
4

Non-Abelian strings

In this chapter we discuss a particular class of N = 2 supersymmetric gauge theo-
ries in which non-Abelian strings were found. One can pose the question: what is so
special about these models that makes an Abelian ZN string become non-Abelian?
Models we will dwell on below have both gauge and flavor symmetries broken
by the condensation of scalar fields. The common feature of these models is that
some global diagonal combination of color and flavor groups survive the breaking.
We consider the case when this diagonal group is SU(N)C+F , where the subscript
C + F means a combination of global color and flavor groups. The presence of
this unbroken subgroup is responsible for the occurrence of the orientational zero
modes of the string which entail its non-Abelian nature.

Clearly, the presence of supersymmetry is not important for the construction of
non-Abelian strings. In particular, while here we focus on the BPS non-Abelian
strings in N = 2 supersymmetric gauge theories, in Chapter 5 we review non-
Abelian strings in N = 1 supersymmetric theories and in Chapter 6 in non-
supersymmetric theories.

4.1 Basic model: N = 2 SQCD

The model we will deal with derives from N = 2 SQCD with the gauge group
SU(N + 1) and Nf = N flavors of the fundamental matter hypermultiplets which
we will call quarks [3]. At a generic point on the Coulomb branch of this theory,
the gauge group is broken down to U(1)N . We will be interested, however, in a
particular subspace of the Coulomb branch, on which the gauge group is broken
down to SU(N)×U(1). We will enforce this regime by a special choice of the quark
mass terms.

The breaking SU(N + 1) → SU(N)×U(1) occurs at the scale m which is
supposed to lie very high, m � �SU(N+1), where �SU(N+1) is the scale of the
SU(N + 1) theory. Correspondingly, the masses of the gauge bosons from the
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86 Non-Abelian strings

SU(N + 1)/SU(N)×U(1) sector and their superpartners, are very large – propor-
tional tom – and so are the masses of the (N + 1)-th color component of the quark
fields in the fundamental representation. We will be interested in the phenomena at
the scales � m. Therefore, our starting point is in fact the SU(N)×U(1) model with
Nf = N matter fields in the fundamental representation of SU(N), as it emerges
after the SU(N+1)→ SU(N)×U(1) breaking. These matter fields are also coupled
to the U(1) gauge field.

The field content of SU(N)×U(1) N = 2 SQCD with N flavors is as follows.
The N = 2 vector multiplet consists of the U(1) gauge field Aμ and the SU(N)
gauge field Aaμ, (here a = 1, . . . ,N2 − 1), and their Weyl fermion superpartners
(λ1
α , λ2

α) and (λ1a
α , λ2a

α ), plus complex scalar fields a, and aa . The latter are in the
adjoint representation of SU(N). The spinorial index of λ’s runs over α = 1, 2.
In this sector the global SU(2)R symmetry inherent to the N = 2 model at hand
manifests itself through rotations λ1 ↔ λ2.

The quark multiplets of the SU(N)×U(1) theory consist of the complex scalar
fields qkA and q̃Ak (squarks) and the Weyl fermions ψkA and ψ̃Ak , all in the funda-
mental representation of the SU(N) gauge group. Here k = 1, . . . ,N is the color

index whileA is the flavor index,A = 1, . . . ,N . Note that the scalars qkA and ¯̃q kA
form a doublet under the action of the global SU(2)R group.

Then the original SU(N + 1) theory is perturbed by adding a small mass term
for the adjoint matter, via the superpotential W = μTr�2. Generally speaking,
this superpotential breaks N = 2 down to N = 1. The Coulomb branch shrinks
to a number of isolated N = 1 vacua [2, 3, 126, 143, 144]. In the limit of μ → 0
these vacua correspond to special singular points on the Coulomb branch in which
N monopoles/dyons or quarks become massless. The first (N + 1) of these points
(often referred to as the Seiberg–Witten vacua) are always at strong coupling. They
correspond to N = 1 vacua of the pure SU(N + 1) gauge theory.

The massless quark points – they present vacua of a distinct type, to be referred to
as the quark vacua – may or may not be at weak coupling depending on the values
of the quark mass parameters mA. If mA � �SU(N+1), the quark vacua do lie at
weak coupling. Below we will be interested only in these quark vacua assuming
that the condition mA � �SU(N+1) is met.

In the low-energy SU(N)×U(1) theory, which is our starting point, the pertur-
bation W = μTr�2 can be truncated, leading to a crucial simplification. Indeed,
since the A chiral superfield, the N = 2 superpartner of the U(1) gauge field,1

A ≡ a + √
2λ2θ + Fa θ

2, (4.1.1)

1 The superscript 2 in Eq. (4.1.1) is the global SU(2)R index of λ rather than λ squared.
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4.1 Basic model: N = 2 SQCD 87

it not charged under the gauge group SU(N)×U(1), one can introduce a super-
potential linear in A,

WA = − N

2
√

2
ξ A. (4.1.2)

Here we expand Tr�2 around its vacuum expectation value (VEV), and truncate
the series keeping only the linear term in A. The truncated superpotential is a
Fayet–Iliopoulos (FI) F -term.

Let us explain this in more detail. In N = 1 supersymmetric theory with the
gauge group SU(N)×U(1) one can add the following FI term to the action [145]
(we will call it the FI D-term here):

ξ3 D (4.1.3)

whereD is theD-component of the U(1) gauge superfield. In N = 2 SUSY theory
the field D belongs to the SU(2)R triplet, together with the F components of the
chiral field A, (F and F̄ ). Namely, let us introduce a triplet Fp (p = 1, 2, 3) using
the relations 2

D = F3,

FA = 1√
2
(F1 + iF2),

F̄A = 1√
2
(F1 − iF2). (4.1.4)

Now, the generalized FI term can be written as

SFI = −N
2

∫
d4x

∑
p

ξpFp. (4.1.5)

Comparing this with Eq. (4.1.2) we identify

ξ = (ξ1 − iξ2),

ξ̄ = (ξ1 + iξ2) (4.1.6)

This is the reason why we refer to the superpotential (4.1.2) as to the FI F -term.
A remarkable feature of the FI term is that it does not break N = 2 super-

symmetry [127, 35]. Keeping higher order terms of the expansion of μTr�2 in
powers of A would inevitably explicitly break N = 2. For our purposes it is crucial

2 Attention: The index p is an SU(2)R index rather than the color index!
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88 Non-Abelian strings

that the model we will deal with is exactly N = 2 supersymmetric. This ensures
that the flux tube solutions of the model are BPS-saturated. If higher order terms
in A are taken into account, N = 2 supersymmetry is broken down to N = 1 and
strings are no longer BPS, generally speaking. The superconductivity in the model
becomes of type I [35].

4.1.1 SU(N)×U(1) N = 2 QCD

The bosonic part of our SU(N)×U(1) theory has the form [131]

S =
∫
d4x

[
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2 + 1

g2
2

∣∣Dμaa∣∣2 + 1

g2
1

∣∣∂μa∣∣2

+ ∣∣∇μq A∣∣2 + ∣∣∇μ ¯̃qA∣∣2 + V (q A, q̃A, aa , a)

]
. (4.1.7)

Here Dμ is the covariant derivative in the adjoint representation of SU(N), and

∇μ = ∂μ − i

2
Aμ − iAaμ T

a . (4.1.8)

We suppress the color SU(N ) indices, and T a are the SU(N ) generators
normalized as

Tr (T aT b) = (1/2) δab.

The coupling constants g1 and g2 correspond to the U(1) and SU(N) sectors, respec-
tively. With our conventions, the U(1) charges of the fundamental matter fields are
±1/2.

The potential V (q A, q̃A, aa , a) in the action (4.1.7) is a sum of D and F terms,

V (q A, q̃A, aa , a) = g2
2

2

(
i

g2
2

f abcābac + q̄A T
aq A − q̃AT

a ¯̃q A
)2

+ g2
1

8

(
q̄Aq

A − q̃A ¯̃q A −Nξ3
)2

+ 2g2
2

∣∣q̃AT aq A∣∣2 + g2
1

2

∣∣∣∣q̃Aq A − N

2
ξ

∣∣∣∣
2

+ 1

2

N∑
A=1

{∣∣(a + √
2mA + 2T aaa)q A

∣∣2
+ ∣∣(a + √

2mA + 2T aaa) ¯̃q A∣∣2} . (4.1.9)
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4.1 Basic model: N = 2 SQCD 89

Here f abc stand for the structure constants of the SU(N) group, and the sum over
the repeated flavor indices A is implied.

The first and second lines representD terms, the third line theFA terms, while the
fourth and the fifth lines represent the squark F terms. Using the SU(2)R rotations
we can always direct the FI parameter vector ξp in a given direction. Below in
most cases we will align the FI F -term to make the parameter ξ real. In other
words,

ξ3 = 0, ξ2 = 0, ξ = ξ1. (4.1.10)

4.1.2 The vacuum structure and excitation spectrum

Now we briefly review the vacuum structure and the excitation spectrum in our
basic SU(N)×U(1) model. As was mentioned, the underlying N = 2 SQCD with
the gauge group SU(N + 1) has a variety of vacua [143, 144, 140]. In addition
to N strong coupling vacua which exist in pure gauge theory, there is a number
of the so-called r quark vacua, where r is the number of the quark flavors which
develop VEV’s in the given vacuum. We will limit ourselves3 to a particular isolated
vacuum, with the maximal possible value of r ,

r = N .

The vacua of the theory (4.1.7) are determined by the zeros of the potential
(4.1.9). The adjoint fields develop the following VEV’s:

〈�〉 = − 1√
2

⎛
⎝ m1 . . . 0
. . . . . . . . .

0 . . . mN

⎞
⎠, (4.1.11)

where we defined the scalar adjoint matrix as

� = 1

2
a + T a aa . (4.1.12)

For generic values of the quark masses, the SU(N) subgroup of the gauge group is
broken down to U(1)N−1. However, for a special choice

m1 = m2 = · · · = mN , (4.1.13)

3 There are singular points on the Coulomb branch of the underlying SU(N +1) theory where more thanN quark
flavors become massless. These singularities are the roots of Higgs branches [143, 144, 140].
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90 Non-Abelian strings

which we will be mostly interested in in this section, the SU(N)×U(1) gauge
group remains classically unbroken. In fact, the common value m of the quark
masses determines the scale of breaking of the SU(N + 1) gauge symmetry of
the underlying theory down to SU(N)×U(1) gauge symmetry of our benchmark
low-energy theory (4.1.7).

If the value of the FI parameter is taken real we can exploit gauge rotations to
make the quark VEV’s real too. Then in the case at hand they take the color-flavor
locked form

〈qkA〉 = 〈 ¯̃qkA〉 =
√
ξ

2

⎛
⎝ 1 . . . 0
. . . . . . . . .

0 . . . 1

⎞
⎠,

k = 1, . . . ,N , A = 1, . . . ,N , (4.1.14)

where we write down the quark fields as an N × N matrix in the color and
flavor indices. This particular form of the squark condensates is dictated by the
third line in Eq. (4.1.9). Note that the squark fields stabilize at non-vanishing val-
ues entirely due to the U(1) factor represented by the second term in the third
line.

The vacuum field (4.1.14) results in the spontaneous breaking of both gauge and
flavor SU(N )’s. A diagonal global SU(N ) survives, however,

U(N)gauge × SU(N)flavor → SU(N)C+F . (4.1.15)

Thus, a color-flavor locking takes place in the vacuum. A version of this pattern of
the symmetry breaking was suggested long ago [146].

Let us move on to the issue of the excitation spectrum in this vacuum [35, 131].
The mass matrix for the gauge fields (Aaμ,Aμ) can be read off from the quark kinetic
terms in Eq. (4.1.7). It shows that all SU(N) gauge bosons become massive, with
one and the same mass

MSU(N) = g2
√
ξ . (4.1.16)

The equality of the masses is no accident. It is a consequence of the unbroken
SU(N)C+F symmetry (4.1.15).

The mass of the U(1) gauge boson is

MU(1) = g1

√
N

2
ξ . (4.1.17)
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4.1 Basic model: N = 2 SQCD 91

Thus, the theory is fully Higgsed. The mass spectrum of the adjoint scalar excitations
is the same as the one for the gauge bosons. This is enforced by N = 2.

What is the mass spectrum of the quark excitations? It can be read off from
the potential (4.1.9). We have 4N2 real degrees of freedom of quark scalars q and
q̃. Out of those N2 are eaten up by the Higgs mechanism. The remaining 3N2

states split in three plus 3(N2 −1) states with masses (4.1.17) and (4.1.16), respec-
tively. Combining these states with the massive gauge bosons and the adjoint scalar
states we get [35, 131] one long N = 2 BPS multiplet (eight real bosonic plus
eight fermionic degrees of freedom) with mass (4.1.17) and N2 − 1 long N = 2
BPS multiplets with mass (4.1.16). Note that these supermultiplets come in repre-
sentations of the unbroken SU(N)C+F group, namely, the singlet and the adjoint
representations.

To conclude this section we want to discuss quantum effects in the theory (4.1.7).
At a high scale m the SU(N + 1) gauge group is broken down to SU(N)×U(1) by
condensation of the adjoint fields if the condition (4.1.13) is met. The SU(N) sector
is asymptotically free. The running of the corresponding gauge coupling, if non-
interrupted, would drag the theory into the strong coupling regime. This would
invalidate our quasiclassical analysis. Moreover, strong coupling effects on the
Coulomb branch would break SU(N) gauge subgroup (as well as the SU(N)C+F
group) down to U(1)N−1 by the Seiberg–Witten mechanism [2]. No non-Abelian
strings would emerge.

A possible way out was proposed in [143, 144]. One can add more flavors to
the theory making Nf > 2N . Then the SU(N) sector is not asymptotically free
and does not evolve into the strong coupling regime. However, the ANO strings in
the multiflavor theory (on the Higgs branches) become semilocal strings [147] and
confinement is lost (see Section 4.7).

Here we take a different route assuming the FI parameter ξ to be large,4

ξ � �SU(N). (4.1.18)

This condition ensures weak coupling in the SU(N) sector because the SU(N)
gauge coupling does not run below the scale of the quark VEV’s which is determined
by ξ . More explicitly,

8π2

g2
2(ξ)

= N ln

√
ξ

�SU(N)
� 1. (4.1.19)

4 We discuss this important issue in more detail at the end of Section 4.9.
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92 Non-Abelian strings

Alternatively one can say that

�NSU(N) = ξN/2 exp

(
− 8π2

g2
2(ξ)

)
� ξN/2. (4.1.20)

4.2 ZN Abelian strings

Strictly speaking, N = 2 SQCD with the gauge group SU(N + 1) does not have
stable flux tubes. They are unstable due to monopole–antimonopole pair creation in
the SU(N +1)/SU(N )×U(1) sector. However, at largem these monopoles become
heavy. In fact, there are no such monopoles in the low-energy theory (4.1.7) (where
they can be considered as infinitely heavy). Therefore, the theory (4.1.7) has stable
string solutions. When the perturbation μTr�2 is truncated to the FI term (4.1.2),
the theory enjoys N = 2 supersymmetry and has BPS string solutions [127, 35,
148, 140, 131]. Note that here we discuss magnetic flux tubes. They are formed in
the Higgs phase of the theory upon condensation of the squark fields and lead to
confinement of monopoles.

