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The cd -index of fans and posets

Kalle Karu

Abstract

The number of flags in a complete fan, or more generally in an Eulerian poset, is encoded
in the cd-index. We prove the non-negativity of the cd-index for complete fans, regular
CW -spheres and Gorenstein* posets.

1. Introduction

It is well known that if ∆ is a complete simplicial n-dimensional fan, then giving the f -vector
(f0, . . . , fn) of ∆ (i.e. fi is the number of i-dimensional cones in ∆) is equivalent to giving the
h-vector (h0, . . . , hn), where hi is the 2ith Betti number of the associated toric variety. When the fan
∆ is not necessarily simplicial, one can similarly encode the number of cones in its first barycentric
subdivision in the flag h-vector of ∆. Eliminating all relations among the flag h-numbers, one arrives
at the cd-index of ∆ (see [BB85, BK91, Sta94]). The goal of this article is to prove that the cd-index
has non-negative integer coefficients as conjectured in [BK91, Sta94].

Let us start by recalling the definition of the cd-index for complete fans. If ∆ is a complete
simplicial fan in R

n, define A(∆) to be the space of continuous conewise polynomial functions on
∆ (i.e. functions on R

n that restrict to polynomials on each cone of ∆). Then A(∆) is a graded free
module over the ring A of global polynomial functions. We write its Poincaré polynomial

pn(∆) =
∑

k

hkt
k,

where hk = dim(A(∆) ⊗A R)k. When the fan ∆ is rational, it corresponds to a toric variety X(∆)
and the numbers hk are the even Betti numbers of the cohomology of X(∆). In any case, they
satisfy the Poincaré duality hk = hn−k.

When the fan ∆ is complete but not necessarily simplicial, one can apply the same construction
to the first barycentric subdivision B(∆) of ∆. We can label a one-dimensional cone of B(∆)
according to the dimension of the cone in ∆ whose barycenter it is. This gives a multi-grading on
A(B(∆)) by N

n. It is also possible to adjust the A-module structure of A(B(∆)) so that it preserves
this multi-grading. The corresponding Poincaré polynomial is

Pn(∆) =
∑
S

hStS ,

where S ∈ N
n, tS = tS1

1 · · · tSn
n and hS is the dimension of the degree S part of A(B(∆))⊗A R. From

the Poincaré duality hS = hS , where S = (1, . . . , 1) − S, we see that hS is zero unless 0 � Si � 1.
Thus, the sum in the Poincaré polynomial runs over subsets S ⊂ {1, . . . , n}.

It turns out that the Poincaré polynomial Pn(∆) can be written as a polynomial in non-
commuting variables c and d as follows. To a monomial in c and d we associate a polynomial
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in t1, . . . , tn by replacing c with ti + 1 and d with ti + ti+1, for example,

ccdcd = (t1 + 1)(t2 + 1)(t3 + t4)(t5 + 1)(t6 + t7).

The replacement is done by starting from the left and using each ti exactly once in increasing order.
Define the degree of c to be 1 and the degree of d to be 2. Then Bayer and Klapper [BK91] show
that Pn(∆) is a homogeneous cd-polynomial of degree n, called the cd-index of ∆.

Example 1.1. For any complete n-dimensional fan the coefficient of cn in the cd-index is 1 because
it is the dimension of the degree 0 part in A(B(∆)). Thus, c is the cd-index of the complete
one-dimensional fan. The cd-index of the complete two-dimensional fan with k maximal cones is
c2 + (k − 2)d. If ∆ is the three-dimensional fan over the faces of a pyramid (with square base) then
its cd-index is c3 + 3cd + 3dc.

A simple way to construct examples in low dimension is to find a subfan Π of the (n−1)-skeleton
∆�n−1 of ∆ such that Π contains the (n − 2)-skeleton ∆�n−2 and is combinatorially equivalent to
a complete (n− 1)-dimensional fan. Let σ1, . . . , σm be the (n− 1)-dimensional cones of ∆�Π. Then

Pn(∆) = Pn−1(Π)c +
∑

i

Pn−2(∂σi)d.

