
/ Austral. Math. Soc. {Series A) 51 (1991), 247-275

DUALITY FOR DISTRIBUTIVE BISEMILATTICES

GERHARD GIERZ and ANNA ROMANOWSKA

(Received 9 October 1989; revised 7 March 1990)

Communicated by P. G. Trotter

Abstract

We establish a duality between distributive bisemilattices and certain compact left normal bands.
The main technique in the proof utilizes the idea of Plonka sums.
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08 C 05, 22 A 30.

1. Introduction

Dualities for partially ordered structures are well known: there are Stone's
dualities for Boolean algebras and distributive lattices [24, 25], there is Priest-
ley's duality for distributive lattices [18, 19], and we have a Pontryagin du-
ality for semilattices [8], to name just a few of them. All those dualities are
constructed by the same method: one picks an object P that "lives" in both
categories (that is, the category in question and its dual), and then utilizes
the contravariant hom-functors Hom(- , P) in order to establish dualities
between the two categories. This method of constructing dualities was dis-
cussed extensively in [7] and [3].

In this paper, we shall establish a duality between distributive bisemi-
lattices on one side and compact totally disconnected partially ordered left
normal bands on the other side. This duality presents no exception in its gen-
eral nature: the functors between the two categories are lifted hom-functors,
and the object P that "lives" in both categories is a certain subdirectly irre-
ducible distributive bisemilattice with three elements. This duality will be a
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248 Gerhard Gierz and Anna Romanowska [2]

common generalization of Priestley's duality for distributive lattices and the
Pontryagin duality for semilattices. However, although this duality might be
interesting by itself and there are some intriguing algebraic manipulations in
the proofs, the main point in this paper lies in the fact that for the first time
we use the technique of Plonka sums in duality theory. The objects of both
categories in question (the category of distributive bisemilattices and the cat-
egory of left normal bands) allow a representation of Plonka sums of certain
"simple" objects, and in some sense the duality works by just dualizing those
Plonka sums. On the side of the category of compact totally disconnected left
normal bands, one would need a topological analog of Plonka sums. Since
at this point the tools of "continuous Plonka sums" are not yet available, we
cannot make this dualization of Plonka sums completely explicit. But this
paper could serve as a first indication on how continuous Plonka sums should
be defined and on how they can be used in duality theory. Moreover, almost
identical arguments to the one used in this note should lead to dualities be-
tween Plonka sums of Boolean algebras on one side and Plonka sums of sets
(that is, left normal bands) on the other side. There also might be a way to
lift the duality for locally compact abelian groups to a duality of "continuous
Plonka sums" of locally compact abelian groups.

Before we formulate our duality theory, we have to discuss some basic
facts on distributive bisemilattices. This will be done in Section 2. The ob-
jects of the dual category for distributive bisemilattices are some topological
partially ordered algebras. In Section 3 we introduce partially ordered left
normal bands, investigate their properties, and give a structure theorem. The
dual objects for bisemilattices will be based upon these partially ordered left
normal bands. Since partially ordered left normal bands are in fact bi-ordered
(that is, they support two canonical partial orders), we will need some prop-
erties on order preserving maps between bi-ordered sets. This information
will be compiled in Section 5. In Section 6, topological partially ordered
left normal bands are discussed, and a structure theorem for those objects is
given. In Section 7, we finally formulate and prove our duality theorem, here
we show that the category of distributive bisemillatices is dually equivalent
to the category of compact totally disconnected partially ordered left normal
bands.

We recommend Nachbin's book [13] for properties of topological partially
ordered sets. Basic facts on algebraic semilattices are found in [8], and we
refer to Mac Lane's book [12] for definitions and results in category theory.
A standard reference for lattices, semilattices, and partially ordered sets in
BirkhofTs book [2].

We also would like to express our thanks to the referees of this paper. Their
numerous valuable comments helped to improve this paper considerably.
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[3] Duality for distributive bisemilattices 249

2. Distributive bisemilattices and left normal bands

In this paper (S, <) is called a partially ordered set if the relation < is
reflexive, antisymmetric and transitive (thus a poset in the meaning of [2];
see also [4]).

A semilattice (S, •) is a commutative idempotent semigroup. If (S, •) is
a semilattice, then we can define a partial order < on S by setting x < y
if and only if x • y = x. If x, y e S are given, then x • y is the largest
lower bound of x and y with respect to the partial order < , and we say
that (S, <.) is a meet-semilattice. Similarly, if (S, +) is a semilattice, then
we can define a partial order <+ by x <+ y if and only if x + y = y . In
this case, x + y is the least upper bound of the elements x, y e S, and we
say that (S, <+) is a join semilattice.

A set S with two semilattice operations + and • is called a bisemilat-
tice. One regards (S, <.) as a meet-semilattice (and refers to • as "meet")
and (S, <+) as a join-semilattice (+ is the "join"). Simple examples are
furnished by lattices (L, V, A) with the usual join and meet operations (for
which the two partial orders < v and <A coincide with the usual partial
order), and the bisemilattice (S, •, •) obtained form a semilattice {S, •) by
taking the same underlying set S with the semilattice operation considered
twice, once as meet operation and once as join. If to is a bisemilattice word
without parentheses, then we make the convention that the operation • is
carried out before the operation + .

A bisemilattice {S, •, +) satisfying the equations

x - ( y + z) = x - y + x - z , x + y • z = (x + y ) • (x + z )

is called a distributive bisemilattice (see [15] and [17], where distributive
bisemilattices are investigated under the name of distributive quasilattice,
and [22]). Examples for distributive bisemilattices are distributive lattices
and the bisemilattices of the form (S, •, •) obtained from a semilattice
(S,-).

For later use we need

2.1. LEMMA [15]. If (S, •, +) is a distributive bisemilattice, then for all
x, y, z e S we have

An idempotent semigroup {A, *) satisfying the equation x*y*z = x*z*y
is called a left normal band. Examples of left normal bands are semilattices
and left-zero bands, that is, semigroups satisfying the equation x • y = x.
Every left normal band may be decomposed as a Plonka sum into the disjoint
union of its maximal left-zero subbands according to the following theorem
(cf. [9], [15], [22]).
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2.2. THEOREM. Let (A, *) be a left normal band. Then

(x, y) G &A •«> x * y = x and y*x = y

defines a congruence relation QA on (A, *) such that (/ ,*) = (A/QA, *) is
the largest commutative quotient of (A, *) and hence a semilattice. For each
i e / the corresponding congruence class At, also called a Plonka fibre of
(A,*), is a maximal left-zero subband of {A, • ) . Clearly, A is the disjoint
union of these fibres. Moreover, for i, j e I with i > j (that is, i* j = j)
the so called Plonka maps ptj: At —> Aj are defined by x n x * a . for some
a- e Aj, where x*Oj = x*bj e Aj holds for all x e A and all Oj, bj e Aj.
These maps are homomorphisms satisfying

(a) p U i = i d ^ and Pitj°Pjtk = Pijk for i>j>k.
Together with the operations on (At, *) and on ( / , * ) , they determine the
operation * on A by

(b) at * bj = aiPi hj * bjbj, H = aiPi ,v..
Conversely, let (I, *) be a semilattice, A the disjoint union of left-zero bands
(Aj, *) for i e I and pt a set of homomorphisms satisfying (a). Then (b)
defines an operation on A such that (A, *) is a left normal band.

3. Ordered left normal bands

3.1. LEMMA [15]. Let (S, •, +) be a distributive bisemilattice and define
an operation * on S by

Then (S, •) is a left normal band.

3.2. PROPOSITION [16]. If (S, •, +) is a distributive bisemilattice, then

(a + c) * (b + d) = (a* b) + (c * d),

(a • c) + (b • d) = (a*b) • (c* d),

That is, the algebras (S,*, +) and (S, * , •) are entropic.

3.3. PROPOSITION. If (S, •, +) is a distributive bisemilattice, then
(i) (S, *) is commutative (that is, a semilattice) if and only if x-y = x+y

for all x,y eS,
(ii) (S, *) satisfies the equation x = x*y if and only if (S, •, +) is a

distributive lattice.