Now, let us briefly review the BPS string solutions [140, 130, 131] in the model
(4.1.7). We will consider the case of equal quark mass terms (4.1.13) when the
global SU(N )C+F group is unbroken. First we review the Abelian solutions forZN
strings and then, in Section 4.3 show that in the limit m1 = m2 = · · · = mN ≡ m

they acquire orientational moduli.
In fact, the ZN Abelian strings considered below are just partial solutions of

the vortex equations (see Eq. (4.2.10) below). In the equal mass limit (4.1.13) the
global SU(N)C+F group is restored and the general solution for the non-Abelian
string gets a continuous moduli space isomorphic to CP(N − 1). The ZN strings
are just N discrete points on this moduli space.

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005
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In the generic case of unequal quark masses, the SU(N)C+F group is explicitly
broken, and the continuous moduli space of the string solutions is lifted. Only the
ZN Abelian strings survive this breaking. We will dwell on the case of generic
quark masses in Section 4.4.4.

It turns out that the string solutions do not involve the adjoint fields a and aa .
The BPS strings are “built” from gauge and quark fields only. Therefore, in
order to find the classical solution, in the action (4.1.7) we can set the adjoint
fields to their VEV’s (4.1.11). This is consistent with equations of motion. Of
course, at the quantum level the adjoint fields start fluctuating, deviating from
their VEV’s.

We use the ansatz

qkA = ¯̃qkA = 1√
2
ϕkA (4.2.1)

reducing the number of the squark degrees of freedom to one complex field for
each color and flavor. With these simplifications the action of the model (4.1.7)
becomes

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2

+|∇μϕA|2 + g2
2

2

(
ϕ̄AT

aϕA
)2 + g2

1

8

(|ϕA|2 −Nξ
)2} , (4.2.2)

while the VEV’s of the squark fields (4.1.14) are

〈ϕ〉 = √ξ diag {1, 1, . . . , 1}. (4.2.3)

Since the spontaneously broken gauge U(1) is a part of the model under con-
sideration, the model supports conventional ANO strings [36], in which one can
discard the SU(N)gauge part of the action altogether. The topological stability of
the ANO string is due to the fact that π1(U(1)) = Z.

These are not the strings we are interested in. At first sight, the triviality of the
homotopy group, π1(SU(N)) = 0, implies that there are no other topologically
stable strings. This impression is false. One can combine the ZN center of SU(N )
with the elements exp(2πik/N) ∈U(1) to get a topologically stable string solution
possessing both windings, in SU(N ) and U(1). In other words,

π1
(
SU(N)× U(1)/ZN

) �= 0. (4.2.4)
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94 Non-Abelian strings

It is easy to see that this nontrivial topology amounts to selecting just one element
of ϕ, say, ϕ11, or ϕ22, etc, and make it wind, for instance,5

ϕstring = √ξ diag(1, 1, . . . , eiα), x → ∞. (4.2.5)

Such strings can be called elementary; their tension is 1/N th of that of the ANO
string. The ANO string can be viewed as a bound state of N elementary strings.

More concretely, one of theZN string solutions (a progenitor of the non-Abelian
string) can be written as follows [131]:

ϕ =

⎛
⎜⎜⎜⎜⎜⎝

φ2(r) 0 . . . 0

. . . . . . . . . . . .

0 . . . φ2(r) 0

0 0 . . . eiαφ1(r)

⎞
⎟⎟⎟⎟⎟⎠,

A
SU(N)
i = 1

N

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 0 0

. . . . . . . . . . . .

0 . . . 1 0

0 0 . . . −(N − 1)

⎞
⎟⎟⎟⎟⎟⎠
(
∂iα
)[− 1 + fNA(r)

]
,

A
U(1)
i = I

2
Ai = I

N

(
∂iα
)[

1 − f (r)
]
, A

U(1)
0 = A

SU(N)
0 = 0, (4.2.6)

where i = 1, 2 labels the coordinates in the plane orthogonal to the string axis,
r and α are the polar coordinates in this plane, and I is the unit N × N matrix.
Other ZN string solutions are obtained by permutations of the rotating flavor.

The profile functions φ1(r) and φ2(r) determine the profiles of the scalar fields,
while fNA(r) and f (r) determine the SU(N ) and U(1) fields of the string solu-
tions, respectively. These functions satisfy the following rather obvious boundary
conditions:

φ1(0) = 0,

fNA(0) = 1, f (0) = 1, (4.2.7)

at r = 0, and

φ1(∞) = √ξ , φ2(∞) = √ξ ,

fNA(∞) = 0, f (∞) = 0 (4.2.8)

at r = ∞.

5 As explained below, α is the angle of the coordinate �x⊥ in the perpendicular plane.
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Now, let us derive the first-order equations which determine the profile functions,
making use of the Bogomol’nyi representation [5] of the model (4.2.2). We have

T =
∫
d2x

{[
1√
2g2

F ∗a
3 + g2√

2

(
ϕ̄AT

aϕA
)]2

+
[

1√
2g1

F ∗
3 + g1

2
√

2

(|ϕA|2 −Nξ
)]2

+ ∣∣∇1 ϕ
A + i∇2 ϕ

A
∣∣2 + N

2
ξ F ∗

3

}
, (4.2.9)

where
F ∗

3 = F12 and F ∗a
3 = Fa12,

and we assume that the fields in question depend only on the transverse coordinates
xi , i = 1, 2.

The Bogomol’nyi representation (4.2.9) leads us to the following first-order
equations:

F ∗
3 + g2

1

2

(∣∣ϕA∣∣2 −Nξ
) = 0,

F ∗a
3 + g2

2

(
ϕ̄AT

aϕA
) = 0,

(∇1 + i∇2)ϕ
A = 0. (4.2.10)

Once these equations are satisfied, the energy of the BPS object is given by the last
surface term in (4.2.9). Note that the representation (4.2.9) can be written also with
the opposite sign in front of the flux terms. Then we would get the Bogomol’nyi
equations for the anti-string.

For minimal winding we substitute the ansatz (4.2.6) in Eqs. (4.2.10) to get the
first-order equations for the profile functions of the ZN string [140, 131],

r
d

dr
φ1(r)− 1

N

(
f (r)+ (N − 1)fNA(r)

)
φ1(r) = 0,

r
d

dr
φ2(r)− 1

N

(
f (r)− fNA(r)

)
φ2(r) = 0,

−1

r

d

dr
f (r)+ g2

1N

4

[
(N − 1)φ2(r)

2 + φ1(r)
2 −Nξ

] = 0,

−1

r

d

dr
fNA(r)+ g2

2

2

[
φ1(r)

2 − φ2(r)
2] = 0. (4.2.11)

These equations present a ZN -string generalization of the Bogomol’nyi equations
for the ANO string [5] (see also (3.2.19) and (C.13)). They were solved numerically

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005


96 Non-Abelian strings

B

B

B3

B3

Figure 4.1. Two distinct Z2 strings in U(2) theory.

for the U(2) case (i.e. N = 2) in [131]. Clearly, the solutions to the first-order
equations automatically satisfy the second-order equations of motion.

The tension of this elementary ZN string is

T1 = 2π ξ . (4.2.12)

Since our string is a BPS object, this result is exact and has neither perturbative
nor nonperturbative corrections. Note that the tension of the ANO string isN times
larger; in our normalization

TANO = 2π N ξ . (4.2.13)

Clearly, the ansatz (4.2.6) admits permutations, leading to other ZN string solu-
tions of type (4.2.6). They can be obtained by changing the position of the “winding”
field in Eq. (4.2.6). Altogether we have N elementary ZN strings. For instance, if
N = 2 (i.e. the gauge group is SU(2)×U(1)), we have two distinct Z2 strings dif-
fering by the orientation of the flux of the U(1) magnetic field with respect to that
of the third isocomponent of the SU(2) magnetic field, see Fig. 4.1.

Of course, the first-order equations (4.2.11) can be also obtained using super-
symmetry. We start from the supersymmetry transformations for the fermion fields
in the theory (4.1.7),

δλfα = 1

2
(σμσ̄νε

f )αFμν + εαpFm(τm)
f
p + · · · ,

δλaf α = 1

2
(σμσ̄νε

f )αF aμν + εαpF am(τm)
f
p + · · · ,

δ
¯̃
ψkAα̇ = i

√
2 ∇̄/α̇αqkAf εαf + · · · ,

δψ̄α̇Ak = i
√

2 ∇̄/α̇αq̄fAkεαf + · · · (4.2.14)

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005
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Here f = 1, 2 is the SU(2)R index and λfα and λafα are the fermions from the
N = 2 vector supermultiplets of the U(1) and SU(2) factors, respectively, while
qkAf denotes the SU(2)R doublet of the squark fields qkA and ¯̃qAk in the quark
hypermultiplets. The parameters of the SUSY transformations in the microscopic
theory are denoted as εαf . Furthermore, the F terms in Eq. (4.2.14) are

F 1 + iF 2 = i
g2

1

2

(
Tr |ϕ|2 −Nξ

)
, F 3 = 0 (4.2.15)

for the U(1) field, and

Fa1 + iF a2 = i g2
2 Tr

(
ϕ̄T aϕ

)
, Fa3 = 0 (4.2.16)

for the SU(N) field. The dots in (4.2.14) stand for terms involving the adjoint
scalar fields which vanish on the string solution (in the equal mass case) because
the adjoint fields are given by their vacuum expectation values (4.1.11).

In Ref. [35] it was shown that four supercharges selected by the conditions

ε12 = −ε11, ε21 = ε22 (4.2.17)

act trivially on the BPS string. Imposing the conditions (4.2.17) and requiring the
left-hand sides of Eqs. (4.2.14) to vanish6 we get, upon substituting the ansatz
(4.2.6), the first-order equations (4.2.11).

6 If, instead of (4.2.17), we required other combinations of the SUSY transformation parameters to vanish (chang-
ing the signs in (4.2.17)) we would get the anti-string equations, with the opposite direction of the gauge
fluxes.
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98 Non-Abelian strings

4.3 Elementary non-Abelian strings

The elementary ZN strings in the model (4.1.7) give rise to non-Abelian strings
provided the condition (4.1.13) is satisfied [130, 131, 132, 133]. This means that,
in addition to trivial translational moduli, they have extra moduli corresponding
to spontaneous breaking (on the string) of a non-Abelian symmetry acting in the
bulk theory in the infrared. Indeed, while the “flat” vacuum (4.1.14) is SU(N)C+F
symmetric, the solution (4.2.6) breaks this symmetry7 down to U(1)×SU(N − 1)
(at N > 2). This ensures the presence of 2(N − 1) orientational moduli.

To obtain the non-Abelian string solution from the ZN string (4.2.6) we apply
the diagonal color-flavor rotation preserving the vacuum (4.1.14). To this end it is
convenient to pass to the singular gauge where the scalar fields have no winding
at infinity, while the string flux comes from the vicinity of the origin. In this gauge
we have

ϕ = U

⎛
⎜⎜⎝
φ2(r) 0 . . . 0
. . . . . . . . . . . .

0 . . . φ2(r) 0
0 0 . . . φ1(r)

⎞
⎟⎟⎠U−1,

A
SU(N)
i = 1

N
U

⎛
⎜⎜⎝

1 . . . 0 0
. . . . . . . . . . . .

0 . . . 1 0
0 0 . . . −(N − 1)

⎞
⎟⎟⎠U−1 (∂iα) fNA(r),

A
U(1)
i = − 1

N

(
∂iα
)
f (r), A

U(1)
0 = A

SU(N)
0 = 0, (4.3.1)

where U is a matrix ∈ SU(N)C+F . This matrix parametrizes orientational zero
modes of the string associated with flux rotation in SU(N ). Since the diagonal
color-flavor symmetry is not broken by the VEV’s of the scalar fields in the bulk
(color-flavor locking) it is physical and has nothing to do with the gauge rotations
eaten by the Higgs mechanism. The orientational moduli encoded in the matrix U
are not gauge artifacts.

The orientational zero modes of a non-Abelian string were first observed in
[130, 131]. In Ref. [130] a general index theorem was proved which shows that
the dimension of elementary string moduli space is 2N = 2(N − 1) + 2 where
2 stands for translational moduli while 2(N − 1) is the dimension of the internal
moduli space.8 In Ref. [131] the explicit solution for the non-Abelian string which
we review here was found and explored.

7 At N = 2 the string solution breaks SU(2) down to U(1).
8 The index theorem in [130] deals with more general multiple strings. It was shown that the dimension of the

moduli space of the k-string solution is 2kN .
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In fact, non-translational zero modes of strings were discussed earlier in a
U(1)×U(1) model [149, 150], and somewhat later, in more contrived models, in
Ref. [151]. (The latter paper is entitled “Zero modes of non-Abelian vortices”!) It
is worth emphasizing that, along with some apparent similarities, there are drastic
distinctions between the “non-Abelian strings” we review here and the strings that
were discussed in the 1980s. In particular, in the example treated in Ref. [151]
the gauge group is not completely broken in the vacuum, and, therefore, there are
massless gauge fields in the bulk. If the unbroken generator acts non trivially on
the string flux (which is proportional to a broken generator) then it can and does
create zero modes. Infrared divergence problems ensue immediately.

In the case we treat here the gauge group is completely broken (up to a dis-
crete subgroup ZN ). The theory in the bulk is fully Higgsed. The unbroken group
SU(N)C+F , a combination of the gauge and flavor groups, is global. There are no
massless fields in the bulk.

It is possible to model the example considered in [151] if we gauge the unbroken
global symmetry SU(N)C+F of the model (4.1.7) with respect to yet another gauge
field Bμ.

Let us also note that a generalization of the non-Abelian string solutions in six-
dimensional gauge theory with eight supercharges was carried out in [152] while
the non-Abelian strings in strongly coupled vacua were considered in [153].

4.4 The world-sheet effective theory

The non-Abelian string solution (4.3.1) is characterized by two translational moduli
(the position of the string in the (1,2) plane) and 2(N − 1) orientational moduli.
Below we review the effective two-dimensional low-energy theory on the string
world sheet. As usual, the translational moduli decouple and we focus on the inter-
nal dynamics of the orientational moduli. Our string is a 1/2-BPS state in N = 2
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supersymmetric gauge theory with eight supercharges. Thus it has four supercharges
acting in the world sheet theory. This means that we have extended N = 2 super-
symmetric effective theory on the string world sheet. This theory turns out to be
a two-dimensional CP(N − 1) model [130, 131, 132, 133]. In Section 4.4 we will
first present a derivation of this theory and then discuss the underlying physics.