If ∆ is the fan over the faces of a three-dimensional polytope, then finding such a Π amounts to
finding a Hamiltonian cycle in the edge graph of the polytope.

We prove another combinatorial construction of the cd-index. Let ∆�m be the m-skeleton of
∆ and I(∆�m) the set of functions f : ∆�m → Z. We define the following operations on such
functions. First let E : I(∆�m) → I(∆�m) be

E(f)(σ) =
∑

τ∈∆�m,σ�τ

(−1)m−dim τf(τ).

Also, let C : I(∆�m) → I(∆�m−1) be the restriction, and let D : I(∆�m) → I(∆�m−2) be

D = C ◦ (E − Id) ◦ C.

Now if w(c, d) is a cd-monomial of degree n, then applying w(C,D) to an element f ∈ I(∆) gives
an element in I(∆0), that is, an integer number.

Proposition 1.2. Let 1∆ ∈ I(∆) be the constant function 1. If w(c, d) is any cd-monomial of degree
n, then w(C,D)(1∆) is the coefficient of the monomial w(c, d) in the cd-index of ∆.

To prove that the cd-index of a complete fan is non-negative, we consider sheaves on ∆. For a
sheaf of finite-dimensional vector spaces, taking the dimension of stalks gives an element in I(∆)
with non-negative integer values. We show that the operations C and D have their counterparts in
the category of sheaves, hence applying any cd-monomial to 1∆ gives a function with non-negative
values.

The cd-index can be defined more generally for Eulerian posets. Bayer and Klapper [BK91]
conjectured that the cd-index of a regular CW -sphere has non-negative coefficients. Stanley [Sta94]
generalized this conjecture to Gorenstein* posets, which are defined as follows. If Λ is a rank n graded
poset, let B(Λ) be the simplicial complex of chains in Λ�{0,1}. Then Λ is called Gorenstein* if B(Λ)
is a homology manifold with the homology of the sphere Sn−1 (see § 2.4 for more on Gorenstein*
posets). Complete fans and regular CW -spheres are examples of Gorenstein* posets; in these cases
|B(Λ)| is homeomorphic to Sn−1.

The main result we prove is the following.

Theorem 1.3. Let Λ be a complete fan or a Gorenstein* poset. Then the cd-index of Λ has non-
negative integer coefficients.
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Stanley [Sta94] has shown that there are no other linear inequalities satisfied by the cd-indices
of all Gorenstein* posets than the non-negativity of its coefficients.

Note that it suffices to prove the theorem for Gorenstein* posets because this case also
covers complete fans. Nevertheless we prefer to use the terminology of fans and prove the theorem
for complete fans, after which we explain which parts of the proof also apply to Gorenstein* posets.

As the cd-index of a complete fan has non-negative integer coefficients, one can ask what do these
coefficients count? We do not give an answer to this question. The closest we come to answering it is
the construction using the subfan Π above. Suppose in an ideal world every complete n-dimensional
fan ∆ has a subfan Π of the n− 1-skeleton as above. One can think of Π as a maximal submanifold
of ∆�n−1. If the cd-index of ∆ is fc + gd, then f accounts for the ‘manifold part’ of ∆�n−1 and g
for the rest. Thus, the cd-index is a universal invariant that describes the extraction of a maximal
submanifold of ∆�n−1. This description is rather vague, but the principle of extracting the manifold
part of ∆�n−1 also holds in § 3 when we describe how to cut ∆�n−1 into manifolds with boundary
and compute the cd-index from these pieces.

2. Preliminaries

We use the terminology of fans [Ful93]. If ∆ is a fan and σ ∈ ∆ a cone, let [σ] be the fan consisting of
all faces of σ, ∂σ = [σ]�{σ}, and Star σ = {γ ∈ ∆ | γ � σ}. For a graded set, the superscript refers
to the degree. If ∆ is a fan or a graded poset, then ∆�m is the m-skeleton of ∆. The dimension of
a cone, or the degree of an element in a poset, is denoted dim(σ).

