SUBJECT INDEX

abundance gradients	500
abundances	142, 169
abundances, molecular	179
acceleration of clouds	209
acceleration of electrons	319
acceleration of cosmic rays	75, 325
adiabatic expansion	34, 43, 69, 279, 435
age estimates	65, 353
ambient density	285
amplification of magnetic field	1 235, 267, 331
atomic clouds	92, 205, 245, 455
AXAF	112
Balmer line emission	162, 415
barrel-shaped SNRs	270, 321, 359
blast wave models	145
blast waves	205, 517
blue supergiants	27
bow shocks	101, 311
Brackett γ emission	391, 395
bubbles, ionized	92
bubbles, stellar wind	95, 217, 278, 477
C-type shocks	172
Cambridge low-frequency syn	thesis telescope 51
carbon deflagration	31, 149, 151
cavity, HII region	278
cavity, interstellar HI	245
cavity, re-energized	245
cavity, stellar wind	233
CCD imaging	197
centre-filled remnants	99, 115, 219, 269, 297, 305, 335, 347
charge exchange	162
circumstellar density	33
circumstellar medium	15, 69, 235
cirrus clouds	498
cirrus infrared	365
[C I] emission	8
classification of supernovae	1
[Cl II] emission	8

cloud compression	208
cloud crushing	495
cloud evaporation	212
cloud-cloud collisions	495
cloudy interstellar medium	231
clumpy ejecta	227
clumpy medium	223
CO core	27
CO emission 249, 257, 261, 275, 399,	473
CO filaments	257
collapse, gravitational 211.	509
collisional equilibrium ionization (CEI)	105
collisional heating of dust 367.	385
collisionless shocks 162.	312
composite supernova remnants 100, 253, 269, 335,	347
Compton scattering	15
condensational instabilites	430
conduction of heat	34
conduction thermal	173
cooling parameters	499
cooling molecular	168
coronal line emission 407	100
cosmic ray acceleration 75	305
cosmic ray acceleration 70,	170
cosmic ray follization 200, 215	119
Coulomb collision losses 509, 515,	915
Conh like remanante 00 115 210 260 207 205 225	010
density cools height 99, 115, 219, 209, 297, 505, 555,	041 75
denisity scale height	170
depiction of neavy elements	110
detection of new remnants 197, 201, 293,	339
detection of young remnants	279
dissociation of H_2	168
distance estimates $5, 121, 239,$	253
DRAO synthesis telescope $245, 270, 297, 301,$	339
dust grain cooling	383
dust grains	363
dust grains, collisionally heated	383
dust temperature	370
dust, radiatively heated	403
dust, shock heated 387,	403
Effelsberg 100-m telescope 254,	293
Einstein focal plane crystal spectrometer (FPCS)	102
Einstein observatory 99, 115, 125, 129, 137, 142, 153,	157
Einstein solid state spectrometer (SSS)	102
ejecta, stellar 33, 59, 65,	191
ejectum	235
electron acceleration	319
equilibration of ion-electron energy	145
eschelle spectroscopy	193
ESO 3.6-m telescope	391
ESO-CTIO telescope	189

~

Supernova Remnants and the Interstellar Medium

evaporation	101	L
evaporation of clouds	212	2
evolution of remnants	216,231,376,419,435	5
EXOSAT observatory	99, 119, 137, 142	2
EXOSAT gas scintillation proportio	onal counter (GSPC) 103	3
expansion of SNRs	43, 51, 69, 279, 435	5
explosion energy E_o	121, 142, 285	ć
Fabry-Perot imaging interferometry	(TAURUS) 443	3
Fabry-Perot spectrophotometry	411	l
Faraday rotation	47, 351, 355	5
fast-moving knots	6	3
Fe abundance	391	Ł
Fe K-line emission	102, 151	L
Fe II absorption	59)
[Fe II] emission	391, 395	5
[Fe X] emission	145, 407, 411	L
[Fe XIV] emission	145, 411	L
[Fe XVII] emission	146	3
Fe/H ratio	492	4
Fermi acceleration	267.310.320	Ď
filamentary radio emission	301 335	2
filaments CO emission	253	7
filaments, of childsion	201	9
filaments, opical morphology	57 6	5
filaments, proper motions	56 44	י פ
filled contro remnants 00 11	15 210 260 207 305 335 34'	7
firehose instability	10, 219, 209, 297, 000, 000, 04	
Floure synthesis tolescope (FIRST)	97	1 9
fur densities of SNRs in infrared	21.	ñ
free expansion	12 60 910 97	0
relectic heles	45, 09, 219, 21	ฮ 1
Calastia animal anna	40	L E
Galactic spiral arms	40	ບ ດ
galactic winds	49	ე 1
gas dynamics	10	1
gas-grain collisions	30	ð 1
Giant HII-regions	20	1
Giant Molecular Clouds (GMC)	40	9
Ginga satellite	15	1
Gould's Belt	49	3
grain destruction	166, 367, 39	1
grain size distribution	37	4
grain-grain, grain-ion collisions	16	6
gravitational collapse	211, 50	9
gravitational instabilities	45	U
gravity wave instabilities	17	3
gyro-radius, protons	31	3
HI absorption	239, 27	5
HI clouds	92, 205, 245, 45	5
HI emission	239, 245, 249, 253, 274, 34	1
HI filaments, sheets	9	2
HI shells, giant	47	3