4.4.1 Derivation of the CP(N − 1) model

Now, following Refs. [131, 132, 154], we will derive the effective low-energy
theory for the moduli residing in the matrix U in the problem at hand. As is clear
from the string solution (4.3.1), not each element of the matrix U will give rise to a
modulus. The SU(N − 1)×U(1) subgroup remains unbroken by the string solution
under consideration; therefore the moduli space is

SU(N)

SU(N − 1)× U(1)
∼ CP(N − 1). (4.4.1)

Keeping this in mind we parametrize the matrices entering Eq. (4.3.1) as follows:

1

N

⎧⎪⎪⎨
⎪⎪⎩U

⎛
⎜⎜⎝

1 . . . 0 0
. . . . . . . . . . . .

0 . . . 1 0
0 0 . . . −(N − 1)

⎞
⎟⎟⎠U−1

⎫⎪⎪⎬
⎪⎪⎭
l

p

= −nln∗
p + 1

N
δlp , (4.4.2)

where nl is a complex vector in the fundamental representation of SU(N ), and

n∗
l n
l = 1, (4.4.3)

(l,p = 1, . . . ,N are color indices). As we will show below, one U(1) phase will
be gauged away in the effective sigma model. This gives the correct number of
degrees of freedom, namely, 2(N − 1).

With this parametrization the string solution (4.3.1) can be rewritten as

ϕ = 1

N

[
(N − 1)φ2 + φ1

]+ (φ1 − φ2)

(
n · n∗ − 1

N

)
,

A
SU(N)
i =

(
n · n∗ − 1

N

)
εij
xj

r2
fNA(r),

A
U(1)
i = 1

N
εij
xj

r2
f (r), (4.4.4)

where for brevity we suppress all SU(N) indices. The notation is self-evident.
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Assume that the orientational moduli are slowly varying functions of the string
world-sheet coordinates xk , k = 0, 3. Then the moduli nl become fields of a (1+1)-
dimensional sigma model on the world sheet. Since nl parametrize the string zero
modes, there is no potential term in this sigma model.

To obtain the kinetic term we substitute our solution (4.4.4), which depends on
the moduli nl , in the action (4.2.2), assuming that the fields acquire a dependence on
the coordinates xk via nl(xk). In doing so we immediately observe that we have to
modify our solution: we have to include in it the k = 0, 3 components of the gauge
potential which are no longer vanishing. In the CP(1) case, as was shown in [132],
the potential Ak must be orthogonal (in the SU(2) space) to the matrix (4.4.2), as
well as to its derivatives with respect to xk . Generalization of these conditions to
the CP(N − 1) case leads to the following ansatz:

A
SU(N)
k = −i [∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)

]
ρ(r), α = 0, 3, (4.4.5)

where we assume the contraction of the color indices inside the parentheses,

(n∗∂kn) ≡ n∗
l ∂kn

l ,

and introduce a new profile function ρ(r).
The function ρ(r) in Eq. (4.4.5) is determined through a minimization procedure

[131, 132, 154] which generates ρ’s own equation of motion. Now we will outline
its derivation. But at first we note that ρ(r) vanishes at infinity,

ρ(∞) = 0. (4.4.6)

The boundary condition at r = 0 will be determined shortly.
The kinetic term for nl comes from the gauge and quark kinetic terms in

Eq. (4.2.2). Using Eqs. (4.4.4) and (4.4.5) to calculate the SU(N ) gauge field
strength we find

F
SU(N)
ki = (∂kn · n∗ + n · ∂kn∗) εij xj

r2
fNA

[
1 − ρ(r)

]
+ i
[
∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)

] xi
r

dρ(r)

dr
. (4.4.7)

In order to have a finite contribution from the term TrF 2
ki in the action we have to

impose the constraint

ρ(0) = 1. (4.4.8)
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102 Non-Abelian strings

Substituting the field strength (4.4.7) in the action (4.2.2) and including, in addition,
the quark kinetic term, after rather straightforward but tedious algebra we arrive at

S(1+1) = 2β
∫
dt dz

{
(∂k n

∗∂k n)+ (n∗∂k n)2
}
, (4.4.9)

where the coupling constant β is given by

β = 2π

g2
2

I , (4.4.10)

and I is a basic normalizing integral

I =
∫ ∞

0
rdr

{(
d

dr
ρ(r)

)2

+ 1

r2
f 2
NA

(
1 − ρ

)2

+ g2
2

[
ρ2

2

(
φ2

1 + φ2
2

)+ (1 − ρ)(φ2 − φ1)
2
]}

. (4.4.11)

The theory in Eq. (4.4.9) is nothing but the two-dimensional CP(N − 1) model.
To see that this is indeed the case we can eliminate the second term in (4.4.9)
introducing a non-propagating U(1) gauge field. We review this in Section 4.4.3
(see also Appendix B), and then discuss the underlying physics of the model.

Thus, we obtain the CP(N − 1) model as an effective low-energy theory on the
world sheet of the non-Abelian string. Its coupling constant β is related to the four-
dimensional coupling g2

2 via the basic normalizing integral (4.4.11). This integral
must be viewed as an “action” for the profile function ρ.

Varying (4.4.11) with respect to ρ one obtains the second-order equation which
the function ρ must satisfy, namely,

− d2

dr2
ρ − 1

r

d

dr
ρ − 1

r2
f 2
NA(1 − ρ)+ g2

2

2

(
φ2

1 + φ2
2

)
ρ − g2

2

2
(φ1 − φ2)

2 = 0.

(4.4.12)

After some algebra and extensive use of the first-order equations (4.2.11) one can
show that the solution of (4.4.12) is

ρ = 1 − φ1

φ2
. (4.4.13)

This solution satisfies the boundary conditions (4.4.6) and (4.4.8). Substituting this
solution back in the expression for the normalizing integral (4.4.11) one can check

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005
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that this integral reduces to a total derivative and is given by the flux of the string
determined by fNA(0) = 1. In this way we arrive at

I = 1. (4.4.14)

This result can be traced back to the fact that our theory (4.2.2) is N = 2 super-
symmetric theory, and the string is BPS saturated. In Section 4.5 we will see that
this fact is crucial for the interpretation of confined monopoles as sigma-model
kinks. Generally speaking, for non-BPS strings, I could be a certain function of N
(see Ref. [155] for a particular example).

Equation (4.4.14) implies

β = 2π

g2
2

. (4.4.15)

The two-dimensional coupling is determined by the four-dimensional non-Abelian
coupling. This relation is obtained at the classical level. In quantum theory both
couplings run. Therefore, we have to specify a scale at which the relation (4.4.15)
takes place. The two-dimensional CP(N − 1) model (4.4.9) is an effective low-
energy theory appropriate for the description of internal string dynamics at low
energies, lower than the inverse thickness of the string which is given by the masses
of the gauge/quark multiplets (4.1.16) and (4.1.17) in the bulk SU(N)×U(1) theory.
Thus, the parameter g

√
ξ plays the role of a physical ultraviolet (UV) cut off in

the action (4.4.9). This is the scale at which Eq. (4.4.15) holds. Below this scale,
the coupling β runs according to its two-dimensional renormalization-group flow,
see Section 4.4.3. It is worth noting that if the bulk theory were not Higgsed the
running law of the bulk theory would exactly match that of the CP(N − 1) model.
Indeed, Eq. (4.4.15) implies that

(
4πβCP(N−1)

)
0 =

(
8π2

g2
2

)
0

. (4.4.16)

To get the running couplings we must add −bCP(N−1) ln(M0/μ) on the left-hand
side of Eq. (4.4.16) and −bSU(N)×U(1) ln(M0/μ) on the right-hand side. The coef-
ficients of the two- and four-dimensional Gell-Mann–Low functions coincide,
bCP(N−1) = bSU(N)×U(1) = N .

Thus – we repeat again – the model (4.4.9) describes the low-energy limit: all
higher-order terms in derivatives are neglected. Quartic in derivatives, sextic, and
so on, terms certainly exist. In fact, the derivative expansion runs in powers of

(
g2
√
ξ
)−1

∂α , (4.4.17)
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where g2
√
ξ gives the order of magnitude of masses in the bulk theory. The

sigma model (4.4.9) is adequate at scales below g2
√
ξ where the higher-derivative

corrections are negligibly small.
To conclude this section let us narrow down the model (4.4.9) setting N = 2. In

this case we deal with the CP(1) model equivalent to the O(3) sigma model. The
action (4.4.9) can be represented as (see Appendix B)

S(1+1) = β

2

∫
dt dz (∂k S

a)2, (4.4.18)

where Sa (a = 1, 2, 3) is a real unit vector, (Sa)2 = 1, sweeping the two-
dimensional sphere S2. It is defined as

Sa = −n∗τan. (4.4.19)

The model (4.4.18), as an effective theory on the world sheet of the non-Abelian
string in SU(2)×U(1) SQCD with N = 2 supersymmetry, was first derived in
[131] in a field-theoretical framework. This derivation was generalized for arbitrary
N in [154]. A brane construction of (4.4.9) was presented in [130].

4.4.2 Fermion zero modes

In Section 4.4.1 we derived the bosonic part of the effective N = 2 supersymmetric
CP(N−1)model. Now we will find fermion zero modes for the non-Abelian string.
Inclusion of these modes into consideration will demonstrate that the internal world
sheet dynamics is given by N = 2 supersymmetric CP(N−1)model. This program
was carried out in [132] for N = 2. Here we will focus on this construction.

The string solution (4.4.4) in the SU(2)×U(1) theory reduces to

ϕ = U

(
φ2(r) 0

0 φ1(r)

)
U−1,

Aai (x) = −Sa εij xj
r2
fNA(r),

Ai(x) = εij
xj

r2
f (r), (4.4.20)

while the parametrization (4.4.2) reduces to

Saτa = Uτ 3U−1, a = 1, 2, 3, (4.4.21)

by virtue of Eq. (4.4.19).
Our string solution is 1/2 BPS-saturated. This means that four supercharges,

out of eight of the four-dimensional theory (4.1), act trivially on the string solution
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(4.4.20). The remaining four supercharges generate four fermion zero modes which
were termed supertranslational modes because they are superpartners to two trans-
lational zero modes. The corresponding four fermionic moduli are superpartners
to the coordinates x0 and y0 of the string center. The supertranslational fermion
zero modes were found in Ref. [35] for the U(1) ANO string in N = 2 theory.
This is discussed in detail in Appendix C, see Section C.3. Transition to the non-
Abelian model at hand is absolutely straightforward. We will not dwell on this
procedure here.

Instead, we will focus on four additional fermion zero modes which arise
only for the non-Abelian string, to be referred to as superorientational. They are
superpartners of the bosonic orientational moduli Sa .

Let us see how one can explicitly construct these four zero modes (in CP(1)) and
study their impact on the string world sheet.

At N = 2 the fermionic part of the action of the model (4.1.7) is

Sferm =
∫
d4x

{
i

g2
2

λ̄af D̄/λ
af + i

g2
1

λ̄f ∂̄/λ
f + Tr

[
ψ̄i∇̄/ψ]+ Tr

[
ψ̃i∇/ ¯̃

ψ
]

+ 1√
2
εabcāa(λbf λ

cf )+ 1√
2
εabc(λ̄bf λ̄cf )a

c

+ i√
2

Tr
[
q̄f (λ

f ψ)+ (ψ̃λf )q
f + (ψ̄λ̄f )q

f + q̄ f (λ̄f
¯̃
ψ)
]

+ i√
2

Tr
[
q̄f τ

a(λaf ψ)+ (ψ̃λaf )τ
aq f + (ψ̄λ̄af )τ

aq f + q̄ f τ a(λ̄af
¯̃
ψ)
]

+ i√
2

Tr
[
ψ̃
(
a + aaτa

)
ψ
]

+ i√
2

Tr
[
ψ̄
(
a + aaτa

) ¯̃
ψ
]}

, (4.4.22)

where we use the matrix color-flavor notation for the matter fermions (ψα)kA

and (ψ̃α)Ak . The traces in Eq. (4.4.22) are performed over the color-flavor indices.
Contraction of spinor indices is assumed inside the parentheses, say, (λψ) ≡ λαψ

α .
As was mentioned in Section 4.2, the four supercharges selected by the conditions

(4.2.17) act trivially on the BPS string in the theory with the FI term of the F type.
To generate superorientational fermion zero modes the following method was used
in [132]. Assume the orientational moduli Sa in the string solution (4.4.20) to
have a slow dependence on the world-sheet coordinates x0 and x3 (or t and z).
Then the four (real) supercharges selected by the conditions (4.2.17) no longer act
trivially. Instead, their action now generates fermion fields proportional to x0 and
x3 derivatives of Sa .

This is exactly what one expects from the residual N = 2 supersymmetry in
the world sheet theory. The above four supercharges generate the world-sheet
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supersymmetry in the N = 2 two-dimensional CP(1) model,

δχa1 = i
√

2
[
(∂0 + i∂3) S

a ε2 + εabcSb (∂0 + i∂3) S
c η2

]
,

δχa2 = i
√

2
[
(∂0 − i∂3) S

a ε1 + εabcSb (∂0 − i∂3) S
c η1

]
. (4.4.23)

Here χaα (α = 1, 2 is the spinor index) are real two-dimensional fermions of the
CP(1) model. They are superpartners of Sa and are subject to the orthogonality
condition (see Appendix B)

Saχaα = 0. (4.4.24)

The real parameters of the N = 2 two-dimensional SUSY transformations
εα and ηα are identified with the parameters of the four-dimensional SUSY
transformations (with the constraint (4.2.17)) as follows:

ε1 − iη1 = 1√
2
(ε21 + ε22) = √

2ε22,

ε2 + iη2 = 1√
2
(ε11 − ε12) = √

2ε11. (4.4.25)

In this way the world-sheet supersymmetry was used to re-express the fermion
fields obtained upon the action of these four supercharges in terms of the (1 + 1)-
dimensional fermions. This procedure gives us the superorientational fermion zero
modes [132],

ψ̄Ak2̇ =
(
τa

2

)
Ak

1

2φ2
(φ2

1 − φ2
2)
[
χa2 + iεabc Sb χc2

]
,

¯̃
ψkA

1̇
=
(
τa

2

)kA 1

2φ2
(φ2

1 − φ2
2)
[
χa1 − iεabc Sb χc1

]
,

ψ̄Ak1̇ = 0, ¯̃
ψkA

2̇
= 0,

λa22 = i

2

x1 + ix2

r2
fNA

φ1

φ2

[
χa1 − iεabc Sb χc1

]
,

λa11 = i

2

x1 − ix2

r2
fNA

φ1

φ2

[
χa2 + iεabc Sb χc2

]
,

λa12 = λa11, λa21 = λa22, (4.4.26)

where the dependence on xi is encoded in the string profile functions, see
Eq. (4.4.20).
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Now let us directly check that the zero modes (4.4.26) satisfy the Dirac equations
of motion. From the fermion action of the model (4.4.22) we get the Dirac
equations for λa ,

i

g2
2

D̄/λaf + i√
2

Tr
(
ψ̄τ aq f + q̄ f τ a

¯̃
ψ
)

= 0. (4.4.27)

At the same time, for the matter fermions,

i∇/ψ̄ + i√
2

[
q̄f λ

f − (τ aq̄f )λ
af + (a − aaτa)ψ̃

]
= 0,

i∇/ ¯̃
ψ + i√

2

[
λf q

f + λaf (τ
aq f )+ (a + aaτa)ψ

]
= 0. (4.4.28)

Next, we substitute the orientational fermion zero modes (4.4.26) into these
equations. After some algebra one can check that (4.4.26) do satisfy the Dirac
equations (4.4.27) and (4.4.28) provided the first-order equations for the string
profile functions (4.2.11) are satisfied.