2.1 Fan spaces
Let us recall the definition of a topology on a fan and the sheaves on it [BBFK02, BL03].

Given a fan ∆ (considered as a finite partially ordered set), the topology on ∆ is generated by
subsets [σ] for σ ∈ ∆. In other words, open sets in the topology are the subfans of ∆. A sheaf
F of R-vector spaces is given by specifying the stalk Fσ for each σ ∈ ∆, and the restriction map
resσ

τ : Fσ → Fτ for τ < σ, satisfying the compatibility condition resσ
τ ◦ resγ

σ = resγ
τ for γ > σ > τ .

More abstractly, a sheaf is a functor from the category of the poset ∆ to the category of vector
spaces. For U ⊂ ∆ an open set, we denote by F (U) the space of sections of F on U . Thus,
F (∆) = H0(∆, F ).

The structure sheaf A on ∆ is defined as follows. For σ ∈ ∆k, let

Aσ = Ak := R[x1, . . . , xk],

and for τ < σ, τ ∈ ∆l, let the restriction map resσ
τ be the standard surjection Ak → Al (sending

xi �→ xi for i � l and xj �→ 0 for j > l). Note that if ∆ has dimension n, then the sheaf A is
multi-graded by N

n.
Let M(A) be the category of (multi-graded) locally free flabby A-modules: a sheaf F lies in

M(A) if the stalks Fσ are finitely generated graded free Aσ modules and the restrictions

Fσ → F(∂σ)

are surjective morphisms, compatible with the module structure and grading. There exists an
indecomposable sheaf L ∈ M(A) satisfying the following conditions:

(i) L0 = R;
(ii) the map induced by restriction

Lσ ⊗Ak
R → L(∂σ) ⊗Ak

R

is an isomorphism for all σ ∈ ∆k.
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The sheaf L is unique up to an isomorphism and it can be constructed by induction on the dimension
of the cones using the two properties. In fact, L(∂σ) is a free Ak−1-module for any σ ∈ ∆k and we
can put

Lσ = L(∂σ) ⊗Ak−1
Ak.

Now let B(∆) be a barycentric subdivision of ∆. It is constructed by choosing, for each σ ∈ ∆,
a vector vσ in the relative interior of σ and star-subdividing the fan at vσ, starting with cones of
maximal dimension, then one dimension smaller, and so on. The fan B(∆) is simplicial and its cones
are in one-to-one correspondence with chains of cones 0 < σ1 < σ2 < · · · < σk in ∆. This gives
B(∆) a multi-grading by subsets S = {dim σ1, . . . ,dim σk} ⊂ {1, . . . , n}.

Let us define a sheaf of rings B on B(∆). If σ ∈ B(∆)S, set

Bσ = BS := R[xi]i∈S ,

and let the restriction maps resσ
τ be the standard surjections BS → BT . This sheaf again is multi-

graded by N
n. We can define the indecomposable B-module L as before, but because B itself is

flabby, it follows that L � B. To avoid confusion, we use the letter L for the indecomposable
A-module on ∆ and the letter B for the similar B-module on B(∆).

It should be noted that the definition of topology, structure sheaf and the sheaf L only depend on
the partially ordered set ∆, and not its realization as a fan. We say that two fans are combinatorially
equivalent if their posets are isomorphic. Combinatorially equivalent fans give rise to isomorphic
theories of sheaves on them.

Define a map of posets π : B(∆) → ∆ by sending a cone in B(∆) to the smallest cone in ∆
containing it. If σ ∈ B(∆) corresponds to a chain 0 < σ1 < σ2 < · · · < σk, then π(σ) = σk. This
map is continuous in the fan topologies. We can also extend it to a map of ringed spaces, letting

Aπ(σ) = Aσk
= Adim σk

→ B{dimσ1,...,dimσk} = Bσ

be the standard projection.

Lemma 2.1. There exists an isomorphism of sheaves of A-modules on ∆

L � π∗B.

Proof. Let us check that the sheaf π∗B satisfies the two conditions in the definition of L. The first
condition is trivially true. For the second, note that combinatorially for any σ ∈ ∆k

B([σ]) � B(∂σ) × [ρ],

where ρ is a one-dimensional cone. It follows that

π∗B([σ]) = B(B([σ])) � B(B(∂σ)) ⊗Ak−1
Ak.

