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ABSTRACT. A simple mean-field model of a nonlinear stellar a-w
dynamo is considered, in which dynamo action is supposed to
occur in a spherical shell, and where the main nonlinearity
retained is the influence of the Lorentz force on the 2zonal
flow field. The equations are simplified by truncating in
the radial direction, while full latitudinal dependence is
retained. The resulting nonlinear p.d.e.’s in latitude and
time are solved numerically, and it is found that while
regular dynamo wave type solutions are stable when the dynamo
number D is sufficiently close to its critical value, there
is a wide variety of stable solutions at larger values of D.
Furthermore, two different types of dynamo can coexist at the
same parameter values. Implications for fields in late-type
stars are discussed.

1. INTRODUCTION

The observational evidence of magnetic activity with
cyclical and non-cyclical behaviour in stars other than the
Sun has suggested that the mechanism giving rise to stellar
activity may operate in a variety of different ways. The
physics of the interaction between rotation and convective
modes is very complex and poorly understood, despite the
increasingly detailed models that have been investigated in
recent years.

So far, most theoretical work in stellar activity has
been done in the framework of the a-w linear theory and
considering the simple theoretical basis, the results are
encouraging, giving some useful general principles that may
be expected to hold independently of the models.

However, there is no doubt that present and future
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theoretical research in stellar activity has to be carried
out in the framework of the more rigorous and self consistent
nonlinear approach, which in principle can describe a large
variety of dynamo operation modes.

Here, a simple mean - field model of a nonlinear stellar
dynamo is considered, in which dynamo action is supposed to
occur in a spherical shell, and where the main nonlinearity
retained is the influence of the Lorentz force on the zonal
flow field.

Weiss, Cattaneo & Jones (1984) have constructed a 1low
order system of ordinary differential equations describing
stellar cycles, using a severely truncated representation of
the spatial structure, and the simplest nonlinear couplings
between the magnetic field and the mean rotation. They found,
in various parameter ranges, regular cyclical behaviour,
quasi - periodic oscillations and aperiodic cycles with
features similar to those deduced from sunspot number
observations and climatological evidence, including ‘'grand
minima". A drawback of their model is its local nature: the
interaction between active regions in each hemisphere cannot
be represented, and their equations cannot yield steady (non
cyclical) activity although such solutions are known to be
possible for linear a-effect dynamo models.

Our work develops the ideas of the above model. UWe
retain the a-effect formalism, and the simplest nonlinear
interactions, but use a representation of the spatial
structure only in the radial direction thus allowing full
latitudinal dependence of fields and flows.

While we do not claim to be simulating any particular
stellar dynamo, we do feel that our model can capture many of
the essential physical properties of the nonl inear
interactions.

2. DERIVATION OF THE MODEL EQUATIONS

We begin with the axisymmetric mean field dynamo
equations (see for example Parker 1955, Moffatt 1978) for the
evolution of a magnetic field B = B(r,O)ﬁ*V&(A(r,O)Q) where

r, & are spherical polar coordinates and € is the unit vector
in the azimuthal direction. Bf is the toroidal and Bp=VxA$

the poloidal part of B. These equations take the form (in the
presumed absence of any mean poloidal flow field)

A 1

Fr = OF(r,®Ben, [v’ - —_— ] A (1)
r'sin" &

aB U(r,®) _ 1

v rsinOBp 4 [ = $ ] "T)t [V: NETPRC ] B (2)
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Here oF is the usual a-effect, with F representing its
spatial structure and a its magnitude. Note also that,
consistent with previous models of the solar dynamo, the
differential rotation U is considered to be much more potent
than the a-effect in producing toroidal field, and the latter
term is thus omitted from (2). The quantity n, is a turbulent

diffusivity.