PROOF, (i) If x • y = x + y, then x*y = x + x-y=x-x-y = x-y =
y • x = y • x. Conversely, assume that * is commutative. Then for all
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x, y e S we have x + x-y = y + x-y. Multiplying this equation by x yields
x + x-y = x-y + x-y = x-y. Using both equations, we obtain

(ii) If ( 5 , •, +) is a distributive lattice, then x • y — x + x-y — x .
Conversely, if (S, *) satisfies this equation, then (S, •, +) satisfies the ab-
sorption laws, and therefore is a lattice.

In addition to the operation • , there are the two partial orders < + and <
on a distributive bisemilattice (S,-,+). The following proposition describes
the relationship between those partial orders and the operation * .

3.4. PROPOSITION. If (S, •, +) is a distributive bisemilattice, then for all
elements x, y, z £ S,

(i) x <. y implies x*z < y*z and z*x < z*y,
(ii) x <+ y implies x + z <+ y + z and z*x <+ z*y,
(iii) x <+ x*y < x,
(iv) x * y <+ x-kz if and only if x* z < x*y,
(v) x <+ y implies x*y < y*x,
(vi) x < y implies x*y <+ y*x,
(vii) JC< y •& x <+ y*x and x*y = x,
(viii) x <+ y «• x*y <. y and y *x = y .

PROOF. First, note that interchanging the operations • and + of (S, •, +)
has no effect on the operation • , whereas x <. y turns over to y <+ x and
x <+ y to y < x. This shows that (i) and (ii), (v) and (vi) as well as (vii)
and (viii) are equivalent, and likewise both relations contained in (iii). So it
remains to show the following.

(i) Let x < y. Then (x * z) • {y * z) = (x • y) * (z • z) = x* z follows
by 3.2 and x • y — x, and shows that x * z <. y * z . In the same way one
obtains z*x < z*y .

(iii) x <+ x*y follows immediately from the definition of *.
(iv) Assume that x*y <+ x*z. We have to show that x*z — {x*y)-(x*z).

From 2.1 it follows that (x • y) + (x • z) = (x • y) + (x • z) + (x • y) • z, and
hence

= x-ky + x* z = x-k z.

The converse follows accordingly.
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(v) Assume that x <+ y. Then

and hence x * y <. y * x.
(vii) Assume that x <. y. Then, using (i) we obtain x = x*x <_ y*x

and hence x * y = x * (y • x) < + (y * x) * x = y * x by (vi). Moreover,
multiplying x <. y by x from the left side and using (i) and (iii), we obtain
x = x*x < x*y < x, that is, x = x*y. Conversely, assume that x = x*y
and x <+ y*x. Then (iii) and (v) yield x-x*y = x*(y*x) < (y*x)*x =
y*x <. y.

The operation * is also a partition operation for (S, •, +) in order to
obtain this bisemilattice as a Plonka sum of its maximal distributive sublattice
(cf. [14], [15], [22]).

3.5. THEOREM. Let (S, •, +) be a bisemilattice and apply Theorem 2.2
to the corresponding left normal band (5 ,* ) (cf. 3.1). Then 6 S is also the
largest congruence on (S, •, +) such that the equation x • y = x + y holds
in the natural homomorphic image, which yields i* j = i • j = i + j for the
semilattice (I, *) = (S/Qs, * ) . Moreover, the Plonka fibres (5,., •, +) are
the maximal distributive sublattices of (S, •, +) (cf. 3.3), and the Plonka
maps pt y.Sj —> Sj given by x i-» x* Oj = x + x • a, for some a e 5 are
also bisemilattice homomorphisms. Finally, the operations on the (St, •,+)
and on ( / ,*) = (/ , •) determine the operations • and + on S by

The converse part of Theorem 2.2 holds accordingly.

In the sequel we call (S, •,+) in this context the Plonka sum of the
distributive lattices (St, -, +) over the semilattice (/ , •) by the homomor-
phisms (Pitj)jj and denote the elements of St by af, b{, etc. The map
n:S -* I denned by atn = i is called the canonical projection. This map is
a bisemilattice homomorphism, too.

4. Partially ordered left normal bands

Let (A, *) be a semigroup of a certain type, and let (A, <) be a partially
ordered set. Then (A, *, <) is called a partially ordered semigroup of that
type if

x < y imply x*z < y* z and z*x < z*y
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for all x, y, z e A. In this notion, for a left normal band (S, •) obtained
form a bisemilattice (S, •, +) (cf. 3.1), (S, *, <.) as well as (S, *, <+)
are partially ordered left normal bands by Proposition 3.4. From the same
proposition, it follows that either one of the orders < and < + determines
the other, but only the former one satisfies x *y <. x . For this reason, we
restrict the usual notion in this paper:

4.1. DEFINITION. A partially ordered left normal band (A, *, <) is always
assumed to satisfy additionally the inequality x * y < x for all x, y e A .

There are two important examples of partially ordered left normal bands.
At first, from [21, Proposition 2.3], it follows that the relation < defined

on a left normal band (A, *) by

x <y •&• x = y*x

is a partial order on A (see also [6]). We claim that (A, *, <) is a partially
ordered left normal band. Indeed, if x < y, then x = y * x, and hence
(y*z)*(x*z) = (y*x)*z = x*z shows x*z <y*z, and z*x < z*y
follows similarly. Finally, x * y < x follows form x * y - x • (x * y).
In particular, if (A, *) is a semilattice, then (A, *, <) is a commutative
partially ordered left normal band.

If (A, *) is a left-zero band, that is, if (A, *) satisfies x * y = x, and
if < is any partial order on A, then (A,*,<) is a partially ordered left
normal band. A partially ordered left normal band of this form is called a
partially ordered left-zero band.

On every partially ordered left normal band {A, *, <) we can define a
second partial order C. by setting

x Qy <=>• x*y <y and y*x = y.

The next proposition shows that the partial orders < and c have analogous
properties to those of <. and < + in distributive bisemilattices.

4.2. PROPOSITION. / / {A, *, <) is a partially ordered left normal band,
then the relation Q is a partial order on A. Moreover, the following properties
hold:

(i) x Qy implies x* z Qy*z and z*x Q z*y;
(ii) xQx*y;

(iii) x • y Q x * z if and only if x* z < x*y;
(iv) x Qy implies y*y<y*x;
(v) x < y implies x * y Q y • x;

(vi) x <y •& x Qy*x and x*y = x;
(vii) x Qy •& x + y <y and y*x = y.
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PROOF. A simple calculation shows that c is in fact a partial order on
A.

(i) Suppose that x Q y. Then x * y < y and y * x = y. Hence it follows
from 4.1 that (x* z)*(y* z) = (x*y)* z < y* z and y*z = (y*x)*z =
(y-kz)-k(x-kz), i.e. x*z Qy*z. The other inequality is shown accordingly.

(ii) We have to show that x*(x*y) = (x*y)*x < (x*y) and (x*y)-kx =
x*y. But this follows immediately from the algebraic properties of partially
ordered left normal bands.

(iii) Assume that x*y c x*z. Then x*z = (x*z)*(x*y) = x+y+z < x*y.
Conversely, if x* z < x*y, then {x*y)-k{x*z) = x-kz-ky<x*z and
(x * z) * {x * y) < x * z = (x * z) * (x * z) < {x * z) * (x * y), and therefore
(x* z)*(x*y) = x* z. It follows that x*y c.x*z .

(iv) and (v) are trivial consequences of (vi) and (vii).
(vi) Assume that x < y. Then x = x* x < x*y < x, and hence

x = x*y. In addition to this equation, we have to show that x c y*x, that
is, x*(y*x) < y-kx and (y*x)*x = y*x. The equation is again obvious,
and for the inequality, note that x < y yields x*(y*x)<y*(y*x)=y*x.
Conversely, let us assume that x Qy*x and that x*y = x. Then we also
have x*(y*x) <y*x, and therefore x = x*y = x*x*y = x*(y*x)<
y*x <y.

