞ The most reliable bound follows from the fact that
the presence of the ϑ, ϑ′-dependent terms would provide the neutron with an electric dipole mo-
mentum. Experimentally, the electric dipole momentum of the neutron vanishes, and the bounds
then follow from the limits on the experimental error in that measurement. Unlike the CP-violation
as discussed in Section 4.2.3, CP-violation that follows from this so-called “ϑQCD-problem” is
also-called the “strong CP-violation.”

The additional term, εμνρσ Tr
[
FμνFρσ

]
is the 4-divergence of the so-called Loos–Chern–

Simons “current” [555],

Kμ =
n f g2

s

32π2 ε
μνρσ(δab Aa

ν Fb
ρσ − 1

3 gs fabc Aa
ν Ab

ρ Ac
σ). (6.86)

Then, a formal ϑ-transformation exp{iϑQ} exists with Q :=
∫

d3�r K0 that transforms the vacuum
|0〉 with ϑ = 0 into the vacuum |ϑ〉 = eiϑQ|0〉 with the ϑ �= 0 value. Since all operators transform
as H(ϑ) = eiϑQH(0)e−iϑQ, it follows that all physics with ϑ �= 0 is identical to the physics with
ϑ = 0. The vacua with distinct values of ϑ define “sectors” in the Hilbert space of quantum chromo-
dynamics, and “our World” could easily be one such sector, which is physically indistinguishable
from the sector with ϑ = 0.

On the other hand, the equations of motion for quantum chromodynamics, derived from the
Lagrangian density (6.23), are nonlinear equations, and have solutions that cannot be obtained
by perturbative methods. To a large degree, such solutions are similar to magnetic monopoles
that were discussed in Section 5.2.3; because of the nonlinear nature of the coupled system of
equations of motion (6.37)–(6.40), one expects the set of solutions to be more complex and varied
than in the case of electrodynamics. Suffice it to mention here the fact that such solutions are often
determined by “global geometry,” i.e., by boundary conditions at infinity, which often includes (but
is not limited to) topology.

In the physics jargon, such solutions are often called “topological.” This typically implies that
the solutions are parametrized (also) by some characteristic integers. As such integer characteriza-
tion cannot continuously vary, this provides a degree of stability to such solutions. With the benefit
of hindsight, we see that the stationary states of the hydrogen atom – counted by the “quantum
numbers” n, �, m ∈ Z and ms = ± 1

2 – are also stable precisely because of the (half-)integrality of
these numbers. In spite of this qualitative similarity, it is important to note that such “topological”
solutions – which also include the Dirac monopole from Section 5.2.3 – also exist for the gauge
field alone, i.e., for the electromagnetic field without charged particles, the chromodynamics field
without quarks, and so on.

Using geometrical and topological methods that are beyond our present scope, it may be
shown that non-perturbative solutions of the system (6.37)–(6.40) may be counted by an integer
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index. These solutions are similar to the vacua of the various ϑ-sectors as discussed in the previous
paragraph. However, Alexander Belavin, Alexander Polyakov, Albert S. Schwartz and Yuri Tyup-
kin [484, 555] showed in 1975 that there is “tunneling” (via so-called BPST instantons16) from
one sector into another, and that the true vacuum is a linear combination |ϑ〉 := ∑N eiϑN |N〉, for
N ∈ Z. This effectively cancels the conclusion of the discussion about the result (6.86), as it proves
that different ϑ-sectors are not independent.

In gauge theories with the Higgs field [☞ Chapter 7] the same role is played by the so-
called ’t Hooft–Polyakov monopole, and Polyakov also showed that instanton effects in quantum
electrodynamics where photons interact with a scalar field (e.g., with the Higgs field) provide the
photon with a mass – which is simply unacceptable.

The question why ϑ, ϑ′ = 0, therefore remains unanswered☞ .

— ❦ —

On the other hand, the discussion of the Dirac monopole and its Wu–Yang construction (5.101)–
(5.105) as well as ’t Hooft and Polyakov’s constructions for non-abelian Yang–Mills theories with a
Higgs field extends the gauge principle, which originated from the observation that the phases
of complex wave-functions are fundamentally unmeasurable quantities, just as are the gener-
alized, matrix-valued phases of wave-function n-tuples such as the chromodynamics triples of
quarks (6.1).

Conclusion 6.7 Since the gauge 4-vectors Aμ in all Yang–Mills gauge theories are them-
selves fundamentally unobservable quantities, they may well be multi-valued or otherwise
ambiguously defined as functions over spacetime. It is necessary and sufficient only that the
gauge fields, the tensor components Fμν := [Dμ, Dν] (up to a conventional multiplicative
constant), are well-defined functions over spacetime.

As an immediate corollary of this conclusion and the Wu–Yang and then the t’Hoof–Polyakov con-
struction where gauge transformations connect differently specified gauge 4-vector potentials into
a class, it follows that Yang–Mills theories, even without appropriately charged matter, may have
a class of nontrivial “topological” solutions to their equations of motion. Here “topological” refers
to the fact that the existence and the counting of such solutions may be determined by topolog-
ical methods, depending on the gauge symmetry groups and boundary conditions [☞ also the
nontrivial geometries of “empty spacetime” in Section 9.3].