Furthermore, it is instructive to check that the zero modes (4.4.26) do produce
the fermion part of the N = 2 two-dimensional CP(1) model. To this end we return
to the usual assumption that the fermion collective coordinates χaα in Eq. (4.4.26)
have an adiabatic dependence on the world-sheet coordinates xk (k = 0, 3). This
is quite similar to the procedure of Section 4.4.1 for bosonic moduli. Substituting
Eq. (4.4.26) in the fermion kinetic terms in the bulk theory (4.4.22), and taking
into account the derivatives of χaα with respect to the world-sheet coordinates, we
arrive at

β

∫
dtdz

{
1

2
χa1 (∂0 − i∂3) χ

a
1 + 1

2
χa2 (∂0 + i∂3) χ

a
2

}
, (4.4.29)

where β is given by the same integral (4.4.15) as for the bosonic kinetic term, see
Eq. (4.4.18).

Finally we must discuss the four-fermion interaction term in the CP(1) model. We
can use the world sheet N = 2 supersymmetry to reconstruct this term. The SUSY
transformations in the CP(1) model have the form (see e.g. [156] for a review)

δχa1 = i
√

2 (∂1 + i∂3) S
a ε2 − √

2ε1 S
a(χb1χ

b
2 ),

δχa2 = i
√

2 (∂1 − i∂3) S
a ε1 + √

2ε2 S
a(χb1χ

b
2 ),

δSa = √
2(ε1χ

a
2 + ε2χ

a
1 ), (4.4.30)
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where we put ηα = 0 for simplicity. Imposing this supersymmetry leads to the
following effective theory on the string world sheet

SCP(1) = β

∫
dtdz

{
1

2
(∂kS

a)2 + 1

2
χa1 i(∂0 − i∂3) χ

a
1

+1

2
χa2 i(∂0 + i∂3) χ

a
2 − 1

2
(χa1 χ

a
2 )

2
}

, (4.4.31)

This is indeed the action of the N = 2 CP(1) sigma model in its entirety.

4.4.3 Physics of the CP(N − 1) model with N = 2

As is quite common in two dimensions, the Lagrangian of our effective theory
on the string world sheet can be cast in many different (but equivalent) forms. In
particular, the N = 2 supersymmetric CP(N − 1)model (4.4.9) can be understood
as a strong-coupling limit of a U(1) gauge theory [157]. Then the bosonic part of
the action takes the form

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β |σ |2|n�|2 + 2e2β2(|n�|2 − 1)2
}

, (4.4.32)

where ∇k = ∂k − iAk while σ is a complex scalar field. The condition (4.4.3) is
implemented in the limit e2 → ∞. Moreover, in this limit the gauge fieldAk and its
N = 2 bosonic superpartner σ become auxiliary and can be eliminated by virtue
of the equations of motion,

Ak = − i
2
n∗
�

↔
∂k n

�, σ = 0. (4.4.33)

Substituting Eq. (4.4.33) in the Lagrangian, we can readily rewrite the action in the
form (4.4.9).

The coupling constant β is asymptotically free [158]. The running coupling, as
a function of energy E, is given by the formula

4πβ = N ln
E

�σ
, (4.4.34)

where �σ is a dynamical scale of the sigma model. The ultraviolet cut off of the
sigma model on the string world sheet is determined by g2

√
ξ . Equation (4.4.15)

relating the two- and four-dimensional couplings is valid at this scale. Hence,

�Nσ = gN2 ξ
N
2 e

− 8π2

g2
2 = �NSU(N). (4.4.35)
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Here we take into account Eq. (4.1.20) for the dynamical scale �SU(N) of the
SU(N) factor of the bulk theory. Note that in the bulk theory per se, because of
the VEV’s of the squark fields, the coupling constant is frozen at g2

√
ξ ; there are

no logarithms below this scale. The logarithms of the string world-sheet theory
take over. Moreover, the dynamical scales of the bulk and world-sheet theories turn
out to be the same! We will explain the reason why the dynamical scale of the
(1 + 1)-dimensional effective theory on the string world sheet is identical to that
of the SU(N) factor of the (3 + 1)-dimensional gauge theory later, in Section 4.6.

The CP(N − 1) model was solved by Witten in the large-N limit [159]. We will
briefly summarize Witten’s results and translate them in terms of strings in four
dimensions [132].

Classically the field n� can have arbitrary direction; therefore, one might naively
expect a spontaneous breaking of SU(N ) and the occurrence of massless Goldstone
modes. Well, the Coleman theorem [160] teaches us that this cannot happen in two
dimensions. Quantum effects restore the symmetry. Moreover, the condition (4.4.3)
gets in effect relaxed. Due to strong coupling we have more degrees of freedom than
in the original Lagrangian, namely all N fields n become dynamical and acquire
masses �σ .

As was shown by Witten [159], the model has N vacua. These N vacua differ
from each other by the expectation value of the chiral bifermion operator, see e.g.
[156]. At strong coupling the chiral condensate is the order parameter. The U(1)
chiral symmetry of the CP(N − 1) model is explicitly broken to a discrete Z2N

symmetry by the chiral anomaly. The fermion condensate breaks Z2N down to Z2.
That’s the origin of the N -fold degeneracy of the vacuum state.

The physics of the model becomes even more transparent in the mirror repre-
sentation which was established [120] for arbitrary N . In this representation one
describes the CP(N−1)model in terms of the Coulomb gas of instantons (see [161]
where this was done for non-supersymmetric CP(1) model) to prove its equivalence
to an affine Toda theory. The CP(N − 1) model (4.4.32) is dual to the following
N = 2 affine Toda model [120, 162, 61, 163],

Smirror =
∫
d2xd2θ d2θ̄ β−1

N−1∑
i=1

Ȳi Yi

+
{
�σ

∫
d2xd2θ

(
N−1∑
i=1

exp (Yi)+
N−1∏
i=1

exp (−Yi)
)

+H.c.

}
. (4.4.36)

Here the last term is a dual instanton-induced superpotential. In fact, the exact
form of the kinetic term in the mirror representation is not known because it is not
protected from quantum correction in β. However the superpotential in (4.4.36)
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is exact. Since the vacuum structure is entirely determined by the superpotential
(4.4.36), one immediately confirms Witten’s statement of N vacua.

Indeed, the scalar potential of this affine Toda theory hasN minima. For example,
for N = 2 this theory becomes N = 2 supersymmetric sine-Gordon theory with
scalar potential

VSG = β

4π2
�2

CP(1) |sinh y|2, (4.4.37)

which obviously has two minima, at y = 0 and y = ±iπ (warning: the points
y = iπ and y = −iπ must be identified; they present one and the same vacuum).

This mirror model explicitly exhibits a mass gap of the order of�σ . It shows that
there are no Goldstone bosons (corresponding to the absence of the spontaneous
breaking of the SU(N)C+F symmetry). In terms of strings in the four-dimensional
bulk theory, this means, in turn, that the magnetic flux orientation in the target space
has no particular direction, it is smeared all over. The N vacua of the world-sheet
theory (4.4.32) are heirs of the N “elementary” non-Abelian strings of the bulk
theory. Note that these strings are in a highly quantum regime. They are not the ZN
strings of the quasiclassical U(1)N−1 theory since n� is not aligned in the vacuum.

Hori and Vafa originally derived [120] the mirror representation for the CP(N−1)
model in the form of the Toda model. Since then other useful equivalent represen-
tations were obtained, and they were expanded to include the so-called twisted
masses of which we will speak in Section 4.4.4 and subsequent sections. A particu-
larly useful mirror representation of the twisted-mass-deformed CP(N − 1)model
was exploited by Dorey [30].

4.4.4 Unequal quark masses

The fact that we haveN distinct vacua in the world sheet theory –N distinct elemen-
tary strings – is not quite intuitive in the above consideration. This is understandable.
At the classical level the N = 2 two-dimensional CP(N − 1) sigma model is char-
acterized by a continuous vacuum manifold. This is in one-to-one correspondence
with continuously many strings parametrized by the moduli n�. The continuous
degeneracy is lifted only after quantum effects are taken into account. These quan-
tum effects become crucial at strong coupling. Gone with this lifting is the moduli
nature of the fields n�. They become massive. This is difficult to grasp.

To make the task easier and to facilitate contact between the bulk and world sheet
theories, it is instructive to start from a deformed bulk theory, so that the string mod-
uli are lifted already at the classical level. Then the origin of theN -fold degeneracy
of the non-Abelian strings becomes transparent. This will help us understand, in an
intuitive manner, other features listed above. After this understanding is achieved,
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nothing prevents us from returning to our problem – strings with non-Abelian
moduli at the classical level – by smoothly suppressing the moduli-breaking defor-
mation. The N -fold degeneracy will remain intact as it follows from the Witten
index [123].

Thus, let us drop the assumption (4.1.13) of equal mass terms and introduce
small mass differences. With unequal quark masses, the U(N) gauge group is
broken by the condensation of the adjoint scalars down to U(1)N , see (4.1.11). Off-
diagonal gauge bosons, as well as the off-diagonal fields of the quark matrix qkA,
(together with their fermion superpartners) acquire masses proportional to various
mass differences (mA −mB). The effective low-energy theory contains now only
diagonal gauge and quark fields. The reduced action suitable for the search of the
string solution takes the form

S =
∫
d4x

{
1

4g2
2

(
Fhμν

)2 + 1

4g2
1

(
Fμν

)2

+ |∇μϕA|2 + g2
2

2

(
ϕ̄AT

hϕA
)2 + g2

1

8

(
|ϕA|2 −Nξ

)2
, (4.4.38)

where the index h = 1, . . . , (N − 1) runs over the Cartan generators of the gauge
group SU(N), while the matrix ϕkA is reduced to its diagonal components.

The same steps which previously lead us to Eqs. (4.2.10) now give the first-order
string equations in the Abelian model (4.4.38),

F ∗
3 + g2

1

2

(∣∣∣ϕA∣∣∣2 −Nξ

)
= 0,

F ∗h
3 + g2

2

(
ϕ̄AT

hϕA
)

= 0,

(∇1 + i∇2)ϕ
A = 0. (4.4.39)

As soon as theZN -string solutions (4.2.6) have a diagonal form, they automatically
satisfy the above first-order equations.

However, the Abelian ZN strings (4.2.6) are now the only solutions to these
equations. The family of solutions is discrete. The global SU(N)C+F group is
broken down to U(1)N−1 by the mass differences, and the continuous CP(N − 1)
moduli space of the non-Abelian string is lifted. In fact, the vector n� gets fixed in
N possible positions,

n� = δ��0 , �0 = 1, . . . ,N . (4.4.40)

These N solutions correspond to the Abelian ZN strings, see (4.2.6) and (4.4.4). If
the mass differences are much smaller than

√
ξ the set of parameters n� becomes

quasimoduli.

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005
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Now, our aim is to derive an effective two-dimensional theory on the string world
sheet for unequal quark mass terms. With small mass differences we will still be able
to introduce orientational quasimoduli n�. In terms of the effective two-dimensional
theory on the string world sheet, unequal masses lead to a shallow potential for the
quasimoduli n�. Let us derive this potential.

Below we will review the derivation carried out in [132] in the SU(2)×U(1)
model. The case of general N is considered in [133]. In the N = 2 case two
minima of the potential at S = {0, 0, ±1} correspond to two distinct Z2 strings.

We start from the expression for the non-Abelian string in the singular gauge
(4.4.20) parametrized by the moduli Sa , and substitute it in the action (4.1.7). The
only modification we actually have to make is to supplement our ansatz (4.4.20)
by that for the adjoint scalar field aa; the neutral scalar field a will stay fixed at its
vacuum expectation value a = −√

2m.
At large r the field aa tends to its VEV aligned along the third axis in the color

space,

〈a3〉 = −�m√
2

, �m = m1 −m2, (4.4.41)

see Eq. (4.1.11). At the same time, at r = 0 it must be directed along the vector
Sa . The reason for this behavior is easy to understand. The kinetic term for aa

in Eq. (4.1.7) contains the commutator term of the adjoint scalar and the gauge
potential. The gauge potential is singular at the origin, as is seen from Eq. (4.4.20).
This implies that aa must be aligned along Sa at r = 0. Otherwise, the string tension
would become divergent. The following ansatz for aa ensures this behavior:

aa = −�m√
2

[
δa3 b + Sa S3 (1 − b)

]
. (4.4.42)

Here we introduced a new profile function b(r)which, as usual, will be determined
from a minimization procedure. Note that at Sa = (0, 0, ±1) the field aa is given
by its VEV, as expected. The boundary conditions for the function b(r) are

b(∞) = 1, b(0) = 0. (4.4.43)

Substituting Eq. (4.4.42) in conjunction with (4.4.20) in the action (4.1.7) we get
the potential

VCP(1) = γ

∫
d2x

�m2

2

(
1 − S2

3

)
, (4.4.44)
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where γ is given by the integral

γ = 2π

g2
2

∫ ∞

0
r dr

{(
d

dr
b(r)

)2

+ 1

r2
f 2
NA b

2

+ g2
2

[
1

2
(1 − b)2

(
φ2

1 + φ2
2

)+ b (φ1 − φ2)
2
]}

. (4.4.45)

Here two first terms in the integrand come from the kinetic term of the adjoint scalar
field aa while the term in the square brackets comes from the potential in the action
(4.1.7).

Minimization with respect to b(r), with the constraint (4.4.43), yields

b(r) = 1 − ρ(r) = φ1

φ2
(r), (4.4.46)

cf. Eqs. (4.4.11) and (4.4.13). Thus,

γ = I × 2π

g2
2

= 2π

g2
2

. (4.4.47)

We see that the normalization integrals are the same for both the kinetic and the
potential terms in the world-sheet sigma model, γ = β. As a result we arrive at the
following effective theory on the string world sheet:

SCP(1) = β

∫
d2x

{
1

2
(∂kS

a)2 + |�m|2
2

(
1 − S2

3

)}
. (4.4.48)

This is the only functional form that allows N = 2 completion.9 See also
Section 3.5.