(vii) is the definition of E •

4.3. PROPOSITION. Let (A,*, <) be a partially ordered left normal band.
Then for the following conditions, (i) implies (ii), and (ii) and (iii) are equiv-
alent:

(i) the operation * is commutative;
(ii) x < y is equivalent to y*x = x;
(iii) x < y is equivalent to y c x.

PROOF, (i) => (ii) If x < y, then x < x*x < y*x = x*y < x, and
hence x = y *x . Conversely, if x = y *x, then x < y by 4.1.

(ii) =>• (iii) If x < y, then by 4.2 (iii), y c. y * x = JC. Conversely, if
y Qx, then y * JC < x and x * y = x, and therefore x*(y*x)=y*x. It
follows that x = x*y = y*x <y.

(iii) => (ii) Suppose that (iii) holds, and let x <y. Then, by assumption,
ytx, that is, y*x < x and x*y = x. Hence y *x < x*y. By (iii), this
inequality is equivalent to x*y Q y*x. Now by the definition of c this
means that x*y = (x*y)*(y*x)<y*x, and hence x = x*y <y*x. It
follows that x = y*x. Conversely, if x = y*x, then ;t < y by 4.1.

The following example shows that (ii) does not imply (i). Take A to be
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the free left normal band with generators JC and y . Then A = {x, y, x*
y, y * x} . Define a relation <onAbyx*y<x and y*x<y and no
other non-trivial comparisons.

4.4. PROPOSITION. Lei (A, * , <) tea partially ordered left normal band.
Then the following statements are equivalent:

(i) {A, *, <) is a partially ordered left-zero band;
(ii) x * y = x for all x, y e A;
(iii) f/ie partial orders c a«c? < are identical.

PROOF. Clearly, if (.4, *, <) is a partially ordered left-zero band, then
x • y = x for all x,y e A. If x * y = x for all x , y e A, then x c y
implies x = x * y < y * x = y , and, similarly, x < y implies xQy. Hence
c = < . Finally, if E=< , then the rule x C x *y < x says that x = x *>>.

We now would like to represent every partially ordered left normal band
as a Plonka sum of partially ordered left-zero bands over a semilattice. In
order to do this, we have to recall some facts.

Let (A, •) be a left normal band. It was shown in [15] that (A, •) is a
Plonka sum of left-zero bands, say {Ai, • ) , over a semilattice ( / , * ) . The
decomposition of {A, •) into the Plonka sum is given by the congruence
relation Oc defined as follows:

(x,y) e 6 c « - x * y = x and y*x = y

<& x, y e Aj for some / e / .

The Plonka maps pt . are defined by x >-• x*a ; , where a, G /I, is arbitrary.
Moreover, (/ ,*) = (A/Qc,*) (see [9], [15], [22]). By Proposition 4.3 there
is only one way to equip (/, *) with a partial order < so that we obtain
a partially ordered left normal band. We will use these observations in the
proofs of the following results.

4.5. PROPOSITION. Let {A, *, <) and {B, *, <) be two partially ordered
left normal bands, and let <t>: A —> B be a *-homomorphism. Then <j> preserves
the partial order < if and only if <f> preserves the partial order c . Moreover, if
(B, *) is commutative, then every *-homomorphism <f> preserves both partial
orders.

PROOF. The first statement follows immediately from 4.2. Now assume
that (A, •) is a Plonka sum of left-zero bands (At, *) over a semilattice
(/, *) and that (B, *) is commutative. It follows form 4.3 that in (B, • , <)
we have u < v if and only if v • u = u. Now let x < y in (A, < ) .
We have to show that x$ < y<f>, that is, xcf> = (y * x)<j>. First, note that
x * (y * x) = x : Indeed, x < y implies x < x * x * x < x + y * x < x,
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and hence x = x • (y • x). Using the commutativity of B, we obtain
x<j> = {x * {y * x))(f> = x(f>* (y * x)4> = (y*x)(/>*x<f) = (y*x*x)(j> = {y*x)<t>.

Now assume that {A, *, <) is a partially ordered left normal band, and
let n:A ^ A/Sc = I be the canonical quotient map. It follows that, in the
partial order and algebraic structure induced from (A,*,<), the preimage
Ai = in~l is also a partially ordered left—zero normal band for each / e / .
Moreover, if / < j in (/*), then the Plonka map p. k:Aj -* Ai is given by
x H-» x * al;, and therefore preserves the partial orders.

4.6. PROPOSITION. Let (A,-k, <) be a partially ordered left normal band,
and let ( / , * ) , A( and A. be defined as above. If x e Ai and y e Ajt then

x <y «• i <j and x<y*at = yp} r

PROOF. Assume that x < y. Then, since the mapping n: A -> A/Oc = I
preserves the partial orders, we obtain i = xn < yn = j . Moreover, since
x G Af., x*at = x and therefore x = x*at < y*at. Conversely, if x < y*at,
then x < y * al < y, that is, x < y.

Conversely, let ( / , * , < ) be a partially ordered commutative left normal
band (that is, let (/, *) be a semilattice, and the partial order to be denned
by i < j if and only if i* j = i). For each i e / , let {At, • , <) be a
partially ordered left-zero band. If i < j , then let p (.:A. —* A{ be a band
homomorphism that preserves < . Suppose that the family of the Pj ( ' s
satisfies the conditions for a Plonka sum. Then the Plonka sum (A, •) of
the (A{, *) is a left normal band (see [9], [15], [22]). Define a partial order
< on A by

if x e Ai and y e Aj then x < y •& i < j and x < ypj ,.

4.7. P R O P O S I T I O N . Let {A,*, < ) be constructed as above. Then (A,*, <)
is a partially ordered left normal band.

PROOF. It is a routine computation to show that the relation < is a partial
order. We have to verify the conditions of 4.1. In the following proof, if
i, j £ I are given, we will abbreviate ij = i* j . To show that (i) holds, let
x < y for x e At and y e Aj . Then i < j and x < ypjk • Let z e Ak.
Clearly ik < jk. We want to show that x * z < (y • z)pjk ik . Indeed,

x * z = (xPi ,.k) * zpk ik = xPi ik < (yPj(,>,. ik (since x < yPj ,)

= yPjtik = ypjtik*zpkik = (yPj jk*zpkJk)Pjkik = (y*z)PjkJk.

The conditions (ii) and (iii) can be checked similarly.
We call the partially ordered left normal band (A, *, <) the partially

ordered Plonka sum of the (At*, <) over (/, *, <) .
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4.8. THEOREM. Every partial ordered left normal band is isomorphic to the
partially ordered Plonka sum of partially ordered left-zero bands.

Let (3, •, +) be the subdirectly irreducible 3-element distributive bisemi-
lattice 3 = {0, 1, a} , where the operations + and • are given as follows:

1 + 0 = 1, 0 1 = 0 ,

0 + a = l + a = a , 0 • a = 1 • a = a.

Then we have

a <. 0 <. 1 and 0 < + 1 < + a.

On 3, the operation * is given by

JC for y ^ a;

y for y = a.•{
It follows that (3, *, < ) is partially ordered left normal band. It is easy to
see that on 3 the relations <+ and C coincide.

We would like to show that for every partially ordered left normal band
{A, * , <) , the family of all partial order preserving band homomorphisms
<j>: A —> 3 separates the points of A. We are going to need the following
lemma.

4.9. LEMMA. Let (A,*,<) be the partially ordered Plonka sum of par-
tially ordered left-zero bands (At, • , <) over a semilattice (I, • ) ; let p, f. A.
-> Ai be Plonka homomorphisms, and let n:A^>I be the canonical projec-
tion. Moreover, for i e / let <j>i:Ai —> {0, 1} c 3 be order preserving. One
easily checks that <j>i is a homomorphism of (A{, *) into (3, • ) . Then the
mapping

a otherwise

is an order preserving band homomorphism extending 0 ( .