As we will see below, B(B(∂σ)) is a free Ak−1-module, so the sheaf π∗B lies in M(A), hence is
isomorphic to L.

2.2 Duality
Let us summarize some of the duality results proved in [BBFK02, BL03]. The structure sheaves
defined in those papers differ from those used here, but the constructions are general enough to
also work for sheaves A and B. We will mostly be using the category-theoretic constructions from
[BL03].

Fix an n-dimensional complete fan ∆.

(i) Let F be a sheaf on ∆. The cellular complex of F is

C•
n(∆, F ) = 0 → C0 → C1 → · · · → Cn → 0,
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where

Ci =
⊕

σ∈∆n−i

Fσ ,

and the differentials δ : Ci → Ci+1 are defined by choosing an orientation for each cone σ ∈ ∆
and setting Fσ → Fτ to be ± resσ

τ depending on whether the orientations agree or not.
On a complete fan ∆ the sheaf cohomology of F can be computed using the cellular complex:

H i(∆, F ) � H i(C•
n(∆, F )).

(ii) As the sheaf L is flabby, its non-zero cohomology vanishes. Moreover, H0(∆,L) is a graded free
An-module of finite rank. A similar result holds for the sheaf B on B(∆), and from Lemma 2.1
we get

H0(∆,L) � H0(B(∆),B).

Denote the Poincaré polynomial

Pn(∆) =
∑

S∈Nn

hStS ,

where hS = dim(H0(∆,L) ⊗An R)S and tS = tS1
1 · · · tSn

n .

(iii) Let ωn = An[(−1, . . . ,−1)]. That is, ωn is the free An-module of rank 1 placed in degree
(1, 1, . . . , 1). Then

HomAn(H0(∆,L), ωn) � H0(∆,L).

In particular, the numbers hS satisfy Poincaré duality

hS = hS ,

where S = (1, 1, . . . , 1) − S. It follows that we may index the numbers hS by subsets S ⊂
{1, . . . , n}.

(iv) More generally, consider the m-skeleton ∆�m of ∆. The sheaf cohomology of L on ∆�m vanishes
in non-zero degrees because L is flabby, and it is a free Am-module in degree 0. There is an
isomorphism in the derived category Db(A) of finitely generated A-modules

RΓ(∆�m,L) � RHom(C•
m(∆�m,L), ωm).

In particular, the cellular complex of L on ∆�m has no higher cohomology; the degree zero
cohomology is a free Am-module, dual to the module of global sections. When m = n this
together with part (i) gives Poincaré duality.

The cellular complex can be used to express the numbers hS in terms of flag numbers of ∆.
First, let us generalize the definition of Poincaré polynomial.

If M is a graded free An module, we define its Poincaré polynomial Pn(M) as above. As the
module may have elements in negative degree, Pn(M) is a Laurent polynomial in general. For a
complex of finite length M• of free An-modules we define the Poincaré polynomial by taking the
alternating sum

Pn(M•) =
∑

i

(−1)iPn(M i).

Finally, for any finitely generated An-module (or a bounded complex of such modules) we first
choose a free resolution and then compute its Poincaré polynomial. It is easy to see that this is
well defined and in fact it gives the Poincaré polynomial of an object in Db(An). Note also that the
Poincaré polynomial of the dual module HomAn(M,An) is obtained from the Poincaré polynomial
of M by replacing ti with t−1

i .
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As the cellular complex C•
n(B(∆),B) is a resolution of H0(B(∆),B) � H0(∆,L), we have

Pn(∆) =
∑

σ∈B(∆)

(−1)n−dim σPn(Bσ).

The An-module Bσ = BS has the Koszul resolution

· · · → Λ2V ⊗ An → V ⊗ An → An → BS ,

where V is a graded vector space with basis {xi}i/∈S . It follows that if σ has multi-degree S, then

Pn(Bσ) =
∏
i/∈S

(1 − ti).