In quantum theories, all (and so also the topologically nontrivial) solutions of the equations
of motion may be used as “vacua.” Particles – the quanta of all fields, including the gauge fields
the nontrivial classical solution of which defines the vacuum – then move through this vacuum, to
a first approximation without disturbing it. We thus have:

Conclusion 6.8 (background fields) Each (and so also the topologically nontrivial) solution
of a system of classical equations of motion for all fields defines a “vacuum” in which the
quanta of those fields move, to a first approximation, without changing these classical,
background fields .

6.3.2 The Weinberg–Witten theorem
On the heels of the quark model success, theories of preons and of technicolor became popular
in the 1980s. At least some particles among the quarks, leptons, gauge and Higgs bosons were

16 Instantons in general denote special particle-like objects in field theory, which are well localized not only in (position)
space but also in time. That is, instantons are particles that exist but for an instant in time. They were first discovered
in non-abelian Yang–Mills theory, but can appear generally in all nonlinearly coupled field theories.
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represented as composite states in these models. In an attempt to disqualify such models with a
general argument, Stephen Weinberg and Edward Witten [564] proved a theorem now bearing
their names:

Theorem 6.1 (Weinberg–Witten) No quantum field theory in (3 + 1)-dimensional spacetime
with a Poincaré-covariant and gauge-invariant 4-vector current Jμ that satisfies a continuity
equation may have a massless particle with a helicity bigger than 1

2 and a non-vanishing
charge of

∫
d3�r J0.

No quantum field theory in (3 + 1)-dimensional spacetime with a Poincaré-covariant
and gauge-invariant rank-2 tensor that satisfies a continuity equation may have a massless
particle with a helicity bigger than 1.

Comment 6.4 The expression “Poincaré-covariant” means that it transforms properly with
respect to the Lorentz transformations and translations in spacetime, regardless of whether
co- or contra-variant and how many times; the continuity equation for a 4-vector is the
usual ∂μ Jμ = 0, and for a rank-2 tensor, Tμν, it is ∂μTμν = 0.

The proof of the theorem is non-perturbative and very general, but the assumptions of the
theorem are very stringent. Indeed, it turns out that the theorem in fact does not apply precisely
in the models that were meant to be disqualified. For example, in at least several preonic models
and in the technicolor theory, there exists an additional non-abelian gauge interaction, the purpose
of which is to bind the states that in such models replace some of the particles that are regarded
as elementary in the Standard Model. As shown in relations (6.24)–(6.32), the non-abelian (non-
commutative) current that is conserved, i.e., satisfies a continuity equation (6.30), is not gauge-
invariant, whereby the (prerequisite) assumption of the Weinberg–Witten theorem is not satisfied
and the theorem does not apply.

This is related to another unresolved question. Indeed, in a regime where the quark masses
are negligible, the chromodynamics Lagrangian density has a doubly larger symmetry: the Dirac
spinors representing quarks may be projected into the left- and the right-handed Ψ± (5.58). This
Lagrangian density is invariant with respect to an independent and global (constant in spacetime)
SU(n f ) flavor transformation of the left- and right-handed quarks, so that the full symmetry of this
Lagrangian density is SU(n f )L × SU(n f )R × U(1)L × U(1)R. Quantum effects in quantum chromo-
dynamics break this symmetry into the “diagonal”17 SU(n f )× U(1)B, where the U(1)B charge is
the baryon number, and which has two significant consequences for the complete understanding
of which one also needs material from Section 7.1:

1. The quantum (not spontaneous) breaking of the classical U(1)A symmetry (the complement
of U(1)B in the product U(1)L × U(1)R) is an anomaly; instanton solutions from the previous
section contribute to this effect as well as to the “strong” CP-violation and connect these two
unexplained characteristics of quantum chromodynamics☞ . Generally, anomalies are an indi-
cator of an inconsistency in the model, but as U(1)A is an approximate symmetry, anomalies
indicate an inconsistency in the model only in the unphysical limiting case when the quark
masses vanish.

2. The eight spin-0 mesons (π±,π0, K±, K0, K̄0, η) could be identified as the Goldstone bosons
[☞ Section 7.1.2] of the symmetry breaking SU(3)L × SU(3)R → SU(3) f . Of course, quark

17 For groups of the form GL ×GR, where the two factors have the same structure but act upon different objects or different
aspects of a given object, the “diagonal” subgroup G ⊂ GL × GR again has the same structure but acts simultaneously
both as GL and as GR. Only when GL and GR are abelian (commutative) does there also exist an “anti-diagonal” com-
plement. Thus U(1)L × U(1)R = U(1)D × U(1)A, where the first factor is the diagonal subgroup, so the U(1)D charge is
the sum of U(1)L and U(1)R charges; the U(1)A charge is their difference.
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masses are not zero, the broken symmetry was never exact, and neither are the masses of
these spin-0 mesons zero, but they are significantly lower than the SU(3) f singlet meson η′.

3. The eight spin-1 mesons (ρ±, ρ0, K∗±, K∗0, K̄∗0, φ) could be identified as the gauge bosons
of the remaining symmetry SU(3) f . Of course, quark masses are not zero, this symmetry is
not exact, and neither are the masses of these spin-1 mesons zero. It is not clear, however,
if the masses of these mesons (and especially their lightness) may be explained completely
as an explicit SU(n f ) symmetry-breaking effect, or if there exists a generalization of the
Weinberg–Witten theorem that would apply.
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