PROOF. We first show that </>' is a band homomorphism. Let x, y e A,
and let j - xn and k = yn . If i < j , k, then i < j * k = (x * y)n, and
hence, using the definition of Plonka sums, we obtain

(x * y)<S>1 = {x* y)p{x+y)n t & = (xPj t {x^y)n * ypk _ {Xi,y)n)p{Xi,y)n t &

, (x*y)nP(x*y)n, i * W*, (X*y)nP{x*y)n, Wt
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If either i £ j or i ^ k, then / ^ (x*y)n, and therefore {x-ky)4>' = a and
either z<j>1 = a or ycf>' = a. Therefore (*</>')*(y<£') = a = {x-ky)<f>1. Hence
4>' is a band homomorphism.

It remains to show that <f>1 is order preserving, that is, x < y in A implies
x<f>' <. y<t>' in 3 . If j = xn and fc = y7t, then x < y implies j < k and
x < ypk j • Hence if i £ j , then x<f>' = a < y<j>'. Now assume that
i<j<k.In this case, x4> = {xpjtk)<f>i <. iypkJPjyk)<f>i = yPk,i^i = Wt*' •

4.10. PROPOSITION. Let (A,*, <) be a partially ordered left normal band,
and let x, y e A. If x £y, then there is an order preserving band homomor-
phism (j>:A -> 3 such that X(f> ^. y(f>. Similarly, if x % y, then there is an
order preserving band homomorphism <j>:A—>3 such that X(j>£+ y<j>.

PROOF. Let / = A/<bc be the largest semilattice quotient of A, and let
n: A —• / be the canonical quotient map. For each i e I, let At = in'1, and
let Pj f.Aj —> Ai, i < j , be the Plonka maps. Now assume that x, y e A
and that x ^ y . Let i = xn and j — yn . By our previous discussion, there
are two possibilities.

CASE I. xn £yn. In this case, let <f>t: Alf -> {0, 1} be any order preserving
map, and let <j>l:A -* 3 be the extension of <£, to A as constructed in 4.9.
Then x<f>' e {0, 1} and y<j>1 = a, and hence x<p' £ y<j>'.

CASE II. xn < yn and x ^ ypj , . In this case, let <t>i:Ai -+ {0, 1} be an

order preserving map such that x4>t = 1 and (ypj i)<j>i = 0. Then <j>' maps
A: to 1 and y to 0, hence X(f>1 ^ y<j) .

For the proof of the second statement, recall that on 3 , the relations <+

and E are identical. Hence this assertion follows immediately from the
definition of E •

4.11. THEOREM. Every partially ordered left normal band is isomorphic to
a partially ordered subalgebra of a power of 3 .

PROOF. Let X be the set of all order preserving homomorphisms <j>: A
3 . Let e:A -> 3X be defined by evaluation, that is, (4>){xe) = x4>. Then
follows immediately from 4.10 that e is an embedding.

We also need the idea of left normal bands with constants. If A is of the
form 3* for a certain set X, then the constants correspond to the constant
maps. Hence we make the following definition:

4.12. DEFINITION. A partially ordered left normal band with constants is
a partially ordered left normal band {A, *, <) together with three constants
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c0, cx, ca such that the following properties are satisfied:

0 — — 1 > a — — a '

c 0 * JC = Cj • x =$• x = ca.

If <j>: A -* 3 is an order preserving band homomorphism such that co(j> = 0,
Cj0 = 1, and ca4> = a, then we say that <f> preserves the constants.

4.13. PROPOSITION. Let (A,*, <, c0, cx, ca) be a partially ordered left
normal band with constants, and assume that (A, • , <) is the partially or-
dered Plonka sum of (A(, • , <) over its semilattice replica ( / , * ) . Then
(I, •) has a largest and a smallest element and each (At, <) has a largest
element.

PROOF. First, note that cxn and can are the largest and the smallest
element of ( / , * ) . Now by Definition 4.12, both constants c0 and cx are
in the same Plonka fibre Ax = Ac n . By the same definition and Proposition
4.4, it follows, for each element xx e Ax, that cQ < xx < cx. Since for each
element xt e Ai, xt < cx and for arbitrary yt e At, cx • xt = cx * yt, it
follows by Proposition 4.6 that xt < cxpx , = c, *xi. Therefore cx *x{ is the
largest element of (A(, < ) .

Note that the constants form a bichain

ca < cQ < cx, c0 E cx E ca.

Moreover, Ac n = {ca} and if for some i € I, CQPX i = cxpx i , then i = can
and A( = {cJ.

Clearly, (3, *, < , c0, cx, ca) is a partially ordered left normal band with
constants c0 = 0, cx = 1, and ca = a, and therefore every subalgebra of
(3X, *, <) that contains the constant maps with values 0 , 1 , and a is a
partially ordered left normal band with constants. We would like to show
that every partially ordered let normal band with constants is of this form.

4.14. PROPOSITION. Let (A,*, <, c0, cx, ca) be an partially ordered left
normal band with constants, and let (j>: A -> 3 be an order preserving band
homomorphism. If <f> is surjective, then (f> preserves the constants.

PROOF. Since ca is minimal with respect to < , the image of ca has to
be minimal with respect to <. in 3 , and it follows that ca<j> — a. Similarly,
since cx is maximal with respect to < , it follows that cxcj> = 1, and since
cQ is minimal with respect to C, it follows that co<j) = 0.
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4.15. PROPOSITION. Let {A,*, < , c0, cx,ca) be a partially ordered left
normal band with constants, and let x, y e A. If x £y, then there is an order
preserving band homomorphism (f>:A —> 3 that preserves the constants such
that X(f> ^ . y<j). Similarly, if x %y, then there is an order preserving band
homomorphism <j>:A —> 3 that preserves the constants such that x<j) ^ + y<f>.

PROOF. We use the same notations as in the proof of 4.10. Again we have
two cases to consider.

CASE I. assume that xn ^ yn . Obviously, cx * x, c0 • x € Ai,, and since
x ^ ca , it follows that c{ • x ^ co + x. Hence 1-4,-1 > 2, and we can find
an order preserving map (j>i'.Ai —* {0, 1} such that Aj<t>i — {0, 1}. The
map <j)':A^>3 is then surjective, hence preserves the constants, and satisfies

x^i*1 y<t>1 = a.
CASE II. xn < yn and x ^ ypj ( . This case is analogous to Case II in

the proof of 4.10. Note that the map constructed there is surjective, and
therefore preserves the constants by 4.14.

The following theorem is an easy consequence of 4.15.

4.16. THEOREM. Every partially ordered left normal band with constants
(A,*, <, c0, c{, ca) is isomorphic to a partially ordered subalgebra of a
power o/ (3, *, < , cQ, Cj, ca) containing the constants.

PROOF. Let X be the set of all order preserving homomorphisms <f>\ A -> 3
that preserve the constants, and let e: A —> 3 be defined by evaluation, that
is, (<j*)(xe) = xtj). Then it follows immediately from 4.15 that e is an
embedding of left normal partially ordered bands with constants.

We conclude this section with an important example.
Let (S, •, +) and (T, •, +) be two distributive bisemilattices, and let

A — Homfc(5, T), the set of all bisemilattice homomorphisms from S into
T. Then, A is a subset of the bisemilattice {Ts, •, + ) , where the operations
• and + are defined pointwise. If we view Ts as a partially ordered left
normal band in the operation f*g = f+f-g, then A is even closed under
*. The proof of these statements follows easily from the entropic laws 3.2.
Moreover, the constant maps with values 0 , 1 , and a, respectively, belong to
Hom^S, 3). hence Homfc(S ,3) is a subalgebra of (35 , *, < , c - 0 , cx, ca),
and therefore

4.17. THEOREM. If (S, •,+) and (T, •, +) are two distributive bisemilat-
tices, then (Hom^S, T), *, < , c0, cx, ca) is a partially ordered left normal
band with constants.
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PROBLEM. Assume that (5 , •, +) and (T, -, +) are two distributive bi-
semilattices. Is there a relation between the Plonka sums for 5 and T and
the Plonka sum for Homi(5', T)l We will find lots of hints for such a
relation in the case where T = 3 . Actually, it is possible to show that the
Plonka sum for Hom6(5, 3) is the "dual" of the Plonka sum for 5 .