Thus,

Pn(∆) =
∑
S

∑
σ∈B(∆)S

(−1)n−|S| ∏
i/∈S

(1 − ti).

The numbers fS = |B(∆)S | are called flag numbers of ∆: they count the number of chains (or flags)
in ∆ of type S. We can express the coefficient of tT in the formula above as

hT =
∑
S⊂T

(−1)n−|S|−|T |fS .

As hT = hT , the sum can also be written as

hT =
∑
S⊂T

(−1)|T�S|fS.

This last formula is often used to define the numbers hT . Note that we can also invert this formula
to express fS in terms of hT .

2.3 Existence of the cd-index
Let c and d be non-commuting variables of degree 1 and 2, respectively, and let R[c, d] be the
polynomial ring in c and d. We define an injective R-vector space homomorphism φ : R[c, d] →
R[t1, t2, . . . ] by induction on degree. If f(c, d) is a homogeneous polynomial of degree k on which φ
is defined, let

φ(f(c, d)c) = φ(f(c, d))(tk+1 + 1),
φ(f(c, d)d) = φ(f(c, d))(tk+1 + tk+2).

We say that g(t1, . . . , tn) is a cd-polynomial if it lies in the image of φ. When talking about the
degree of a cd-polynomial we always mean the degree in c and d.

The following proposition was proved by Bayer et al. [BK91]. The proof we give is essentially
the same as in [BK91, Sta94].

Proposition 2.2. Let ∆ be a complete n-dimensional fan. Then Pn(∆) is a homogeneous
cd-polynomial of degree n.

Proof. By Poincaré duality

2Pn(∆) = Pn(H0(∆,L)) + Pn(HomAn(H0(∆,L), ωn)).

As the cellular complex of L is a resolution of H0(∆,L), we have

2Pn(∆) =
∑
σ∈∆

(−1)n−dim σ(Pn(Lσ) + Pn(RHomDb(An)(Lσ, ωn))), (1)

where RHomDb(An)(Lσ, ωn) is the derived HomAn , computed as the HomAn of a free resolution of
Lσ. It suffices to prove that each term in the sum above is a cd-polynomial.
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Let us fix a σ ∈ ∆k, k > 0. By induction on dimension, we may assume that Pk(Lσ) = Pk−1(∂σ)
is a homogeneous cd-polynomial of degree k − 1. From the Koszul resolution we get

Pn(Lσ) = Pk(Lσ)
∏
i>k

(1 − ti).

Poincaré duality applied to ∂σ implies that

Pk(HomAk
(Lσ, ωk)) = Pk(Lσ)(t−1

1 , . . . , t−1
k )t1 · · · tk = Pk(Lσ)tk.

From this we compute

Pn(RHomDb(An)(Lσ, ωn)) = Pn(Lσ)(t−1
1 , . . . , t−1

n )t1 · · · tn
= Pk(Lσ)(t−1

1 , . . . , t−1
k )

∏
i>k

(1 − t−1
i )t1 · · · tn

= Pk(Lσ)tk
∏
i>k

(ti − 1)

= (−1)n−kPk(Lσ)tk
∏
i>k

(1 − ti).

Thus, a term corresponding to σ in the sum (1) is

(−1)n−kPk(Lσ)(1 + (−1)n−ktk)
∏
i>k

(1 − ti) = Pk(Lσ)((−1)n−k + tk)
∏
i>k

(1 − ti).

As (1 − ti)(1 − ti+1) = (1 + ti)(1 + ti+1) − 2(ti + ti+1) = c2 − 2d, we get

Pk(Lσ)((−1)n−k + tk)
∏
i>k

(1 − ti) =

{
Pk(Lσ)c(c2 − 2d)(n−k)/2 if n − k is even,

−Pk(Lσ)(c2 − 2d)(n−k+1)/2 if n − k is odd.

When σ is the zero cone then a similar computation shows that the contribution from σ to the
sum (1) is

((−1)n + 1)
n∏

i>1

(1 − ti) =

{
2(c2 − 2d)n/2 if n is even,

0 if n is odd.
(2)

Remark 2.3.