The dynamical influence " of the magnetic field enters
the model through its effect on the differential rotation
U(r,®). We write U=u°+u, where u, is a prescribed velocity

field and u is a perturbation driven directly by the mean
Lorentz force, and subject to viscous damping. The simplest
equation that encompasses these features of the evolution of
u is

p 2 1
r. 3 M

(VxBxB) ; + pv, [v’ - —'—-z—] u (3)
r'sin” &

o
where v, is a turbulent viscosity.

The aim, then, is to solve these equations in a spherical
shell, representing the convection 2zone of the star in
question. This implicitly assumes that the dynamo |is
operating throughout the stellar convection 2zone. However,
suggestions have been made in recent years about the
possibility that it is instead confined in the thin overshoot
layer just beneath the bottom of the C.2. (see e.g. Spiegel
and Weiss 1980; Spruit and van Ballegooijen 1982). However,
this is not a crucial point. What we want to show here is that
in the non-linear regime a variety of dynamo operation modes
arises in a spherical shell. WNe don’t claim to describe real
stars, but what may occur in real stars. Furthermore, in the
context of the radial averaging that we later perform on the
equations, the differences between the two scenarios will be
manifested only in changes in the coefficients that appear in
the truncated equations. We hope in future work to
investigate the different consequences of confining the dynamo
process to an overshoot layer, and of incorporating the
results of the most recent helioseismological data (Brown and
Morrow 1987; Brown et al. 1988).

Dimensionless equations are obtained by adopting the
following scaling factors: r°=6.96x10.m, nt=10. m’s™?

roar:/nts 5x10%8 = 160y, 0%=2.57x10"%rad s™* B':O‘rof (pop.),

A*sntf (uop'), where pr is an appropriate average of density

across the c.z.. Thus three basic dimensionless parameters

appear, namely Ty (radius of the bottom of the c.z),

https://doi.org/10.1017/5S0074180900044454 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900044454

450

D = a Q.r:/n: (dynamo number), Pm=v“Wu (magnetic Prandtl

number).
WNe look for solutions of the form: A=f(r)y(®,t)/sin &;
B=g(r)y(8&,t)/8in &; u=h(r) Q(8,t)/sin &, with the following

boundary conditions: A=0 at r=r, (radiative 2zone a good

conductor); A matches a potential field at r=1; 8(rB)/dr=0 at

r=r (no tangential current); B=0 at r=1; &(u/r)/adr=0 at r=r.,

r=1 (no stress).

We adopt simple forms of f(r), g(r), h(r), which satisfy
the boundary conditions. We also choose the a-effect
variation F(r,®)=a(r) sin & cos & and the basic 2zonal field
u, to match the observed latitudinal differential rotation at

r=1, while reducing to solid body rotation (with the equato-

rial value of the surface angular velocity) at the base of
the convection zone.

We seek a model problem in which the radial dependence
is integrated out (radial truncation ) so that A, B, u are
functions of © and t only.

Thus the radially truncated dimensionless equations are

given by multiplying equations (1) to (3) by r* f(r), r* g(r),

r® n(r) respectively and integrating from r, to 1. After some
algebra, we obtain the equations (in dimensionless variables)
ax 2 1 8x ) .
C‘ . 2l CAD sinfcos® v*n‘sino 3 STnD 35 n,x (4)
oy oy _. ou €22 ox
Cs 3 = CH 8In® 35 °C, 35 **1"® * ;15 3% 53
_ a 2 a 1 &y ).
C‘ siné v 3 (Q/8in"®) x + ndsina v 3 [ sTnd 35 ] nwv
2 v s ow
CoFe = "CC) TEE W T sTeE X B &)

-4 1 a0
P [”’ sin® 55 [-zmr—ar] v ]

where C,, C_, C,,

only on the functions f,g,h and H(8) = 1-.189 Pz(cosO)

the Ci,ni and v, are constants that depend

-.0394 P‘(cosﬁ) gives the latitudinal part of the
differential rotation (Durney 1974). Note that it is not
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necessary to define the form a(r); this reinforces our
earlier remarks about it not being too necessary to decide
the radial dependence of «a.