5. Order preserving mappings from bi-ordered set into 3

A set A equipped with two partial orders < and c is called a bi-ordered
set and is denoted by (A, <, Q).

For a bi-ordered set (A, <, C.), define Ord(A) to be the set of all map-
pings <j>: (A, <, Q -+ (3, < , <+) that preserve both partial orders, that is,
if a > b e A, and if a < b, then a<f> <. b<j> and if a Q b, then a<f> <+ b<j>.

In order to describe the structure of Ord(^), we shall need the following

5.1. LEMMA. Let x, y, u, v e 3 . Then the inequality x • u + y • v <+

x • y + u • v does not hold if and only if x = u = 0 and y = v = 1 or if
x = u — 1 and y = v = 0.

PROOF. Assume that a e {x, y, u, v} , say x = a. Then

Hence, if the above inequality were not true, then x, y, u,v e { 0 , 1 } .
Assume that x ^ u, say x = 0 and u = 1. Then, since < + and <. agree
on the set {0, 1} , we obtain

x - u + y - v = y - v < + v = 0 + v • 1 = x - y + u - v .

Hence, if this inequality does not hold, it follows that x = u and similarly
y = v . Clearly, x = w = y = v is impossible, and therefore either x = u = 0
and y = v - I or x = u = I and y — v = 0.

Conversely, if either x = u = 0 and y = v = I or x = u = I and
y = v = 0 , then x • u + y • v = 1 and x • y + u • v = 0 , and therefore the
inequality x-u + y-v<+x-y + u-v is incorrect.

+

5.2. PROPOSITION. Let (A, < , Q be a bi-ordered set. The Ord(^) is a
ibbu

wise.
subbisemilattice of {3A , - , + ) , where the operations in 3A are defined point-

https://doi.org/10.1017/S1446788700034224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034224


262 Gerhard Gierz and Anna Romanowska [16]

PROOF. Let <f>, y/ e Ord(^4). We have to show that 4>+ y/, <f>-y/ e Ord(^),
where

a(</> + y/) = a<j) + ay/ and a{4>- y/) = a<j>-ay/.

More explicitly, we have to verify the following.
(i) If a, b e A and if a < b, then a(<t> • y/) <. b{<f> • y/) and a{<\> + y/) <

<t>+y/).
(ii) If a, b e A and if a c b, then a{<f> • y/) < + b((j) • y/) and a(<f> + y/) <+

We will show (i) only; (ii) follows similarly. In order to verify (i), pick
a, b e A and assume that a <b. Then

a<j> <. b<j), ay/ <, by/,

that is,
cup • b(j> = a<j), ay/ • by/ — ay/.

It follows that

a(<t> • y/) • b{4> • y/) — a<j> • b(f> • ay/ • by/ = a<f> • ay/ = a{(j> • y/)

and hence
a(<f>-y/) < . b(<f>- y/).

Moreover, since 3 is a distributive bisemilattice, we have

a(<f> + y/) • b{4> + y/) = a<j> • b<p + a<p • by/ + ay/ • b<f> + ay/ • by/

= a<f> + ay/ + (a</> • by/ + ay/ • b<j)).

Thus, we have to show that a<j>-by/ + ay/-b<t> <+ a<f> + ay/ = a<j>-b<j)+by/-ay/.
By Lemma 5.1 this inequality can only be violated if either a<f> = by/ = 0
and b<f> = ay/ = 1 or a<p = by/ = 1 and b<f> = ay/ = 0. The first possibility
represents a contradiction to ay/ < by/ , and the second case conflicts with
a<j) < b<j>. It follows that a(<f> + y/) < b(<p + y/).

PROBLEM. AS a distributive bisemilattice, (Ord(^), •, +) is a Plonka sum
of distributive lattices (St, •, +) over a semilattice (/, •). Is it possible to
discover (/, •) and the (5( , •, +) 's inside of (Ord(^), •, +) in terms of
(A, •, +) and its decomposition as a Plonka sum?

Now let (A, *, <) be a partially ordered left normal band. If <j>, y/\ A -> 3
are two band homomorphisms, then the entropic laws 3.2 imply that <f> + y/
and <t> • y/ are again band homomorphisms. Hence, if Homjyl, 3) denotes
the collection of all band homomorphisms from A into 3 , then Hom^(^, 3)
is a sub-bisemilattice of ( 3 ^ , - , + ) , and therefore a distributive bisemilattice.
Define
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5.3. PROPOSITION. If (A,*, <) is a partially ordered left normal band,

then {A, •, +) is a distributive bisemilattice.

If A is a partially ordered left normal band with constants, let

Ac = {<f> e A: <f> preserves the constants}.

5.4. PROPOSITION. If (A, *, < c0, c{, ca) is a partially ordered left normal
band with constants, then (Ac, •, +) is a distributive bisemilattice.

6. Compact totally disconnected partially ordered left normal bands

In this section, we finally define the dual category to the category of all
distributive bisemilattices.

6.1. DEFINITION. A compact totally disconnected partially ordered left
normal band is partially ordered left normal band with constants (A,*,
< , c0, c, , ca) together with a compact totally disconnect topology T such
that {A, <, T) is totally order disconnected, and such that the mapping
*:Ax A -+ A is continuous with respect to T .

(Recall that a partially ordered topological space (X, <, T) is called totally
order disconnected if (a) {(x, y) e X x X:x < y} is closed, and (b) if
x, y £ X, and if x £ y, then there is an open and closed lower set U such
that y eU and x <£ U.)

It follows easily from the definition of c that for every compact totally
disconnected partially ordered left normal band the partially ordered space
{A, c , T) is also totally order disconnected. A proof of this statement follows
also from 6.5, and we will not use this fact in the remainder of this section.

Typical examples of such objects are obtained as follows: let us consider
3 as a partially ordered left normal band with constants. Equip 3 with the
discrete topology, and for every set X, equip 3* with the product topology.
Then 3 is a compact totally disconnected partially ordered left normal band
with constants, and so is every closed subalgebra of (3*, *) that contains the
constants. In order to show that every compact totally disconnected partially
ordered left normal band is of this form, we need topological versions of 4.15
and 4.16.

In a first step, we show that the semilattice replica of a compact totally
disconnected left normal band is algebraic.

6.2. PROPOSITION. Let {A, *, <, cQ, c{, ca, T) be a compact totally dis-
connected partially ordered left normal band with constants.
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(i) The image of the map A —• A, x >-^ a*x is a closed subsemilattice of
{A, *) with a largest element, and hence is an algebraic lattice.

(ii) The semilattice replica of {A, *) is an algebraic lattice.

PROOF, (i) Since (a*x)*(a*y) = a*x*y = a*y*x = (a*y)*(a*x),
it follows that the image of x i-> a * x is a commutative band, and hence
a semilattice. Clearly, the image is compact, and hence closed. Therefore,
the image of x i-> a * x is a compact totally disconnected semilattice with
a = a*cl as largest element, and every such semilattice is in fact an algebraic
lattice.

(ii) For each c e A, let Ac = {c * x: x e A} . Define a map A -> Hc€A Ac

by x i-» (c * x)c g^ . The image of this map is a compact subsemilattice of
the algebraic lattice \[c€A Ac containing a largest element, and hence it is an
algebraic lattice. Now note that the kernel of this map consists of all pairs
{x, y) such that c • x - c * y for all c e A . Since in a left normal band we
have

(yc£Ac*x = x*y)<$-{xi<:y = x and y • JC = y)
we conclude that Oc is the kernel of the map x •-> (c*-x)c€^, and therefore
the image of this map is the semilattice replica of (A, • ) .

There is an alternative proof of 6.2. It can be shown that the semilattice
replica of {A, *) is actually isomorphic with the image of the map x \-> c{*x,
and this approach would even give a more concrete representation of the
semilattice replica.