(i) The proof above gives a formula of Stanley [Sta94] for recursively computing the cd-index:

Pn(∆) =
1
2

[ ∑
σ∈∆k�{0}
n−k even

Pk−1(∂σ)c(c2 − 2d)(n−k)/2 −
∑

σ∈∆k�{0}
n−k odd

Pk−1(∂σ)(c2 − 2d)(n−k+1)/2 + ε

]
,

where ε is the cd-polynomial (2) above.
(ii) The proof also shows that for any fan ∆, not necessarily complete, the sum of the Poincaré

polynomials of the cellular complex of L and its dual is a cd-polynomial.

2.4 Gorenstein* posets
It is clear that the topology and the ringed space structure on a fan ∆ only depend on the poset
of ∆. Let us discuss the conditions a poset must satisfy in order to apply the results of this section.
Gorenstein* posets defined below form the largest class of posets for which everything works as for
fans.

We refer to [Sta96] for the terminology and results on posets. By a graded rank n poset we
mean a finite graded poset Λ with a unique minimal element 0 in degree 0 and a unique maximal
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element 1 in degree n + 1. If such elements do not exist, we add them. In particular, the poset Λ
being graded implies that all maximal chains have the same length.

For any graded poset, the definition of topology, structure sheaf A and the irreducible sheaf L
goes through as for fans. Note that by a sheaf on a poset Λ we mean a sheaf on Λ�{1}. What we
do not have for an arbitrary poset Λ is the cellular complex of a sheaf on Λ. To define the cellular
complex, we need both the restriction maps resσ

τ and the orientations orσ
τ = ±1.

Let Λ be a rank n graded poset. Define Λ to be orientable if for every x < y < 1, where y
covers x, we can choose an orientation

ory
x = ±1,

such that the sequence C•
n(Λ, RΛ) for the constant sheaf RΛ defined the same way as for fans above

is a complex, δ ◦ δ = 0. Note that we do not specify ory
x for y = 1 because the maximal element 1

does not appear in the cellular complex.
We say that an orientable poset Λ is Gorenstein if

dim H i(C•
n(Λ, RΛ)) =

{
1 if i = 0,

0 otherwise,
(3)

and recursively, every proper sub-interval [x, y] ⊂ Λ is also Gorenstein. (This is not a standard
terminology.) Recall that a graded poset Λ is Eulerian if every interval [x, y] for x < y has the
same number of elements of even and odd degree. A Gorenstein poset is clearly Eulerian: the Euler
characteristic of the cellular complex on any half-open interval [x, y) is 1.

To apply the duality theory of Bressler and Lunts [BL03], we need a Gorenstein poset that is
actually a lattice. A complete fan is an example of a Gorenstein lattice. Regular CW -spheres [BK91]
are Gorenstein posets, but they are not usually lattices.

The proof of duality in [BL03] for fans also involves the following technicality. If U is a subfan of
a complete fan ∆, define its complement U ′ = {γ ∈ ∆ : γ ∩ |U | = 0}. Then for the subfan [σ] ⊂ ∆
we have [σ]′′ = [σ]. Also, if Vσ = ∆�[σ]′, then Vσ (or the corresponding space) has a deformation
retraction to σ. It follows that the cellular complex C•

n applied to the constant sheaf R on Vσ is acyclic
in degrees less than n − 1. Let us call a graded oriented lattice Λ well-complemented if it satisfies
these two conditions, and recursively, every proper sub-lattice [0, x] is also well-complemented. Now
the duality theory holds for well-complemented Gorenstein lattices. In fact, everything we prove for
complete fans also works word-by-word for such lattices.

Examples of well-complemented lattices are lattices coming from polyhedral complexes, in par-
ticular simplicial complexes such as B(Λ) below. Indeed, for polyhedral complexes, the second
condition of well-complemented is satisfied because we have a deformation retract as in the case of
fans. The first condition is equivalent to the statement that if the vertices of a polyhedron Q are
also vertices of P , then Q is a face of P .