The fact that we obtain this form shows that our ansatz is fully adequate. The
informative aspect of the procedure is (i) confirmation of the ansatz (4.4.42) and
(ii) constructive calculation of the constant in front of (1 − S2

3) in terms of the bulk
parameters. The mass-splitting parameter�m of the bulk theory exactly coincides
with the twisted mass of the world-sheet model.

The CP(1) model (4.4.48) has two vacua located at Sa = (0, 0, ±1), see Fig. 3.11.
Clearly these two vacua correspond to two elementary Z2 strings.

For generic N the potential in the CP(N − 1) model was obtained in [133]. It
has the form

VCP(N−1) = 2β

{∑
�

|m̃�|2|n�|2 −
∣∣∣∣∑
�

m̃�|n�|2
∣∣∣∣
2
}

, (4.4.49)

9 Note, that although the global SU(2)C+F is broken by �m, the extended N = 2 supersymmetry is not.
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where

m̃� = m� −m, m ≡ 1

N

∑
�

m�, � = 1, . . . ,N . (4.4.50)

From the perspective of the bulk theory the index � of the CP(N − 1) model
coincides with the flavor index, � ≡ A. The above potential has N vacua (4.4.40)
which correspond to N distinct ZN strings in the bulk theory.

The CP(N − 1) model with the potential (4.4.49) is nothing but a bosonic
truncation of the N = 2 two-dimensional sigma model which was termed the
twisted-mass-deformed CP(N − 1)model. This is a generalization of the massless
CP(N − 1)model which preserves four supercharges. Twisted chiral superfields in
two dimensions were introduced in [32] while the twisted mass as an expectation
value of the twisted chiral multiplet was suggested in [31]. CP(N −1)models with
twisted mass were further studied in [30] and, in particular, the BPS spectra in these
theories were determined exactly.

From the bulk theory standpoint the two-dimensional CP(N − 1) model is an
effective world sheet theory for the non-Abelian string, and the emergence of N = 2
supersymmetry should be expected.As we know, the BPS nature of the strings under
consideration does require the world sheet theory to have four supercharges.

The twisted-mass-deformed CP(N−1)model can be nicely rewritten as a strong
coupling limit of a U(1) gauge theory [30]. With twisted masses of the n� fields
taken into account, the bosonic part of the action (4.4.32) becomes

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 2e2β2(|n�|2 − 1)2
}

. (4.4.51)

In the limit e2 → ∞ the σ field can be excluded by virtue of an algebraic equation
of motion which leads to the potential (4.4.49).

As was already mentioned, this sigma model gives an effective description of
our non-Abelian string at low energies, i.e. at energies much lower than the inverse
string thickness. Typical momenta in the theory (4.4.51) are of the order of m̃.
Therefore, for the action (4.4.51) to be applicable we must impose the condition∣∣m̃�∣∣� g2

√
ξ . (4.4.52)

The description in terms of the twisted-mass-deformed CP(N−1)model gives us
a much better understanding of dynamics of the non-Abelian strings. If masses m̃�
are much larger than the scale of the CP(N−1)model�σ , the coupling constant β

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005


4.5 Confined monopoles as kinks of the CP(N−1) model 115

is frozen at a large scale (of the order of m̃�) and the theory is at weak coupling.
Semiclassical analysis is applicable. The theory (4.4.51) has N vacua located at

n� = δ��0 , σ = m̃�0√
2

, �0 = 1, . . . ,N . (4.4.53)

They correspond to the Abelian ZN strings of the bulk theory, see (4.4.4). As we
reduce the mass differences m̃� and hit the value �σ , the CP(N − 1) model under
consideration enters the strong coupling regime. At m̃� = 0 the global SU(N)C+F
symmetry of the bulk theory is restored. Now n� has no particular direction. The
condition (4.4.3) is relaxed. Still we have N vacua in the world sheet theory (Wit-
ten’s index!). They are seen in the mirror description, see Section 4.4.3. These vacua
correspond to N elementary non-Abelian strings in the strong coupling quantum
regime. Thus, we see that for the BPS strings the transition from the Abelian to
non-Abelian regimes is smooth. As we will discuss in Chapter 5, this is not the case
for non-BPS strings. In the latter case the two regimes are separated by a phase
transition [154, 164].

4.5 Confined monopoles as kinks of the CP(N − 1) model

Our bulk theory (4.1.7) is in the Higgs phase and therefore the magnetic monopoles
of this theory must be in the confinement phase. If we start from a theory with the
SU(N + 1) gauge group broken to SU(N)×U(1) by condensation of the adjoint
scalar a from which the theory (4.1.7) emerges, the monopoles of the SU(N + 1)/
SU(N) × U(1) sector can be attached to the endpoints of the ZN strings under
consideration. In the bulk theory (4.1.7) these monopoles are infinitely heavy at
m → ∞, and hence the ZN strings are stable. However, the monopoles residing in
the SU(N) gauge group are still present in the theory (4.1.7). As we switch on the
FI parameter ξ , the squarks condense triggering confinement of these monopoles.
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In this section we will show that these monopoles manifest themselves as string
junctions of the non-Abelian strings and are seen as kinks in the world sheet theory
interpolating between distinct vacua of the CP(N − 1) model [165, 132, 133].

Our task in this section is to trace the evolution of the confined monopoles
starting from the quasiclassical regime, and deep into the quantum regime. For
illustrative purposes it will be even more instructive if we started from the limit
of weakly confined monopoles, when in fact they present just slightly distorted
’t Hooft–Polyakov monopoles (Fig. 4.3).

Let us start from the limit |�mAB | � √
ξ and assume all mass differences to be

of the same order. In this limit the scalar quark expectation values can be neglected,
and the vacuum structure is determined by VEV’s of the adjoint fieldaa , see (4.1.11).
In the non-degenerate case the gauge symmetry SU(N ) of our bulk model is broken
down to U(1)N−1 modulo possible discrete subgroups. This is the textbook situation
for occurrence of the SU(N ) ’t Hooft–Polyakov monopoles. The monopole core
size is of the order of |�mAB |−1. The ’t Hooft–Polyakov solution remains valid up
to much larger distances, of the order of ξ−1/2. At distances larger than ∼ ξ−1/2

the quark VEV’s become important. As usual, the U(1) charge condensation leads
to the formation of the U(1) magnetic flux tubes, with the transverse size of the
order of ξ−1/2 (see the upper picture in Fig. 4.3). The flux is quantized; the flux
tube tension is tiny in the scale of the square of the monopole mass. Therefore, what
we deal with in this limit is basically a very weakly confined ’t Hooft–Polyakov
monopole.

Let us verify that the confined monopole is a junction of two strings. Consider
the junction of two ZN strings corresponding to two “neighboring” vacua of the
CP(N − 1) model. For the �0-th vacuum n� is given by (4.4.53) while for the
�0 + 1-th vacuum it is given by the same equations with �0 → �0 + 1. The flux
of this junction is given by the difference of the fluxes of these two strings. Using
(4.4.4) we get that the flux of the junction is

4π × diag
1

2
{. . . 0, 1, −1, 0, . . . }, (4.5.1)

with the nonvanishing entries located at positions �0 and �0 + 1. These are exactly
the fluxes of N − 1 distinct ’t Hooft–Polyakov monopoles occurring in the SU(N )
gauge theory provided that SU(N ) is spontaneously broken down to U(1)N−1. For
instance, in U(2) theory the junction of two Z2 strings is shown in Fig. 4.2.

We see that in the quasiclassical limit of large |�mAB | the Abelian monopoles
play the role of junctions of the AbelianZN strings. Note that in various models the
monopole fluxes and those of strings were shown to match each other [166, 167,
168, 169, 140, 170, 171] so that the monopoles can be confined by strings in the
Higgs phase.
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junction

B

B3

B

B3

Figure 4.2. The junction of two distinct Z2 strings in the U(2) theory.

Almost free monopole

Λ << | m | << ξ1/2

ξ−1/2

Confined monopole,
quasiclassical regime

Λ−1

m     0

Confined monopole,
highly quantum regime

| m | >> ξ1/2

ξ−1/2

Figure 4.3. Evolution of the confined monopoles.

Now, let us reduce |�mAB |. If this parameter is limited inside the interval

� � |�mAB | � √
ξ , (4.5.2)

the size of the monopole (∼ |�mAB |−1) becomes larger than the transverse size
of the attached strings. The monopole gets squeezed in earnest by the strings – it
becomes a bona fide confined monopole (the lower left corner of Fig. 4.3). A natural
question is how this confined monopole is seen in the effective two-dimensional
CP(N−1)model (4.4.51) on the string world sheet. Since theZN strings of the bulk
theory correspond toN vacua of the CP(N−1)model the string junction (confined
monopole) is a “domain wall” – kink – interpolating between these vacua, see
Fig. 3.11.

Below we will explicitly demonstrate that in the semiclassical regime (4.5.2) the
solution for the string junction in the bulk theory is in one-to-one correspondence
with the kink in the world sheet theory. Then we will show that the masses of
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the monopole and kink perfectly match. This was demonstrated in [132] in the
N = 2 case.

4.5.1 The first-order master equations

In this section we derive the first-order equations for the 1/4-BPS junction of theZN
strings in the SU(N)×U(1) theory in the quasiclassical limit (4.5.2). In this limit
�mAB is sufficiently small so that we can use our effective low-energy description
in terms of the twisted-mass-deformed CP(N − 1) model (4.4.51). On the other
hand,�mAB is much larger than the dynamical scale of the CP(N−1)model; hence,
the latter is in the weak coupling regime which allows one to apply quasiclassical
treatment.

The geometry of our junction is shown in the left corner of Fig. 4.3. Both strings
are stretched along the z axis. We assume that the monopole sits near the origin,
the n� = δ��0-string is at negative z while the n� = δ�(�0+1)-string is at positive z.
The perpendicular plane is parametrized by x1 and x2. What is sought for is a static
solution of the BPS equations, with all relevant fields depending only on x1, x2

and z.
Ignoring the time variable we can represent the energy functional of our theory

(4.2.2) as follows (the Bogomol’nyi representation [5]):

E =
∫
d3x

{[
1√
2g2

F ∗a
3 + g2

2
√

2

(
ϕ̄Aτ

aϕA
)

+ 1

g2
D3a

a

]2

+
[

1√
2g1

F ∗
3 + g1

2
√

2

(|ϕA|2 − 2ξ
)+ 1

g1
∂3a

]2

+ 1

g2
2

∣∣∣∣ 1√
2

(
F ∗a

1 + iF ∗a
2

)+ (D1 + iD2
)
aa
∣∣∣∣
2

+ 1

g2
1

∣∣∣∣ 1√
2

(
F ∗

1 + iF ∗
2

)+ (∂1 + i∂2
)
a

∣∣∣∣
2

+ ∣∣∇1 ϕ
A + i∇2 ϕ

A
∣∣2

+
∣∣∣∣∇3ϕ

A + 1√
2

(
aaτa + a + √

2mA
)
ϕA
∣∣∣∣
2
}

(4.5.3)

plus surface terms. As compared to the Bogomol’nyi representation (4.2.9) for
strings we keep here also terms involving the adjoint fields. Following our con-
ventions we assume the quark mass terms to be real implying that the vacuum
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expectation values of the adjoint scalar fields are real too. The surface terms
mentioned above are

Esurface = ξ

∫
d3xF ∗

3 + √
2 ξ
∫
d2x 〈a〉

∣∣∣∣
z=∞

z=−∞
− √

2
〈aa〉
g2

2

∫
dSn F

∗a
n , (4.5.4)

where the integral in the last term runs over a large two-dimensional sphere at
�x 2 → ∞. The first term on the right-hand side is related to strings, the second to
domain walls, while the third to monopoles (or the string junctions).

The Bogomol’nyi representation (4.5.3) leads us to the following first-order
equations:

F ∗
1 + iF ∗

2 + √
2(∂1 + i∂2)a = 0,

F ∗a
1 + iF ∗a

2 + √
2(D1 + iD2)a

a = 0,

F ∗
3 + g2

1

2

(∣∣ϕA∣∣2 − 2ξ
)

+ √
2 ∂3a = 0,

F ∗a
3 + g2

2

2

(
ϕ̄Aτ

aϕA
)

+ √
2D3a

a = 0,

∇3ϕ
A = − 1√

2

(
aaτa + a + √

2mA
)
ϕA,(∇1 + i∇2

)
ϕA = 0. (4.5.5)

These are our master equations. Once these equations are satisfied the energy of
the BPS object is given by Eq. (4.5.4).

Let us discuss the central charges (the surface terms) of the string, domain wall
and monopole in more detail. Say, in the string case, the three-dimensional integral
in the first term in Eq. (4.5.4) gives the length of the string times its flux. In the wall
case, the two-dimensional integral in the second term in (4.5.4) gives the area of
the wall times its tension. Finally, in the monopole case the integral in the last term
in Eq. (4.5.4) gives the magnetic-field flux. This means that the first-order master
equations (4.5.5) can be used to study strings, domain walls, monopoles and all
their possible junctions.

It is instructive to check that the wall, the string and the monopole solutions,
separately, satisfy these equations. For the domain wall this check was done in
[37] where we used these equations to study the string-wall junctions (we review
this in Chapter 9). Let us consider the string solution. Then the scalar fields
a and aa are given by their VEV’s. The gauge flux is directed along the z axis,
so that F ∗

1 = F ∗
2 = F ∗a

1 = F ∗a
2 = 0. All fields depend only on the perpendicular

coordinates x1 and x2. As a result, the first two equations and the fifth one in (4.5.5)
are trivially satisfied. The third and the fourth equations reduce to the first two
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equations in Eq. (4.2.10). The last equation in (4.5.5) reduces to the last equation
in (4.2.10).

Now, turn to the monopole solution. The ’t Hooft–Polyakov monopole equations
[105, 106] arise from those in Eq. (4.5.5) in the limit ξ = 0. Then all quark fields
vanish, and Eq. (4.5.5) reduces to the standard first-order equations for the BPS
’t Hooft–Polyakov monopole (see Section 3.4),

F ∗a
k + √

2Dk a
a = 0. (4.5.6)

The U(1) scalar field a is given by its VEV while the U(1) gauge field vanishes.
Now, Eq. (4.5.4) shows that the central charge of the SU(2) monopole is deter-

mined by 〈aa〉 which is proportional to the quark mass difference, see (4.1.11).
Thus, for the monopole on the Coulomb branch (i.e. at ξ = 0) Eq. (4.5.4) yields

MM = 4π(m�0+1 −m�0)

g2
2

. (4.5.7)

This coincides, of course, with the Seiberg–Witten result [2] in the weak coupling
limit.As we will see shortly, the same expression continues to hold even if�mAB �√
ξ (provided that�mAB is still much larger than�SU(N)). An explanation will be

given in Section 4.6.
The Abelian version of the first-order equations (4.5.5) were derived in Ref.