Now let (A, *, < , c0, c, , ca, T) be a compact totally disconnected left
normal band with constants. Let (/, •) be the semilattice replica of (A, * ) ,
and represent (A, •) as a Plonka sum of (At, • ) , i € I. Recall that the
maps Pj t:Aj —> At are given by x *-* x * at where a( e At is arbitrary,
hence all the maps Pj i:Aj —> At are continuous. If 4>{.Ai -> {0, 1} c 3 is
an order preserving mapping, then we extended this map to a map

a otherwise.

In Section 3 we saw already that this map <fi' is an order preserving band

homomorphism. Moreover, </>' preserves the constants if and only if <j>i

maps At onto { 0 , 1 } and if / is not the smallest element of ( / , * ) .

6.3. PROPOSITION. 0' is continuous if and only if i e / is a compact
element and <^>i:Ai -> {0, 1} is continuous.

PROOF. First, assume that <p' is continuous. Then F = {x e A:x<f>' = a}
and G = {x e A: xfi' ^ a} are two open and closed sets. Since the canonical
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map n:A-* I is continuous, and since F and G are unions of congruence
classes of 6 C , it follows that both F — Fnn~x and G = Gnn~l are both
open and closed. Since n: A —> / is continuous and since A and / are
compact spaces, it is a (topological) quotient map. Therefore Fn and Git
are open and closed. But Gn = {j:i < j}. Hence i is a compact element
(see [8]). Moreover, since the restriction of (/>' to At is equal to 4>i, we
conclude that <f>i is continuous.

Conversely, assume that i e / is compact and that 4>i:Ai -> {0, 1} is
continuous. Then the map

is continuous (as the composition of the continuous maps <f>i and x H-> x*a(),
and the set U,-< . Aj is open and closed (as the preimage of {j: i <, j} under

the continuous map n: A —> / ) . Since <f>' has the constant value a on the
complement of (J,-< ; 4 / , it is also continuous there, and it follows that <f>'
is continuous.

6.4. PROPOSITION. Let (A,*, < , c0 , c{, ca, T) fee a compact totally dis-
connected partially ordered left-normal band with constants, and let x, y e A.
If x •£ y, then there is a continuous order preserving band homomorphism
<f>:A -> 3 that preserves the constants such that x<f> £ y<j>. Similarly, if
x % y, then there is a continuous order preserving band homomorphism
<t>:A->3 that preserves the constants such that xcf> ^ + ycf).

PROOF. This proof is very similar to the proof of 4.15. Again, we represent
{A, *) as the Plonka sum of {At, • ) , i e / . let n: A -+ / be the canonical
map. For each / e / pick an element a, e Ai. Let ix = xn and let iy = yn .
There are two cases to consider.

CASE I. Assume that ix = xn ^ yn = i . Since / is an algebraic lattice,
there is a compact element /0 < ix such that J0 ^ / . Moreover, we may
assume that j ' o is not the smallest element can of / . Hence it follows that
A; contains at least two distinct elements, namely cn * a, and c, * a, .
Since Ai is a closed subspace of the order disconnected space A, it follows

'o
that Af is totally order disconnected itself. Hence by the definition of totally

'q

order disconnectedness, there is a continuous order preserving surjective map
0, :A. —v {0, 1} . The map (f>'° maps y to a and satisfies x<f>1" e {0, 1} .

o 'o .

Hence x4>'° ^t. y<j>'°. Since <f>'° is surjective, it preserves the constants.

Hence the map <f> = <f>'° has the required properties.
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CASE II. Assume that ix = xn < yn = iy . Then, since x£y,i\ follows
that x ^ y • at . For every compact element i < ix let yk = y * ak =
y*ai *ak and xk = x*ak , where the first equality follows from at *ak e Ak

and the fact that the value of y*ak does not depend on the particular choice
of ak e Ak. Now assume that for each compact k < ix we had xk <yk.
Pick a convergent subnet of the net (ak)k , where k ranges over all compact
element below ix . Let a be the limit point of (ak)k . Since n is continuous,
and since the net of all compact elements below ix converges to ix , it follows
that a e Aj , and therefore x*a = x and y + a = j>*a, . Now xk < yk for

lx 'x K K

all k would imply

x — x*a — x* l i m a t = l imx * afr =
k k k k

< limyk = limy • ak = y * lima^ = y * a = y * a( ,

a contradiction. Hence we can find a compact element k < i such thatX

x*ak £y*ak. Now let (j>k'-Ak -* {0, 1} be any continuous order preserving

map so that {x*ak)<f)k = 1 and (y*ak)<l>k = 0 . The map <j> :A —> 3 then

is surjective, and satisfies y<j> — 0 , x</>fc = 1, hence has all the required

properties.

6.5. THEOREM. Let (A,*, < , c0 , cx, ca,x) be a compact totally dis-
connected partially ordered left normal band with constants. Then (A,*,
<,co,cl,ca,r) is algebraically and topologically isomorphic to a closed sub-
algebra of (Sx, • , < , c0 , Cj, ca, T') for a certain index set X.

PROOF. The proof of this theorem is similar to the proof of 4.16, but we
use 6.4 instead of 4.15.

7. The duality

Let 3>38 be the category of all distributive bisemilattices, with all homo-
morphisms as morphisms. Let SW be the category of all compact totally
disconnected partially ordered left normal bands with constants. The mor-
phisms of SfjV are all continuous order preserving band homomorphisms
that preserve the constants. The hom-functors on 3138 and JzS^" are denoted
by Homfc(-, - ) and Hom n ( - , - ) , respectively. We may view 3 either as
a distributive bisemilattice or as an J^F-object. If (S, •, +) is a distribu-
tive bisemilattice, let S = Homfc(5', 3). Then (S, *, < , c0, cl, ca) is the
partially ordered left normal band with constants of bisemilattice homomor-
phisms, introduced in 4.17. As a subalgebra of (3 5 , *, < , c0, cx, ca), S is
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closed, and hence (S, *, < , c0, cx, ca) belongs to
Conversely, if {A, *, < , c0, cx, ca, T) is a compact totally disconnected

partially ordered left normal band with constants, then define

Then (A, •, +) is a sub-bisemillatice of (Ac, •, +) as introduced in 5.4.
Therefore A is a distributive bisemilattice. (The proof that </> +1// and 4> • y
are continuous whenever y/ and </> are, is a standard argument.) Hence,
if we extend Homfe(-, 3) and Hom/I(-, 3) in the now expected way to
homomorphisms, we obtain contravariant functors

H o m f c ( - , 3 ) : S ^ ^ ^ f " , Homn(- , 3 ) : ^ f -> 338.

As usual, if S e 238 and if A e 3W, we have evaluation maps

es: S —> S, SA: A —> A

given by

<j){x£s) = x<j> for every <f> e S,

<t>(xdA) = X(f> for every <f> e A .

Standard arguments using the fact that every distributive bisemilattice is a
subalgebra of (3*, •, +) as well as 6.5 yield that es and 8A are injective
and respect the algebraic and topological structure. Our aim is to verify that
both maps es and SA are surjective. First, we will restrict our attention
to the case where 5 and A are finite, and then use category theoretical
methods to handle the general case. An alternative approach would use the
idea of "continuous Plonka sums." However, we do not have the tools of
"continuous Plonka sums" at this point.

7.1. PROPOSITION. If (S, •,+) is a finite distributive bisemilattice, then

es:S -> S is an isomorphism of bisemilattices.

PROOF. Let (S, •, +) be a finite distributive bisemilattice, and let X =
Homi(5, 3) be the set of all homomorphisms from (S, •, +) into ( 3 , - , + ) .
Since (5 , •, +) is a subdirect product of (3, •, +) [ 15], the injectivity of the
map es follows.

Now let A: S —> 3 be an order preserving *-homomorphism that preserves
the constants. We have to find an element a e S such that <j>X — a<j> for all
<f> e S. Let N = {<t> e S: <f>X # a} and let

Z = {x e S:x<j> ± a for all (/> e N}.