Equations (4) to (6) are to be solved with the boundary
conditions,appropriate for axisymmetric fields: x = ¥ =Q = O,
& =0,n.

In practice, the computations are actually carried out only

in the hemisphere 0=<8<r/2, with the symmetry conditions
¥ = ;% = ;% = 0 at ® = n/2 to simulate a poloidal field of

dipole type.

The equations were solved using an explicit time -
stepping method of DuFort - Frankel type, for various values
of D, Pm, Ty and various initial conditions. The equations
were represented on a spatial mesh, with between 20 and &0
mesh intervals. Convergence with respect to temporal and
spatial resolution was checked, and found to be quite
satisfactory. No problems were experienced at &=0,n, in spite
of the coordinate singularity there. This appears to be due,
firstly to a careful treatment of the second order
differences so as to give an accurate representation near the
poles, and secondly because x, yw, Q all vanish quadratically
as & — O, n.

3 . RESULTS AND DISCUSSION

It is well known that highly truncated nonlinear dynamo
models can exhibit irregular oscillations as shown by Weiss
et al.. However these models suffer from the deficiency of
having no latitudinal resoclution. Not only does this prevent
the construction of butterly diagrams, but it also means that
steady solutions of the dynamo equations cannot be found.
Our model, on the other hand, is able to describe propagation
of dynamo waves and the spherical geometry makes possible a
wide range of nonlinear phenomena. In particular, the
symmetry between successive cycles may be broken, leading to
a preponderance of one polarity over the other.

Furthermore, solutions have been found which spend a
long time to an (unstable) steady state and then show a
pulsed behaviour. Though these solutions do not closely
resemble the modulation of the solar cyle (e.g. the Maunder

minimum), they do show that significant variations in
activity are possible. Weiss et al.'s calculations showed
Maunder minimum - 1like behaviour but only for the most

severely truncated model. The pulsed behaviour occurs for
values of the dynamo number ranging (in the particular case
P =0.1) from D =~ 625 to beyond D = 2000. Solutions are asym-
m

https://doi.org/10.1017/5S0074180900044454 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900044454

452

metric until D x 1800, but symmetric above this value.

In our model dynamo action occurs for D large than about
70. From D =~ 70 to D =~ 340 we get periodic symmetric stable
solutions. From D = 325 to D x 750 there are stable solutions
which are still periodic but asymmetric. However quasi -
periodic stable solutions are also allowed in the range
D > 350 - 640. The latter resemble quasi - periodic solutions
found by Weiss et al. Thus, D x> 350 seems to correspond to a
point of subcritical bifurcation.

Therefore our results show that two or three different
forms of stable solution can coexist in suitable ranges of
the dynamo number, depending on the initial conditions. This
suggests that there might be 1large differences in the
activity signatures of very similar stars.

Figure 1. shows the time variation of the toroidal field
(Pg8i), the poloidal field (Chi), the differential rotation
perturbation (Q) and the related butterfly diagram for four
different values of a = 310,750,550,1600 corresponding (top
to bottom) to periodic symmetric, periodic asymmetric, quasi
periodic and pulsed solutions.

Our calculations were carried out principally for
Pm=0.1, but no significant differences appear for other

values, provided Pm is not too large. We did find, though,

that the bifurcation structure is sensitively affected by the
assumed form of the radial dependence of the zonal velocity
perturbation h(r) and maybe, by the radial dependences of the
poloidal and toroidal fields, but we have not investigated
the latter point. Indeed, for some forms of h(r), we did not
find asymmetric or pulsed behaviour. Therefore, a further
investigation should include a better description of the
radial dependencies (ideally by incorporating full radial
resolution).

Further developments of the present model will include

runs with different values of r,, to look at dynamos in stars

with different depths of the c.z. and, of course, with dif-
ferent rates of rotation (this can be modelled by varying the
dynamo number).
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