[142] where they were exploited to find the 1/4 BPS-saturated solution for the wall-
string junction. The non-Abelian equations (4.5.5) in the SU(2)× U(1) theory were
derived in [165] where the confined monopoles as string junctions were considered
at �m �= 0. Then the non-Abelian equations (4.5.5) were extensively used in the
analysis [37] of the wall-string junctions in the problem of non-Abelian strings
ending on a stack of domain walls. Next, Eqs. (4.5.5) for the confined monopoles
as string junctions were solved in [132] in the SU(2) × U(1) theory. Below we
will review this solution. Later all 1/4 BPS solutions for junctions (in particular,
semilocal string junctions) were found in [172].

4.5.2 The string junction solution in the quasiclassical regime

Now we will apply our master equations at N = 2 in order to find the junction
of the Sa = (0, 0, 1) and Sa = (0, 0, −1)-strings via an SU(2) monopole in the
quasiclassical limit. We assume that the Sa = (0, 0, 1)-string is at negative z, while
the Sa = (0, 0, −1)-string is at positive z. We will show that the solution of the
BPS equations (4.5.5) of the four-dimensional bulk theory is determined by the
kink solution in the two-dimensional sigma model (4.4.48).

To this end we will look for the solution of equations (4.5.5) in the follow-
ing ansatz. Assume that the solution for the string junction is given, to the
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leading order in �m/
√
ξ , by the same string configuration (4.4.20), (4.4.5) and

(4.4.42) which we dealt with previously (in the case �m �= 0) with Sa slowly
varying functions of z, to be determined below, replacing the constant moduli
vector Sa .

Now the functions Sa(z) satisfy the boundary condition

Sa(−∞) = (0, 0, 1), (4.5.8)

while

Sa(∞) = (0, 0, −1). (4.5.9)

This ansatz corresponds to the non-Abelian string in which the vector Sa

slowly rotates from (4.5.8) at z → −∞ to (4.5.9) at z → ∞. We will
show that the representation (4.4.20), (4.4.5) and (4.4.42) solves the mas-
ter equations (4.5.5) provided the functions Sa(z) are chosen in a special
way.

Note that the first equation in (4.5.5) is trivially satisfied because the field a is
constant and F ∗

1 = F ∗
2 = 0. The last equation reduces to the first two equations

in (4.2.11) because it does not contain derivatives with respect to z and, therefore,
is satisfied for arbitrary functions Sa(z). The same remark applies also to the third
equation in Eq. (4.5.5), which reduces to the third equation in (4.2.11).

Let us inspect the fifth equation in Eq. (4.5.5). Substituting our ansatz in this
equation and using the formula (4.4.13) for ρ we find that this equation is satisfied
provided Sa(z) are chosen to be the solutions of the equation

∂3S
a = �m

(
δa3 − SaS3). (4.5.10)

Below we will show that these equations are nothing but the first-order kink
equations in the massive CP(1) model.

By the same token, we can consider the second equation in (4.5.5). Upon substi-
tuting there our ansatz, it reduces to Eq. (4.5.10) too. Finally, consider the fourth
equation in (4.5.5). One can see that in fact it contains an expansion in the param-
eter �m2/ξ . This means that the solution we have just built is not exact; it has
corrections of the order of O(�m2/ξ). To the leading order in this parameter the
fourth equation in (4.5.5) reduces to the last equation in (4.2.11). In principle, one
could go beyond the leading order. Solving the fourth equation in (4.5.5) in the
next-to-leading order would allow one to determine O(�m2/ξ) corrections to our
solution.

Let us dwell on the meaning of Eq. (4.5.10). This equation is nothing but the
equation for the kink in the CP(1) model (4.4.48). To see this let us write the
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122 Non-Abelian strings

Bogomol’nyi representation for kinks in the model (4.4.48). The energy functional
can be rewritten as

E = β

2

∫
dz

{∣∣∣∂zSa −�m
(
δa3 − SaS3

)∣∣∣2 + 2�m∂zS
3
}

. (4.5.11)

The above representation implies the first-order equation (4.5.10) for the BPS-
saturated kink. It also yields 2β�m for the kink mass.

Thus, we have demonstrated that the solution describing the junction of the
Sa = (0, 0, 1) and Sa = (0, 0, −1) Z2 strings is given by the non-Abelian string
with a slowly varying orientation vectorSa . The variation ofSa is described in terms
of the kink solution of the (1 + 1)-dimensional CP(1) model with the twisted mass.

In conclusion, we would like to match the masses of the four-dimensional mono-
pole and two-dimensional kink. The string mass and that of the string junction is
given by the first and the last terms in the surface energy (4.5.4) (the second term
vanishes). The first term obviously reduces to

Mstring = 2π ξ L, (4.5.12)

i.e. proportional to the total string length L. Note that both the Sa = (0, 0, 1) and
Sa = (0, 0, −1) strings have the same tension (4.2.12). The third term should give
the mass of the the monopole. The surface integral in this term reduces to the flux
of the Sa = (0, 0, −1)-string at z → ∞ minus the flux of the Sa = (0, 0, 1)-string
at z → −∞. The F ∗3 flux of the Sa = (0, 0, −1)-string is 2π while the F ∗3 flux
of the Sa = (0, 0, 1)-string is −2π . Thus, taking into account Eq. (4.1.11), we get

MM = 4π

g2
2

�m. (4.5.13)

Note, that although we discuss the monopole in the confinement phase at |�m| �√
ξ (in this phase it is a junction of two strings), nevertheless the �m and g2

2
dependence of its mass coincides with the result (4.5.7) for the unconfined monopole
on the Coulomb branch (i.e. at ξ = 0). This is no accident – there is a deep
theoretical reason explaining the validity of this unified formula. A change occurs
only in passing to a highly quantum regime depicted in the right lower corner of
Fig. 4.3. We will discuss this regime shortly in Section 4.5.3.

It is instructive to compare Eq. (4.5.13) with the kink mass in the effective CP(1)
model on the string world sheet. As was mentioned, the surface term in Eq. (4.5.11)
gives

Mkink = 2β �m. (4.5.14)
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Now, expressing the two-dimensional coupling constant β in terms of the coupling
constant of the microscopic theory, see Eq. (4.4.15), we obtain

Mkink = 4π

g2
2

�m, (4.5.15)

thus verifying that the four-dimensional calculation ofMM and the two-dimensional
calculation of Mkink yield the same,

MM = Mkink. (4.5.16)

Needless to say, this is in full accordance with the physical picture that emerged
from our analysis, that the two-dimensional CP(1) model is nothing but the macro-
scopic description of the confined monopoles occurring in the four-dimensional
microscopic Yang–Mills theory. Technically the coincidence of the monopole and
kink masses is based on the fact that the integral in the definition (4.4.10) of the
sigma-model coupling β reduces to unity.

4.5.3 The strong coupling limit

Here we will consider the limit of small �mAB , when the effective world sheet
theory develops a strong coupling regime. For illustrative purposes we will consider
the simplest case, N = 2. Generalization to generic N is straightforward.

As we further diminish |�m| approaching �σ and then send �m to zero we
restore the global SU(2)C+F symmetry. In particular, on the Coulomb branch,
the SU(2) × U(1) gauge symmetry is restored. In this limit the monopole size
grows, and, classically, it would explode. Moreover, the classical formula (4.5.13)
interpreted literally shows that the monopole mass vanishes (see the discussion of
the so-called “monopole clouds” in [112] for a review of the long-standing issue of
understanding what becomes of the monopoles upon restoration of the non-Abelian
gauge symmetry). Thus, classically one would say that the monopoles disappear.

That’s where quantum effects on the confining string take over.As we will explain
below, they materialize the confined non-Abelian monopole as a well-defined stable
object [132].

While the string thickness (in the transverse direction) is ∼ ξ−1/2, the z-direction
size of the kink representing the confined monopole in the highly quantum regime
is much larger, ∼ �−1

σ , see the lower right corner in Fig. 4.3. Still, it remains finite
in the limit �m → 0, stabilized by non-perturbative effects in the world sheet
CP(1) model. This is due to the fact that the CP(N−1)models develop a mass gap,
and no massless states are present in the spectrum, see Section 4.4.3. Moreover, the
mass of the confined monopole (the CP(1) model kink) is also determined by the
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124 Non-Abelian strings

scale �σ . This sets the notion of what the confined non-Abelian monopole is. It is
a kink in the massless two-dimensional CP(1) model [132].

We can get a more quantitative insight into the physics of the world-
sheet theory at strong coupling if we invoke the exact BPS spectrum of the
twisted-mass-deformed CP(N−1)model obtained in [30]. For a detailed discussion
in CP(1) see Section 3.5.

The exact expression for the central charge in CP(N − 1) with twisted mass
was derived [30] by generalizing Witten’s analysis [157] that had been carried
out previously for the massless case. The BPS states saturate the central charge Z
defined in Eq. (2.3.4). The exact formula for this central charge is

Z2d = i �mq +mD T , (4.5.17)

where the subscript 2d reminds us that the model in question is two-dimensional.
The subscriptD inmD appears for historical reasons, in parallel with the Seiberg–
Witten solution (it stands for dual). Furthermore, T is the topological charge of the
kink under consideration, T = ±1, while the parameter q

q = 0, ±1, ±2, . . . (4.5.18)

This global U(1) charge of the “dyonic” states arises due to the presence of a U(1)
group unbroken in (4.4.48) by the twisted mass (the SU(2)C+F symmetry is broken
down to U(1) by �m �= 0).

The quantitymD was introduced [30] in analogy with aD of Ref. [2]. In the case
N = 2 it has the form presented in Eq. (3.5.27) with the substitutions

m → �m, � → �σ , (4.5.19)

where �m is now assumed to be complex. The two-dimensional central charge is
normalized in such a way that Mkink = |Z2d |.

As we discussed in Section 3.5, there are no massless states in the CP(1) model
at �m = 0. In particular, the kink (confined monopole) mass is

MM = 2

π
�σ , (4.5.20)

as it is clear from (3.5.27). On the other hand, in this limit both the last term in
(4.5.4) and the surface term in (4.5.11) vanish for the monopole and kink masses,
respectively. What’s wrong?

This puzzle was solved by the following observation: anomalous terms in the
central charges of both four-dimensional and two-dimensional SUSY algebras are
present in these theories. In two dimensions the anomalous terms were obtained
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4.5 Confined monopoles as kinks of the CP(N−1) model 125

in [33, 34]. In four dimensions the bifermion anomalous term was discovered in
[132]. We refer the reader to Section 3.4.2 for a more detailed discussion.

In the bulk theory the central charge associated with the monopole is defined
through the anticommutator

{Q̄ f
α̇ Q̄

g

β̇
} = 2 εα̇β̇ ε

fg Z̄4d , (4.5.21)

where Z̄4d is an SU(2)R singlet; the subscript 4d will remind us of four dimensions.
It is most convenient to write Z̄4d as a topological charge (i.e. the integral over a
topological density),

Z̄4d =
∫
d3x ζ̄ 0(x). (4.5.22)

In the model at hand10

ζ̄ μ = 1√
2
εμνρσ ∂ν

(
i

g2
2

aaF aρσ + i

g2
1

aFρσ − i

2π2
aaF aρσ

+ i

8
√

2π2

[
λafα(σρ)

αα̇(σ̄σ )α̇βλ
af β + 2g2

2ψ̃Aα(σρ)
αα̇(σ̄σ )α̇βψ

Aβ
])

.

(4.5.23)

Note that the general structure of the operator in the square brackets is unambigu-
ously fixed by dimensional arguments, the Lorentz symmetry and other symmetries
of the bulk theory. The numerical coefficient was first found in [132] by matching
the monopole and kink masses at �m = 0.

The above expression is an operator equality. In the low-energy limit, the Seiberg–
Witten exact solution allows one to obtain the full matrix element of the operator
on the right-hand side (which includes all perturbative and non-perturbative
corrections) by replacing a by aD .

The fermion part of the anomalous term plays a crucial role in the Higgs phase for
the confined monopole. On the Coulomb branch it does not contribute to the mass of
the monopole due to a fast fall off of the fermion fields at infinity. On the Coulomb
branch the bosonic anomalous terms become important. The relationship between
the ’t Hooft–Polyakov monopole mass and the N = 2 central charge is analyzed
in [38], which identifies an anomaly in the central charge explaining a constant (i.e.
non-logarithmic) term in the monopole mass on the Coulomb branch. The result of
Ref. [38] is in agreement with the Seiberg–Witten formula for the monopole mass.
In Section 3.4.2 we presented the operator form of the central charge anomaly.

10 In Eq. (4.5.23) in the bosonic part we keep only terms containing the magnetic field �B and drop those with the
electric field �E which are relevant for dyons. For more details see Section 3.4.2.
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Note, that the coefficient in front of the fermionic term involving λ-fermions in
(4.5.23) coincides with the one in (3.4.20) obtained by supersymmetrization of the
bosonic anomalous term.

4.6 Two-dimensional kink and four-dimensional
Seiberg–Witten solution

Why is the ’t Hooft–Polyakov monopole mass (i.e. that on the Coulomb branch
at ξ = 0) given by the same formula (4.5.7) as the mass (4.5.13) of the strongly
confined large-ξ monopole (subject to condition

√
ξ � �m)?

This fact was noted in Section 4.5.2. Now we will explain the reason lying
behind this observation [132, 133]. En route, we will explain another striking obser-
vation made in Ref. [30]. A remarkably close parallel between four-dimensional
SU(2) Yang–Mills theory with Nf = 2 and the two-dimensional CP(1) model
was noted, at an observational level, by virtue of comparison of the correspond-
ing central charges. The observation was made on the Coulomb branch of the
Seiberg–Witten theory, with unconfined monopoles/dyons of the ’t Hooft–Polyakov
type. Valuable as it is, the parallel was quite puzzling since the solution of the
CP(1) model seemed to have no physics connection to the Seiberg–Witten solu-
tion. The latter gives the mass of the unconfined monopole in the Coulomb regime
at ξ = 0 while the CP(1) model emerges only in the Higgs regime of the bulk
theory.

We want to show that the reason for the correspondence mentioned above is that
in the BPS sector (and only in this sector) the parameter ξ , in fact, does not appear
in relevant formulae. Therefore, one can vary ξ at will, in particular, making it
less than |�m| or even tending to zero, where CP(1) is no more the string world
sheet theory for our bulk model. Nevertheless, the parallel expressions for the
central charges and other BPS data in four dimensions and two dimensions, trivially
established at |�m| � ξ , will continue to hold even on the Coulomb branch. The
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“strange coincidence” we observed in Section 4.5.2 is no accident. We deal with an
exact relation which stays valid including both perturbative and non-perturbative
corrections.