First, we note that Z ^ 0 . Indeed, let {<f>l, ... , (f>n) be any fixed sequence
of all the elements of N, and let <pl * • • • * <j>n. Then, since X is a •-
homomorphism, we conclude that <j>N e N, and therefore 4>N ^ ca. Hence
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there is an element x e S such that x<f>N ^ a. It follows that (x^, ) * • • • •
(x<j)n) ^ a and therefore x<j>t / a for all 1 < i < n. We conclude that
X € Z .

Let Z = {x,, . . . , xm} and let

Note that by [1],

ez =

nz + nz e z = nz

nz=x

ez+ez

I

"z = ez-

Further, since each <f> e N is a homomorphism with respect to + and •, we
nclude that ez,
Next, we show

conclude that ez, nz e Z .

nz < x and <j>k / a =>• c<\> / a ,

x < + e z and <j>A y£ a => X(f> ^ a.

Indeed, if ez + x - ez , then (ez + x)<t> = {ez<j)) + (x<f>) = ez<f>. If <f> e N,
then ez(j) ^ a, and therefore ;c</> ̂  a . It follows that the second implication
holds. The first implication is proved similarly.

The last implications yield

Z = {x tS:nz < x} = {x eS:x <+ ez}.

Let n:S -+ I be the canonical homomorphism of (S, •, +) onto the bisemi-
lattice replica ( / , - , ) of (S,-,+). By the definition of ez and nz it is
clear that ezn = nzn. Let Zo = {x e S:xn = ezn). then Zo c Z . In-
deed, since Z o is a distributive lattice, the image of Zo under each bisemi-
lattice homomorphism <j)\S —* 3 is a distributive lattice. Hence we have
either Z0<f> = {a} or Z0(f> c {0, 1} . Since ez<j>N ^ a, it follows that
Z0<t>N c {0, 1} , and hence Zo c Z = {x e S:x<j>N / a}.

Note that

Zo = {x e S: nz < x < ez} = {x e S: nz <+ x <+ ez}.

Moreover, if JC e Z , then Zon <. xn, and it follows that Zo is the least
Plonka fibre with elements JC satisfying x<j> ^ a for all <f> e N.

Furthermore,
x € Z => {nz + x) • ez e Zo.

Indeed, if x e Z , then nzx = nz and ( « z +x)7r = ( « z -x)n, and therefore
((/iz + x) • ez)n = (nz • x • ez)n - (nz • ez)n = nzn = ezn.

We also have N = {$ e S:4>N*4> = <j>N} . Indeed, if <j>N * <f> = <f>N, then
(<j>NX) * (<M) = <t>N*- ^ a' a n d n e n c e fa^cx- Consequently, </> G N.

Conversely, if (j> e N, then (j> = <j>i for some /', and hence
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By definition it is clear that Z = {x e S: x<j>N ^ a} . In the following step,
we show that

if x € Z Q , then <j)k — a •& X(j> = a.

Indeed, assume that x<f> ^ a. We have to show that </>N*<f> = <f>N. Assume
not. Then we can find an element y such that (y<i>N) * (y<j>) ^ y<j>N. It
follows that y<f> = a and y<j>N ^ a . Hence y e Z , from which it follows
that (nz + y)-ez e Z o . Since a - ((nz + y)-ez)</>, and since Zo and Z0<f>
are distributive lattices, we conclude that nz4> = ez(j) = a , and therefore
x<$> = a , a contradiction. It follows that <fik # a.

Conversely, if (j)k ^ a, then </> € N, and therefore xcf> ^ a, since x €
Z 0 C Z .

In order to prepare for the following steps, we need

if <\>\ ^ a and x<f> = 0 for all x e Zo then </> * ^ = c0 • ^ .

Indeed, X0 = 0 for all x e Zo implies ez</> = 0. If x e Z is given, then
x <+ ez, and hence xcj) <+ 0 that is, X(f> = 0. We conclude that Z</> = {0} .
Hence,

_(Q*{x<f>rf) i f x e Z ,
\ X(j> * a if x £ Z ,
f 0 if x e Z ,
\ a if x 0 Z ,

= (xc0) * {x<pN) = x(c0 * <f)N).

Further,

if <j)k / a and x<£ = 0 for each x 6 Zo then 0A = 0.

Let us compute: <f>Nk ^ a implies

4>k = (<M) * ( V ) = (^ * ^^)A = (co * ^ ) ^ = ( V ) * (^M =
Next, for every <f> 6 N with ez<j>= \ let

First, note that by our previous statement, (pk = 1 implies that there is at
least one x e Zo such that x<f> = 1, and hence ez(j> — 1. Therefore, a^
is defined for all <f> with <f>k = 1. Also, since <£: Zo —> {0, 1} is a lattice
homomorphism, a, is a co-prime (that is, join irreducible) element of the
distributive lattice Zo . Moreover,

ifez((>= 1 =ezy/, then a^ <. an «> y/*<t>N<. <t>*4>N-

For a proof of this statement, note that x e Zo implies x<f>N ^ a and
therefore x(</>*^Ar) = x^>. Hence y • ^ <. </> • ^ implies â , <. a^ .
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Conversely, assume that a^ < a¥. Note that if x(y/*<j>N) ^ a , then
x<j>N # a , and hence x e Z . Thus, if x(y/ • </>N) = 1 then ez(y/* <j>N) = 1
and hence ((nz+x)-ez)(y/*<f>N) = 1. Since (nz +x) ez e Z o , we conclude
that a^ <. av < (nz +x)-ez, and hence ((nz +x)-ez)<j>= 1. If nz(j> = 0,
then x<j> = 1 and therefore x{<t> * 0^) = 1. If, however, nz(j> = l , then
n z < x implies JC<£ = 1, and therefore x{<j> • ^ ) = 1 in this case, too.
Secondly, if x(y/ * <f>N) = 0 , then x e Z , and, since <f> * <f>N € N, we have
*(<£ * (/•AT) e {0, 1} . These two cases together imply y/-k(j)N<. <t>*<t>N-

Finally, let

Then we would like to show that <j>X = ax<f> for all <f> e S. Since aA e Z o ,
this equation is at least true for those </> 's for which <f>X = a or for which
ax4> — a. Hence it remains to show that

<j>X = 1 <=>• ax4> = 1 .

Assume that <j>A = 1. Then we obtain a(j)<+ ak, and therefore

that is, aA<̂> = 1. Conversely, assume that ax<j> = 1. Then, by definition,
a^ <. aA. Since Z o is a distributive lattice, we also have a^ <+ ax, and

since a, is co-prime in Z o , there is an element if/ G S such that y/X = 1
and a, <, a . We have shown that this implies y/*4>N <. (p*<t>N, and we
arrive at

1 = i//X- {\i/-k<j}N)X < (<(>*<l>ff)X = (j>X.

This completes the proof of 7.1.

In the next step, we have to start with a finite partially ordered left normal
band with constants, say (A, * , < , c0, cx, ca), and we have to show that the

map S/.A -* A is surjective. The arguments are very similar.

7.2. PROPOSITION. If (A, • , < , c0, c , , ca) is a finite partially ordered left

normal band with constants, then SA: A —> A is an isomorphism of partially
ordered left normal bands with constants.

PROOF. The injectivity of 5A follows from 4.15. In order to show the

surjectivity of 5A, we start with a bisemilattice homomorphism X: A -* 3 .

We have to find an element ak e A so that ax4> = <f>X for all <f> € A. So, let

N = {(/> 6 A: 4>X ^ a] and let

Z = {x e A:x<t> / a for all </> e A^}.
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First, we note that Z ^ 0 . Indeed, co,cx£Z. If N = {<£,, . . . , 4>n}, let

Then, since A is a bisemilattice homomorphism, we conclude that aN, coN e
N. Let (x{, ... , xm) be any fixed sequence of all elements of Z , and we
arrange this sequence such that xl = c , . Let

Then, since each <p e N is a band homomorphism, we conclude that nz e Z ,
indeed nz(f> = 1 for all </> e JV. From the definitions it follows that

N = {<j)£A:aN <. <j>} = {</>£ A: <f> <+ (oN)

and
Z = {x £ A:nz*x = nz}.