HII region cavity	278
HII regions	96, 201, 485
$H\alpha$ emission	3, 24, 55, 74, 193, 197, 415, 443
Hα/[N II] ratio	55
$H\beta$ emission	391, 403
H ₂ emission	391, 395, 399
Hat Creek Observatory 6-m tele	scope 473
HCO ⁺ emission	399
heat conduction	34, 43
hydrodynamic code	69, 149, 235, 405, 461, 517
hydrodynamic evolution	137
hydrodynamic models	91, 133, 141
hydrodynamical simulations	435, 477
InfraRed Astronomical Satellite	(IRAS) 363, 379, 383
infrared cooling	368
infrared emission	363
infrared flux densities of SNRs	380
infrared morphology of SNBs	373
Infrared Space Observatory (IS)	D) 387
infrared spectroscopy	366 301 305 403
infrared survey of SNBs	370
inhomogeneities small scale	496
inhomogeneous medium	120 205 223
initial mass function	
instabilities	490, 017
	40
dynamical Szekese	400, 009
nrenose	314
gravitational	450, 509
gravity wave	1/3
Kelvin-Helmholtz	210
oscillational and condensation	onal 439
radiative	429
Rayleigh-Taylor 74	4, 173, 210, 233, 450, 463, 478, 512
Vishniac	173, 450, 461, 512
interplanetary shocks	311
interstellar cavity	245
interstellar medium	73, 91, 205, 223, 227, 231, 253,
interstellar pressure	75
ionization, non-equilibrium	155
IR shocked dust emission	233
IRAS observations	227, 363, 379, 383
IRAS telescope	363, 379, 383
irregularities in density	223
Isaac Newton 2.5-m telescope	200, 443
Itapetinga 13.7-m telescope	305
IUE observatory	3, 187
J-type shocks	162, 172
jets in SNRs	273, 353
knots, fast-moving	173
KPNO 2.1-m telescope	26, 183
KPNO 4-m telescope	55, 197

Supernova Remnants and the Interstellar Medium

Larmor radius	314
luminosity of SNRs	435
magnetic field amplification	235, 267, 331
magnetic field, intrinsic direction	351
magnetic fields 70, 76, 163, 215, 223, 3	11, 331, 355, 405, 456
magnetic precursors	170
mass exchange in the ISM	212
mass injection in SNRs	216
mass loss, galactic	517
mass loss, stellar	1, 15, 95, 217, 232
metallicity	500, 517
molecular clouds 96, 179, 205, 249, 257, 2	261, 265, 399, 473, 493
molecular gas	477
Molonglo observatory synthesis telescope (M	IOST) 270, 359
morphology of SNRs 2	265, 270, 331, 359, 373
"mystery spot" of SN1987a	322
[N II] emission	5, 47
N-D relation	276, 285
Nagoya 4-m telescope	259, 261
NASA/Goddard 36-in telescope	407
Ne VIII emission	146
Neon plasma	125
neutrinos	11
neutron stars	100, 157, 343
[Ni II] emission	183
Nobeyama 45-m telescope	257, 293
non-equilibrium ionization (NEI)	105, 137, 369
non-luminous matter	517
non-radiative shocks	74, 207, 415
non-thermal emission	309
non-thermal X-ray spectrum	99
novae	47
numerical models of supershell dynamics	461
numerical simulations	43, 69, 223
numerical simulations of shocks	312
O I recombination lines	8, 187
[O I] emission	411
[O II] emission	183
[O III] emission	65, 187, 195, 415, 443
O VII resonance, forbidden lines	154
O VIII Ly α, β	154
O/Fe ratio	494
O-star progenitor	231
O_f stars	95
OB associations	95, 447, 461
Ooty synthesis radio telescope (OSRT)	265
oscillational instabilities	439
oxygen-rich supernova remnants	187
Palomar Observatory 60-in telescope	415
Parkes interferometer	275
particle acceleration	235, 309, 331