Physically the monopole in the Coulomb phase is very different from the one in
the confinement phase, see Fig. 4.3. In the Coulomb phase it is a ’t Hooft–Polyakov
monopole, while in the confinement phase it becomes related to a junction of two
non-Abelian strings. Still let us show that the masses of these two objects are given
by the same expression,

MCoulomb
M = Mconfinement

M (4.6.1)

provided that�m and the gauge couplings are kept fixed. The superscripts refer to
the Coulomb and monopole-confining phases, respectively.

The crucial observation here is that the mass of the monopole cannot depend on
the FI parameter ξ . Start from the monopole in the Coulomb phase at ξ = 0. Its
mass is given by the exact Seiberg–Witten formula [3]

MCoulomb
M = √

2

∣∣∣∣a3
D

(
a3 = −�m√

2

)∣∣∣∣
=
∣∣∣∣∣�mπ ln

�m

�SU(2)
+�m

∞∑
k=0

ck

(
�

�m

)2k
∣∣∣∣∣, (4.6.2)

where a3
D is the dual Seiberg–Witten potential for the SU(2) gauge group. We take

into account the fact that for Nf = 2 the first coefficient of the β function is 2.
In Eq. (4.6.2) a3 = −�m/√2 is the argument of a3

D , the logarithmic term takes
into account the one-loop result (4.1.19) for the SU(2) gauge coupling at the scale
�m, while the power series represents instanton-induced terms – small corrections
at large a.

Now, if we switch on a small FI parameter ξ �= 0 in the theory, on dimensional
grounds we could expect corrections to the monopole mass in powers of

√
ξ/�SU(2)

and/or
√
ξ/�m in Eq. (4.6.2).

But … these corrections are forbidden by the U(1)R charges. Namely, the U(1)R
charges of�SU(2) and�m are equal to 2 (and so is the U(1)R charge of the central
charge under consideration) while ξ has a vanishing U(1)R charge. For convenience,
the U(1)R charges of different fields and parameters of the microscopic theory are
collected in Table 4.1. Thus, neither (

√
ξ/�SU(2))

k nor (
√
ξ/�m)k can appear.

By the same token, we could start from the confined monopole at large ξ , and
study the dependence of the monopole (string junction) mass as a function of ξ as
we reduce ξ . Again, the above arguments based on the U(1)R charges tell us that
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Table 4.1. The U(1)R charges of fields and parameters of the bulk theory.

Field/parameter a aa λα q ψα mA �SU(N) ξ

U(1)R charge 2 2 1 0 −1 2 2 0

no corrections in powers of �SU(2)/
√
ξ and �m/

√
ξ can appear. This leads us to

Eq. (4.6.1).
Another way leading to the same conclusion is to observe that the monopole mass

depends on a (anti)holomorphically, cf. Seiberg–Witten’s formula (4.6.2). Thus, it
cannot depend on the FI parameter ξ which is not holomorphic (it is a component
of the SU(2)R triplet [127, 35]).

Now let us turn to the fact that the mass of the monopole in the confinement
phase is given by the kink mass in the CP(1) model, see (4.5.16). In this way we
obtain

MCoulomb
M ↔ Mconfinement

M ↔ Mkink. (4.6.3)

In particular, at one loop, the kink mass is determined by renormalization of the
CP(1)-model coupling constantβ, while the monopole mass on the Coulomb branch
is determined by the renormalization of g2. This leads to the relation

�σ = �SU(2)

between the two- and four-dimensional dynamical scales. It was noted earlier as a
“strange coincidence,” see Eq. (4.4.35). The first coefficient of the β functions is
two (N for generic N ) for both theories. Now we know the physical reason behind
this coincidence.

Clearly, the above relation can be generalized (cf. [30, 133]) to cover the
SU(N )×U(1) case with Nf = N flavors on the four-dimensional side, and
CP(N − 1) sigma models on the two-dimensional side.

This correspondence can be seen in more quantitative terms [30, 133]. Four-
dimensional U(N) SQCD with N = 2 and Nf = N flavors is described by the
degenerate Seiberg–Witten curve

y2 = 1

4

[
N∏
i=1

(x + m̃i)−�NSU(N)

]2

(4.6.4)
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4.6 Two-dimensional kink and Seiberg–Witten solution 129

in the special point (4.1.11) on the Coulomb branch which becomes a quark vacuum
upon the ξ deformation. The periods of this curve give the BPS spectrum of the
two-dimensional CP(N − 1) model [30]. We quoted this spectrum for CP(1) in
Eqs. (4.5.17) and (3.5.27).

In fact, Dorey demonstrated [30] that the BPS spectra of the two-dimensional
CP(N − 1)model and four-dimensional SU(N) SQCD coincide with each other if
one chooses a point on the Coulomb branch corresponding to the baryonic Higgs
branch defined by the condition

∑
mA = 0 (in the SU(2) case the gauge equivalent

choice is to set m1 = m2).
At the same time, we observe that the BPS spectra of the massive states in the

SU(2) and U(2) theories, respectively, coincide in the corresponding quark vacua
upon identification of mA of the SU(N) theory with m̃A of the U(N) theory. In
particular, in the N = 2 case one must identify m1 = m2 of the SU(2) theory with
�m/2 of the U(2) theory. Note that the vacuum (4.1.11) and (4.1.14) of the U(N)
theory is an isolated vacuum rather than a root of a Higgs branch. There are no
massless states in the U(N) bulk theory in this vacuum, see Section 4.1.2 for more
details.

Note also that the BPS spectra of both theories include not only the
monopole/kink and “dyonic” states but elementary excitations with T = 0 as well.
On the two-dimensional side they correspond to elementary fields n� in the large
�mAB limit. On the four-dimensional side they correspond to non-topological (i.e.
T = 0 and q = ±1) BPS excitations of the string with masses proportional to
�mAB confined on the string.

The latter can be interpreted as follows. Inside the string the squark profiles van-
ish, effectively bringing us into the Coulomb branch (ξ = 0) where the W bosons
and quarks would become BPS-saturated states in the bulk. Say, for N = 2 on the
Coulomb branch, the W boson and off-diagonal quark mass would reduce to �m.
Hence, the T = 0 BPS excitation of the string is a wave of such W bosons/quarks
propagating along the string. One could term it a “confined W boson/quark.” It is
localized in the perpendicular but not in the longitudinal direction. What is impor-
tant, it has no connection with the bulk Higgs phaseW bosons, which are non-BPS
and are much heavier than �m. Nor do these non-topological excitations have
connection to the bulk quarks of our bulk model, which are not BPS-saturated too.

To conclude, let us mention that Tong compared [173] a conformal theory
with massless quarks and monopoles arising on the Coulomb branch of the four-
dimensional N = 2 SQCD (upon a special choice of the mass parameters�mAB),
at the so-called Argyres–Douglas point [174], with the twisted-mass-deformed
two-dimensional CP(N − 1) model.

The coincidence of the monopole and kink masses explained above ensures
that the CP(N − 1) model flows to a non-trivial conformal point at these values
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130 Non-Abelian strings

of �mAB . The scaling dimensions of the chiral primary operators in four- and
two-dimensional conformal theories were shown to agree [173]; a very nice result,
indeed.

4.7 More quark flavors

In this section we will abandon the assumption NF = N and consider the theory
(4.1.7) with more fundamental flavors, NF > N . In this case we have a number of
isolated vacua such as (4.1.11) and (4.1.14), in whichN squarks out ofNf develop
VEV’s, while the adjoint VEV’s are determined by the mass terms of these quarks,
as in Eq. (4.1.11).

Now, let us focus on the equal mass case. Then the isolated vacua coalesce, and
a Higgs branch develops from the common root whose location on the Coulomb
branch is given by Eq. (4.1.11) (with all masses set equal). The dimension of this
branch is 4N(Nf − N), see [143, 140]. The Higgs branch is noncompact and has
a hyper-Kähler geometry [3, 143]. It has a compact base manifold defined by the
condition

¯̃qkA = qkA. (4.7.1)

The dimension of this manifold is twice less than the total dimension of the Higgs
branch, 2N(Nf −N), which implies 4 forNf = 3 and 8 forNf = 4 in the simplest
N = 2 case. The BPS string solutions exist only on the base manifold of the Higgs
branch. The flux tubes become non-BPS-saturated if we move away from the base
along noncompact directions [175]. Therefore, we will limit ourselves to the vacua
which belong to the base manifold.

Strings that emerge in multiflavor theories, i.e. Nf > N (typically on the Higgs
branches), as a rule are not conventional ANO strings. Rather, they become the
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so-called semilocal strings (for a comprehensive review see [147]). The simplest
model where the semilocal strings appear is the Abelian Higgs model with two
complex flavors

SAH =
∫
d4x

{
1

4g2
F 2
μν + ∣∣∇μq A∣∣2 + g2

8

(|q A|2 − ξ
)2}, (4.7.2)

where A = 1, 2 is the flavor index.
If ξ �= 0 the scalar fields develop VEV’s breaking the U(1) gauge group. The

photon field becomes massive, together with one real scalar field.
In fact, for the particular choice of the quartic coupling made in Eq. (4.7.2) this

scalar field has the same mass as the photon. In fact, the model (4.7.2) is the bosonic
part of a supersymmetric theory; the flux tubes are classically BPS-saturated. The
topological reason for the existence of the ANO flux tubes is that

π1[U(1)] = Z

for the U(1) gauge group. On the other hand, in Eq. (4.7.2) we can pass to the
low-energy limit integrating out the massive photon and its scalar counterpart. This
will lead us to a four-dimensional sigma model on the manifold

|q A|2 = ξ . (4.7.3)

The vacuum manifold (4.7.3) has dimension 4 − 1 − 1 = 2, where we subtract
one real condition mentioned above, as well as one phase that can be gauged away.
Thus, the manifold (4.7.3) represents a two-dimensional sphere S2. The low-energy
limit of the theory (4.7.2) is the O(3) sigma model.

We should remember that

π2[S2] = π1[U(1)] = Z,

and this is the topological reason for the existence of instantons in the two-
dimensional O(3) sigma model [176]. Uplifted in four dimensions, these instantons
become string-like objects (lumps).

Just as the O(3) sigma-model instantons, the semilocal strings possess two addi-
tional zero modes associated with its complexified size modulus ρ in the model
(4.7.2). Hence, the semilocal strings interpolate between the ANO strings and two-
dimensional sigma-model instantons uplifted in four dimensions. At ρ = 0 we
have the ANO string while at ρ → ∞ the string becomes nothing but the two-
dimensional instanton elevated in four dimensions. At generic ρ �= 0 the semilocal
string is characterized by a power fall-off of the profile functions at infinity, to be
contrasted with the exponential fall-off characteristic of the ANO string.
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Now, if we return to our non-Abelian theory (4.1.7), we will see that the semilocal
strings in this theory have size moduli, in addition to the 2(N − 1) orientational
moduli n�. The total dimension of the moduli space of the semilocal string was
shown [130] to be

2Nf = 2 + 2(N − 1)+ 2(Nf −N), (4.7.4)

where the first, the second and the third terms above correspond to the translational,
orientational and the size moduli.

No studies of geometry of the moduli space of the semilocal strings were carried
out for quite some time due to infrared problems. It was known [177, 178] that the
size-zero modes are logarithmically non-normalizable in the infrared, as is the case
for the sigma-model instantons in two dimensions. This problem was addressed
in [179] where non-Abelian strings in the U(2) gauge theory were treated. The
effective theory on the string world sheet was shown to have the form

S(1+1) = β MW

∫
dt dz

{
ρ2

4
(∂k S

a)2 + |∂k ρi |2
}

ln
1

|ρ| δ m , (4.7.5)

where MW is the W -boson mass, see Eq. (4.1.16). The subscript i = 3, . . . ,Nf ,
while ρi stand for (Nf − 2) complex fields associated with the size moduli. The
parameter δm here measures small quark mass differences, acting as an infrared
regulator. It is necessary to introduce this infrared parameter, slightly lifting the
size moduli ρi , in order to regularize the infrared logarithmic divergence.

The metric (4.7.5) is derived in [179] for large – but not too large – values of
|ρ|2 ≡ |ρ2

i | lying inside the window

1

MW

� |ρ| � 1

δm
. (4.7.6)

The inequality on the left-hand side refers to the limit in which the semilocal string
becomes an O(3) sigma-model lump. The inequality on the right-hand side ensures
the validity of the logarithmic approximation. The action (4.7.5) was obtained in
the logarithmic approximation.

For ρi’s lying inside the window (4.7.6), with a logarithmic accuracy, one can
introduce new variables

zi = ρi

[
M2
W ln

1

|ρ| δm
]1/2

. (4.7.7)
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In terms of these new variables the metric of the world sheet theory (4.7.5) was
shown11 to become flat [179]. Corrections to this flat metric run in powers of

1

MW |ρ| and

(
ln

1

|ρ| δm
)−1

.

These corrections have not yet been calculated within the field-theory approach.
On the other hand, the very same problem was analyzed from theD-brane theory

side. Using brane-based arguments Hanany and Tong conjectured [130, 133] (see
also Ref. [152]) that the effective theory on the world sheet of the non-Abelian
semilocal string is given by the strong-coupling limit (e2 → ∞) of the following
two-dimensional gauge theory:

S =
∫
d2x

{
2β |∇kn�|2 + 2β |∇kzi |2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 4β

∣∣∣∣σ − m̃i√
2

∣∣∣∣
2

|zi |2

+ 2e2 β2[ |n�|2 − |zi |2 − 1
]2}, (4.7.8)

where � = 1, . . . ,N and i = N + 1, . . . ,Nf . Furthermore, zi denote (Nf − N)

complex fields associated with the size moduli. The fields n� and zi have the charges
+1 and −1 with respect to the U(1) gauge field in Eq. (4.7.8). This theory is similar
to the model (4.4.51) describing the Nf = N non-Abelian strings.

The Hanany–Tong conjecture is supported by yet another argument. As was
discussed in Section 4.6, the BPS spectrum of dyons on the Coulomb branch of
the four-dimensional theory must coincide with the BPS spectrum in the two-
dimensional theory on the string world sheet. We expect that this correspondence
extends to theories with Nf > N . The two-dimensional theory (4.7.8) was studied
in [181] where it was shown that its BPS spectrum agrees with the spectrum of four-
dimensional U(N) SQCD with Nf flavors. In particular, the one-loop coefficient
of the β function is 2N − Nf in both theories. This leads to the identification of
their scales, see Eq. (4.4.35). As a matter of fact, Ref. [181] deals with the SU(N)
theory at the root of the baryonic Higgs branch, much in the same vein as [30].
However, as was explained in Section 4.6, the BPS spectra of the massive states in
these four-dimensional theories are the same.