By definition it is clear that

Z = {x £ ^ x a ^ ^ a} = {x e A ^ / a}.

Let re:^4 -> / be the canonical homomorphism of (A, •) onto the semi-
lattice replica (/, •) of (A, • ) . Let Zo = {JC e 4̂: X7t = nz7r} . Then

Zo = {x e A: x = x * nz, nz = nz * x},

and therefore Zo C Z . Furthermore,

x e Z =$• x* nz e Zo.

Indeed, if x e Z , then nz*x = nz and therefore « z * ( x • n z ) = (nz• x ) *
n z = n z and (x • nz) • n z = JC * (nz • n z ) = x • « z .

Next, we show N = {<f> e A: nz<j> ^ a}. If nz<f> ^ a , then x<j> ^ a
whenever x e Z , hence {x e A: xaN ^ a) = Z C {x £ A: x<j> ^ a] and thus
{x: xcj> = a) C {x: x a ^ = a} . It follows that xaN + xaN • X(f> = xaN for all
x e i , that is, aN + aN-<f> = aN . We conclude that aNX + aNk • (f>k = aNk.
Since aNk ^ a , this can happen only if cf>A ^ a , that is, only if </> £ N. The
other direction follows easily from the definitions.

Moreover,

y £ Z and yaN = 1 oy*nz = cx *nz.

If y * nz = c{ * nz , then, since nzaN ^ a,

1 = clOlN = (c, * nz)aN = (y • n z ) a ^ = y a j v .

Conversely, assume that yaN + 1. since y < c{, it follows that y • n z <
c, * « z . If y * « z / c, • nz , then we could find an element cf> £ A such
that (y -k nz)4> < (cl * nz)<j). Now y * nz , cl* nz £ Zo, and the image
of Zo is a partially ordered left-zero band with more than one element,
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contained in 3 . Hence (y * nz)<f> = 0 and (cx * nz)<p = 1. It follows that
cx<$>*nz<$> = 1 and hence nz4> ^ a . Therefore, since <f> e N, we have
aN <. <(>, and this implies that 1 = yaN <. y</>. Consequently, y<j> = 1, and
hence 0 — (y* nz)(f> = y4>* nz(f> = 1, a contradiction.

In the following step, we show that

if x e Z o t h e n <j>X = a •&• X(f> = a.

Indeed, fix an x € Z o and assume that (j)X ^ a. Then <f> e N, and since
x € Z o c Z , x<f> ^ a. Conversely, let x<j> ^ a. We have to show that
0A ^ a, that is, <p e N. But this is equivalent to showing that nz<j> ^ a.
Since the image of Zo under </> is a partially ordered left-zero band, we have
either Z0<p C {0, 1} or ZO0 = {a} . Since x € Zo and x<fi ^ a , the second
case is impossible, and we obtain nz<\>±- a.

For every </> e N let F^ = {x e Z0:x<f> = 1} . Then nz e i ^ for all
<t>e N, and

( l > ¥ aN<. y/ + y/-aN.

Only the last statement needs proving. If (f>+(f)-aN <. y/ + ij/-aN , then, since
xa^ / a for each x e ZQ and since a.N <. <f> implies (j> + $ • a^ = <f>, we
obtain x</> = x(^>+(j>-aN) <. x ^ + ^ - a ^ ) = x y for each x e Z o , and hence
F^Q FW. Conversely, assume that F^ c Fv . If <j> + <p • aN ^ . y/ + y/ -aN,
then we could find an element >> e 4̂ so that y{<j> + </> • aN) ^ y(v + ifs- aN).
This can only happen if yaN ^ a , and therefore y € Z . Hence it would
follow that y<f>, yy/ e {0, 1} and y<p £ y y , that is, }><£ = 1, yy/ = 0 . Let
x =y*nz e Zo. Then, since nz</» ^ a ^ n z ^ , we obtain .*</> = (>>• nz)4> =
y<j> = 1 and x ^ = 0 , a contradiction to F,CF.

Let FA = n { ^ : < ^ = ! } • Note that / ^ = i ^ for a certain <£0 with
</»0A = 1. Then

Clearly, by definition, <f>k = 1 implies Fkc F^. Conversely, as f, c f ^ .
T h e n </>0 + <j>0 • aN < <t> + <f>-aN, a n d h e n c e 1 = <p0X - (<l>0 + <j>0 • aN)X <
( 0 + <j> • aN)X - <f>X, t h a t i s , <f>X = 1 .

We would like to show that Fx has a unique minimal element. Let
fx, ... , fm be the minimal elements of Fx, and suppose that there is more
than one. For each i find </>, € A so that fi4>i = 1, but f^{ = 0 for some
j'• •£ i. The each <f>i maps Z o into {0, 1} , and hence all the <£'s belong to
./V. Let 4> — <fr{ H h 4>m . It follows that F, contains all minimal elements
of Fk, and therefore Fk C F.. Hence (</>[ H 1- <f>m)X = 1, which implies

that <ptX — 1 for at least one / . For this / we would have Fx C F, , a

contradiction to the choice of (f>(.
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Let ax be the unique minimal element of JFA . Then by our previous results

ax<j) = a o- <f>k = a, aA<f> =1-0- 0A = 1

and hence ax<f> = <j>k for all <j> e A.

We now show that es and SA are always bijections. We need the following
propositions:

7.3. PROPOSITION. The functor H o m i ( - , y):23§ -> <£/V carries limits
of directed systems onto colimits of (co-) directed systems, and the functor
HomB(-, 3):-2/f —> 3S3§ carries colimits of(co-) directed systems of finite

'-objects onto limits of directed systems.

PROOF. The first assertion follows from a standard property of the con-
travariant hom-functor. For the second property, let A e 3W be a colimit
of a (co-)directed system of finite objects At £ -2/T, i e I, where / is
a directed set. For each i < j let p t:Aj —> At be the map defining the
directed system, and for each / e / let p{.A —» Ai be the canonical map.
Then we have the following representation of A:

A = \ x G I I Ar xjPjj = xi f o r

Let

kerp;. = {(x,y) G A:xpi = ypt}.

It follows that

and that

i < j =>• kerp7 C kerpr

Moreover, since each At is finite, all the ker/?. 's are open and closed subsets
of A x A.

In order to show that Hom n ( - , 3) maps colimits to limits, it suffices
to show that for every continuous order preserving band homomorphism
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<f>: A —> 3 there is an index i e / and an order preserving band homomor-
p h i s m (/>,: A —> 3 such t h a t <f> = plo tf>.. Le t ker<f> — {(x, y) e A : xcj> = y<f>} .
Then the existence of / e I and 4>i:Ai —> 3 with <f> = pt o <f>. is equivalent
with

C

Now note that ker (f> c A x. A is open and closed, and f| ker pl, = A C </>.
Since all the sets kerp, are closed, compactness of Ax A yields the existence
of finitely many indices i{,... , in e I such that

ker pt n • • • n ker pi C ker <f>.

Since / is directed, we can find an index iQ e / such that i0 > il, ... , in ,
and for this particular J0 we obtain ker/^ c

7.4. PROPOSITION. Every distributive bisemilattice S € 2138 is a directed
limit of finite distributive bisemilattices, and every compact, totally discon-
nected partially ordered left normal band with constants A e £?N is a co-
directed colimited of finite partially ordered left normal bands with constants.

PROOF. The first assertion follows from the fact that finitely generated
distributive bisemilattices are finite, and the second claim follows from the
observation that for every A e 3W the -2^-morphisms from A into finite
partially ordered left normal bands separate the points of A by 6.5.

Now an application of 7.1 through 7.4 yields

7.5. THEOREM. The categories 238 and 3W are dual to each other under
the functors H o m i ( - , 3):3&g -f &V and Hom n (- , 3):&V -> 9)38.
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