photoevaporation					217
photoionization, UV and X-r	ay				59
planetary bow shocks	•				311
planetary nebulae					47
plerions	99.	115, 219, 269,	297.305.	335.	347
polarization, radio	,	47.	223, 274,	349.	351
Population I stars		,	,	,	447
porosity of the ISM				327.	454
post-shock temperatures				·,	421
Prandtl number					212
pre-supernova environments					95
pressure cosmic ray					77
pressure interstellar gas				75	513
pressure, magnetic				10,	77
pressure, magnetic					921
progenitor bubble					201
progenitor cavities				917	221 007
progenitor processing				211,	221
proper motions of maments			100	16	, 00
pulsars	T)		100,	339,	343
quasi-stationary flocculi (QS	F)		t	5, 96,	239
radial velocities of filaments				56,	443
radiative cooling			91,	419,	435
radiative instabilities					429
radiative shocks			74,	233,	439
radiative shocks, stability					439
radiatively heated dust					403
radio continuum emission	133,	269, 289, 293,	297, 301,	305,	339
radio observations				51,	265
radio polarization				223,	274
radio supernovae					23
radioactive decay					60
Rankine-Hugoniot condition	s		163, 309,	316,	319
rate of supernovae			478	481,	489
Rayleigh-Taylor instabilities	74,	173, 210, 233,	450, 463	478,	512
red supergiants					15
relativistic electrons					267
remnants, stellar					157
reverse shocks		16.35	5. 59. 100.	142.	151
Reynold's number		····,	,,,	209.	211
ring nebulae				,	95
ROSAT satellite				99.	112
rotation measure				,	355
SAX					119
scale height of galactic disk					400
Sedoy-Taylor expansion		3	A 13 60	270	125
shell remnante		ں ۱۸۸	115 225	, <u>≁</u> 13, 330	2/7
shalls of sights		100,	110, 000,	. 009,	041 295
shock acceleration					000 900
shook acceleration					209
shock chemistry			161 170	901	119
shock excitation			101, 179,	, 391, 007	399
snock neated dust				227,	403

shock propagation	223
shock structure	164, 309
shock velocities	5
shock waves	309, 517
shocked HI	248
shocks,	
adiabatic	162
atomic gas	161
collisionless	162, 312
interplanetary	311
metal-rich	172, 174
MHD	170
molecular gas	161, 179
non-radiative	74, 207, 415
non-steady	172
oxygen-rich	172
planetary bow	311
quasi-parallel, -perpendicu	ilar 309
radiative	74, 162, 233, 439
reverse	16, 35, 59, 100, 142, 151
supernova remnant	205
$\Sigma - D$ relation	276, 285, 289
[S II] emission	5, 24, 191, 193, 197
[S II]/Hα imagery	203
[S III] emission	191
simulations, numerical	43, 69, 223
snowplow, pressure-driven	435
spectral index, radio	302, 305, 343, 348
spectral line widths	223
Spectrosat	112
sputtering of dust grains	166, 367
stability of radiative shocks	439
star formation	91, 456, 467, 469, 494, 509, 513
star formation rate	497, 513
starburst galaxies	203, 477
statistical properties of SNRs	276, 285, 289, 481, 485
stellar ejecta	33, 65, 191
stellar remnant	157
stellar winds	15, 95, 206, 217, 232, 337
stellar wind bubbles	95, 217, 278, 477
stellar wind cavity	233
stochastic heating	374
Strömgren sphere	217
superbubbles	73, 465
superclouds	469
supernova explosions	233, 477
supernova remnants,	1
barrel morphology	270, 321, 359
composite	100, 253, 269, 335, 347
Crab-like	99, 115, 219, 269, 297, 305, 335, 347
distances	5, 121, 239, 253

supernova remnants	
distribution in Galaxy	481, 485
evolution	31, 216, 231, 376, 419, 435
newly detected	197, 201, 293, 339
searches	201
survey in infrared	379
total number in Galaxy	483, 487
supernovae.	
collective effects	493
explosions	27 206 469
rate	92 478 481 489
radio emission	10 23
Type I	1 25 43 141 489
Type I	1, 25, 45, 141, 465
Type Ia	9 6 15 91
	2, 0, 10, 31
	1, 11, 15, 25, 95, 141, 447, 489
Type V	19, 23
supershell dynamics	448, 461
supershells	447, 451, 461, 465, 469
synchrotron emission	332, 405
synchrotron nebulae	115
T-Tauri winds	493
TAURUS, Fabry-Perot imaging	; interferometer 443
temperatures, post-shock	421
Tenma satellite	99, 103, 131, 137, 151
thermal conduction	173
thermonuclear burning	27
turbulence	70, 235
United Kingdom InfraRed Tele	scope (UKIRT) 395
UV observations	3
Very Large Array (VLA) 23 4	7 254 270 331 335 343 357 465
Viehniac instabilities	173 450 461 512
wave particle interactions	115, 400, 401, 012
Westerbark supplies radio tole	(WCDT) 920 975 465
westerbork synthesis radio tele	scope (WSR1) $239, 215, 405$
white dwarfs	2
wind neating	91
wind-blown bubbles	95, 217, 278, 477
winds, galactic	493
winds, stellar	15, 95, 206, 217, 232, 337
Wolf-Rayet stars	2, 6, 32, 95
X-ray emission	133, 149, 407
X-ray heating of dust	363, 384
X-ray images	115, 157
X-ray models	145
X-ray observations	99, 125
X-ray spectra	119, 129, 137, 141, 153
X-ray thermal spectrum	100
X-rays, generation of	75
XMM	112
ZEUS hydrodynamics code	461
zodiacal infrared emission	365
	000