11 Warning: a different metric on the moduli space of the non-Abelian semilocal string was suggested in [180].
It has a kinetic cross-term for the orientational and size moduli fields. However, at large ρi , inside the allowed
window (4.7.6), this metric is also flat.
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The above argument shows that the two-dimensional theory (4.7.8) is a promising
candidate for an effective theory on the semilocal string world sheet. In par-
ticular, the metric in (4.7.8) is asymptotically flat. The variables zi in (4.7.8)
should be identified with the ones in Eq. (4.7.7) introduced within the field-
theory framework in Ref. [179]. It is quite plausible that corrections to the flat
metric in powers 1/(MW |ρ|) are properly reproduced by the world sheet the-
ory (4.7.8). Nevertheless, the results of [179] clearly demonstrate the approximate
nature of the world sheet theory (4.7.8). Namely, corrections at large ρi sup-
pressed by large infrared logarithms (ln (1/|ρ| δm))−1 are certainly not captured in
Eq. (4.7.8).

The implication of the “semilocal nature” of the semilocal strings which is
most important from the physical standpoint is the loss of the monopole con-
finement [175, 179] i.e. the loss of the Meissner effect. To study the monopole
confinement as a result of the squark condensation we must consider a string of
a finite length L stretched between a heavy probe monopole and antimonopole
from the SU(N + 1)/SU(N) × U(1) sector. The ANO string has a typical trans-
verse size (g

√
ξ)−1. If L is much larger than this size the energy of this probe

configuration is

V (L) = T L, (4.7.9)

where T is the string tension. The linear potential in Eq. (4.7.9) ensures confinement
of monopoles.

For semilocal strings this conventional picture drastically changes. Now the
transverse string size can be arbitrarily large. Imagine a configuration in which
the string transverse size becomes much larger than L. Then we will clearly deal
with the three-dimensional rather than two-dimensional problem. The monopole
flux is no longer trapped in a narrow flux tube. Instead, it freely spreads over
a large three-dimensional volume, of the size of order of L in all directions.
Obviously, this will give rise to a Coulomb-type potential between the probe
monopoles,

V (L) ∼ 1/L, (4.7.10)

possibly augmented by logarithms ofL.At largeL the energy of this configuration is
lower than the one of the flux-tube configuration (4.7.9); therefore, it is energetically
favorable.

To summarize, semilocal strings can indefinitely increase their transverse size
and effectively disintegrate, so that the linear potential (4.7.9) gives place to the
Coulomb potential (4.7.10). In fact, lattice studies unambiguously show that the
semilocal string thickness always increases upon small perturbations [182].
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Formation of semilocal strings on the Higgs branches leads to a dramatic physical
effect – deconfinement.

4.8 Non-Abelian k-strings

In this section we will briefly review how multi-strings, with the winding number
k > 1, can be constructed. One can consider them as bound states of k BPS
elementary strings. The Bogomol’nyi representation (4.2.9) implies that the tension
of the BPS-saturated k-string is determined by its total U(1) flux, 2πk. This entails,
in turn, that inN = 2 SQCD, see Eq. (4.1.7), the k-string tension has the form (4.1.7)

Tk = 2πk ξ . (4.8.1)

Equation (4.8.1) implies that the elementary strings that form composite k-strings
do not interact.

If one considers k elementary strings, forming the given k-string, at large sep-
arations the corresponding moduli space obviously factorizes into k copies of the
moduli spaces of the elementary strings. This suggests that the dimension of the
total moduli space is

2kNf = 2k + 2k(N − 2)+ 2k(Nf −N), (4.8.2)

see (4.7.4). The total dimension is written as a sum of dimensions of the trans-
lational, orientational and size moduli spaces. This result was confirmed by the
Hanany–Tong index theorem [130] which implies (4.8.2) at any separations. The
moduli space of well-separated elementary strings forming the given k-string, say,
at Nf = N is [

C × CP(N − 1)
]k

Sk
, (4.8.3)

where Sk stands for permutations of the elementary string positions.
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An explicit solution for a non-Abelian 2-string at zero separation in the simplest
bulk theory with N = Nf = 2 was constructed in [183]. It has a peculiar feature.
If the orientation vectors of the two strings Sa1 and Sa2 are opposite, the composite
2-string becomes an Abelian ANO string. It carries no non-Abelian flux. Therefore,
SU(2)C+F rotations act trivially on this particular string. This means that the internal
moduli space of this string is singular [184, 183]. The section of the orientational
moduli space corresponding to Sa1 = −Sa2 degenerates into a point. In [183] it was
argued that the internal moduli of the 2-string at zero separation is equivalent to
CP(2)/Z2. This differs by a discrete quotient from the result CP(2) obtained in
[184]. Later results obtained in [185, 186] confirm the CP(2)/Z2 metric.

The metric on the k-string moduli space for generic k is not known. For Abelian
k-strings exponential corrections to the flat metric were calculated in [187]. Expo-
nentially small corrections are natural since in this case the vortices are characterized
by an exponential fall off of their profile functions at large distances.

Hanany and Tong exploited [130, 133] a D-brane construction to obtain the
k-string metric in terms of the Higgs branch of a two-dimensional gauge theory,
see (4.4.51) and (4.7.8). What they came up with is an N = 2 supersymmetric
U(k) gauge theory with N fundamental and (Nf − N) anti-fundamental flavors
n� and ρi , respectively, (� = 1, . . . ,N and i = N , . . . ,Nf ), plus an adjoint chiral
multiplet Z. The D-term condition for this theory is

1

2β
[Z̄,Z] + n�n̄� − ρiρ̄

i = 1. (4.8.4)

The metric defined by this Higgs branch has corrections to the factorized metric
which run in (inverse) powers of separations between the elementary strings. Thus,
it exhibits a dramatic disagreement with the field-theory expectations. Still the
metric is believed [130, 133, 13, 14] to correctly reproduce some data protected by
supersymmetry, such as the BPS spectrum.

To derive all moduli of the general k-string solution the so-called moduli matrix
method was developed in [188]. It was observed that the substitution

ϕ = S(z, z̄) H0(z), A1 + iA2 = S−1∂̄zS, (4.8.5)

solves the last of the first-order equations (4.2.10). Here z = x1 + ix2 andH0 is an
N ×Nf matrix with a holomorphic dependence on z.

Then the equations for the gauge field strength in (4.2.10) yield an equation on
S(z, z̄) which is rather hard to solve in the general case. It was argued, however,
that the factor S involves no new moduli parameters [188]. Therefore, all moduli
parameters reside in the moduli matrix H0(z).
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DeterminingH0(z) gives one a moduli space which agrees with the moduli space
corresponding to the Higgs branch (4.8.4).

4.9 A physical picture of the monopole confinement

In this section we will return to our basic N = 2 SQCD with the U(N) gauge
group and Nf = N flavors (4.1.7) and discuss an emerging physical picture of the
monopole confinement. As was reviewed in detail in Section 4.5, elementary con-
fined monopoles can be viewed as junctions of two elementary strings. Therefore,
the physical spectrum of the theory includes monopole-antimonopole “mesons”
formed by two elementary strings in a loop configuration shown in Fig. 4.4.

If spins of such “mesons” are of order one, their mass is of the order of the square
root of the string tension

√
ξ . Deep in the quantum non-Abelian regime (m̃l = 0),

the CP(N − 1)-model strings carry no average SU(N ) magnetic flux [159],

〈nl〉 = 0, (4.9.1)

see Eq. (4.4.4). What they do carry is the U(1) magnetic flux which determines
their tension.

Monopoles are seen in the world sheet theory as CP(N − 1) kinks. At m̃l = 0
they become non-Abelian too, much in the same way as strings. They carry no
average SU(N ) magnetic flux. (Unlike strings, even in the classical regime they do
not carry the U(1) magnetic flux, see (4.5.1).)

Moreover, the monopoles acquire global flavor quantum numbers. We know that
the CP(N − 1) model kinks at strong coupling are described by the nl fields [159,
120] and, therefore, in fact, they belong to the fundamental representation of the
global SU(N )C+F group. This means that the monopole-antimonopole “mesons”
formed by the string configuration shown in Fig. 4.4 can belong either to singlet or to
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Figure 4.4. Monopole and antimonopole bound into a “meson.” The binding is
due to strings. Open and closed circles denote the monopole and antimonopole,
respectively.

adjoint representations of the global “flavor” group SU(N )C+F , in full accordance
with our expectations.

Singlets resemble glueballs. In weakly coupled bulk theory (g2
1,2 � 1) the singlet

mesons can decay into massive vector multiplets formed by gauge and quark fields,
with mass (4.1.17), see Section 4.1.2. The monopole-antimonopole mesons with
the adjoint flavor quantum numbers are also metastable in weakly coupled bulk
theory, they decay into massive gauge/quark multiplets which carry the adjoint
quantum numbers with respect to the global unbroken SU(N )C+F group and have
masses determined by Eq. (4.1.16).

Two elementary strings of the monopole-antimonopole meson shown in Fig. 4.4
can form a non-BPS bound state. Hence, in practice the composite meson looks as if
the monopole was connected to the antimonopole by a single string. In fact, there are
indications that this is what happens in the theory at hand. Interactions of elementary
Z2 strings were studied in [140] in the simplest caseN = 2.An interaction potential
for the elementary Z2 strings with Sa = (0, 0, +1) and Sa = (0, 0, −1) was found
to be attractive at large distances,

U ∼ −
{
MSU(2) R

}−1/2
e−MSU(2)R , (4.9.2)

whereR stands for the distance between two parallel strings. The gauge boson mass
is given in Eq. (4.1.16). This attractive potential leads to formation of a bound state,
a composite string.

Note that we have N distinct elementary strings. As was discussed in Sec-
tion 4.4.3, in the quantum regime N elementary strings differ from each other
by the value of the bifermion condensate of the CP(N − 1) model fermions [156].
Therefore, the physical picture of the monopole confinement is not absolutely sim-
ilar to what we expect in QCD, see the discussion in the beginning of this section.
Namely, we haveN different degenerate “mesons” (atN > 2) of the type discussed
above, associated with N different elementary strings.
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(a) (b)

Figure 4.5. (a) A schematic picture of the “baryon” formed by monopoles and
strings for N = 6; (b) The “baryon” acquires the shape of a star once the
neighboring strings form non-BPS bound states.

In QCD (and in nature) we have instead a single meson with the given quantum
numbers, plus its radial excitations which have higher masses. This is typical for
BPS strings in supersymmetric gauge theories. We will see in Chapter 6 that in
non-supersymmetric theories the situation is different: elementary strings are split
and, therefore, different “mesons” become split too.

In addition to the “mesons” and gauge/quark multiplets, the physical spectrum
contains also “baryons” built of N elementary monopoles connected to each other
by elementary strings forming a closed “necklace configuration,” see Fig. 4.5a. In
the classical limit m̃l � �σ all strings carry the SU(N ) magnetic fluxes given by∫

d2x F ∗
SU(N) = 2π

(
n · n∗ − 1

N

)
, (4.9.3)

with nl = δll0 , l0 = 1, . . . ,N for N elementary strings forming the “baryon.” The
monopoles carry the SU(N ) magnetic fluxes given in Eq. (4.5.1) and, therefore,
can be located at the corners of the polygon in Fig. 4.5a.

In the highly quantum regime, at m̃l = 0, both strings and monopoles carry no
average SU(N ) magnetic flux, see (4.9.1). The confined monopoles are seen as
kinks interpolating between the “neighboring” quantum vacua of the CP(N − 1)
model (a.k.a. strings) in the closed necklace configuration in Fig. 4.5a.

As was mentioned, the monopoles/kinks acquire flavor global quantum numbers.
They become fundamentals in SU(N)C+F . Thus, the “baryon” is in the

N∏
1

(N)

representation of SU(N)C+F . Note that both quarks and monopoles do not carry
baryon numbers. Therefore, our “baryon” has no baryon number too. The reason
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for this is that the U(1) baryon current is coupled to a gauge boson in the U(N )
gauge theory that we consider here. This means, in particular, that the “baryons”
can decay into the monopole “mesons” or gauge/quark multiplets.

We mentioned that the “neighboring” elementary strings can form a non-BPS
bound state, a composite string. It is plausible then that in practice the monopole
“baryon” actually resembles a configuration shown in Fig. 4.5b.

Let us emphasize that all states seen in the physical spectrum of the theory are
gauge singlets. This goes without saying. While color charges of the gauge/quark
multiplets are screened by the Higgs mechanism, the monopoles are confined by
non-Abelian strings.

Let us also stress in conclusion that in the limit m̃l = 0 the global group
SU(N )C+F is restored in the bulk and both strings and confined monopoles
become non-Abelian. One might argue that this restoration could happen only
at the classical level. One could suspect that in quantum theory a “dynamical
Abelization” (i.e. a cascade breaking of the gauge symmetry U(N )→U(1)N →
discrete subgroup ) might occur. This could have happened if the adjoint VEV’s that
classically vanish at m̃l = 0 (see (4.1.11)) could develop dynamically in quantum
theory.

At m̃l �= 0 the global SU(N )C+F group is explicitly broken down to U(1)N−1

by the quark masses. At m̃l = 0 this group is classically restored. If it could
be proven to be dynamically broken at m̃l = 0, this would mean a sponta-
neous symmetry breaking, with obvious consequences, such as the corresponding
Goldstone modes.

We want to explain why this cannot and does not happen in the theory at hand.
First of all, if a global symmetry is not spontaneously broken at the tree level then it
cannot be broken by quantum effects at weak coupling in “isolated” vacua. Second,
if the global group SU(N )C+F were broken spontaneously at m̃l = 0 this would
imply massless Goldstone bosons. However, we know that there are no massless
states in the spectrum of the bulk theory, see Section 4.1.

Finally, the breaking of SU(N )C+F in the m̃l = 0 limit would mean that the
twisted masses of the world sheet CP(N − 1) model would not be given by m̃l ;
instead they would be shifted, say,

m̃l(tw) = m̃l + cl�CP(N−1),

where cl are some coefficients. In Section 4.6 it was shown [132, 133] that the BPS
spectrum of the CP(N −1)model on the string should coincide with the BPS spec-
trum of the four-dimensional bulk theory on the Coulomb branch.The BPS spectrum
of the CP(N − 1) model is determined by m̃l(tw) while the BPS spectrum of the

bulk theory on the Coulomb branch is determined by m̃l . In [30] it was shown that

https://doi.org/10.1017/9781009402200.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.005


4.9 A physical picture of the monopole confinement 141

the BPS spectra of both theories coincide at m̃l(tw) = m̃l . Thus, we conclude that

cl = 0, and the twisted masses vanish in the m̃l = 0 limit.
Hence, the global SU(N )C+F group is not broken in the bulk and both strings

and confined monopoles become non-Abelian at m̃l = 0.
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