To define the more general notion of a Gorenstein* poset [Sta96], let Λ be a graded poset of rank
n and let B(Λ) be the lattice of chains in Λ�{0,1}. Then B(Λ)�{0,1} is a simplicial complex with
well-defined boundary maps. In particular, B(Λ) is orientable. Define Λ to be Gorenstein* if B(Λ)
is Gorenstein. From the discussion above it follows that the lattice B(Λ) is well-complemented, thus
if Λ is Gorenstein*, we can apply the duality theory to B(Λ).

Our definition of a Gorenstein* poset differs from that in [Sta96], but the two are equivalent.
In [Sta96], a rank n graded poset Λ is Gorenstein* if: (i) the simplicial complex B(Λ)�{0,1}
is a homology-manifold, i.e., the link of every simplex has the homology of a sphere of appro-
priate dimension; and (ii) the entire complex has the homology of the sphere Sn−1. These two
conditions are equivalent to the cohomology conditions (3) for all intervals [x,1] in B(Λ).
For y 	= 1, the interval [x, y] is the face lattice of a simplex, hence it satisfies condition (3).
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It is also not hard to see that if Λ is a Gorenstein* poset, then any interval [x, y] ⊂ Λ is again
Gorenstein*.

The results proved in this section also hold if we replace the fan ∆ with a Gorenstein* poset Λ.
We define the Poincaré polynomial of Λ using the sheaf B on B(Λ) rather than the sheaf
L on Λ. Then we know that the module of global sections of B satisfies Poincaré duality.

To prove Proposition 2.2, we work with the cellular complex C•
n(B(Λ),B) instead of C•

n(Λ,L).
Write

Pn(Λ) = Pn(C•
n(B(Λ),B)) =

∑
x∈B(Λ)

(−1)n−dim xPn(Bx)

=
∑
σ∈Λk

(−1)n−k
∑

x∈B(Λ), π(x)=σ

(−1)k−dim xPk(Bx)
∏
i>k

(1 − ti)

=
∑
σ∈Λk

(−1)n−kPk−1([0, σ])
∏
i>k

(1 − ti).

To the term Pk−1([0, σ]) (which is equal to Pk−1(∂σ) in case of fans) we apply induction assumption
and proceed as in the proof of Proposition 2.2.

3. Shelling

Stanley [Sta94] has shown that for certain shellable Eulerian posets the cd-index is non-negative.
We explain this result for fans. As this section is not essential for the general non-negativity proof,
we do not generalize it from fans to posets.

3.1 Fans with boundary
Barthel et al. studied fans with boundary in [BBFK02]. A quasi-convex fan is a full-dimensional
fan ∆ in R

n such that the boundary of ∆ is a homology manifold. In other words, the lattice of the
boundary fan ∂∆ is Gorenstein. We also call a fan quasi-convex if it is combinatorially equivalent to
a quasi-convex fan as defined above. In Stanley’s terminology a quasi-convex fan is near-Eulerian.
It can be completed by adding an element with boundary ∂∆. Such a completion is a Gorenstein*
poset, not necessarily an actual fan or even a lattice.

It is shown in [BBFK02] that if ∆ is a quasi-convex n-dimensional fan, then L(∆) is a free
An-module. Its dual is the submodule L(∆, ∂∆) of sections vanishing on the boundary. The cellular
complex of L has no non-zero cohomology and

H0(C•
n(∆,L)) = L(∆, ∂∆).

The module of global sections L(∆) can also be expressed using the cellular complex:

L(∆) = H0(C•
n(∆�∂∆,L)).

We denote by Pn(∆) the Poincaré polynomial of L(∆) as for complete fans.

Lemma 3.1. Let ∆ be a quasi-convex fan of dimension n. Then

Pn(∆) = f(c, d) + Pn−1(∂∆)

for some homogeneous cd-polynomial f of degree n.

Proof. We complete ∆ to ∆ by adding an element σ such that ∂σ = ∂∆. As L is flabby, we get an
exact sequence of free An-modules

0 → L([σ], ∂σ) → L(∆) → L(∆) → 0.
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Now Pn(∆) = f1(c, d) is a homogeneous cd-polynomial of degree n and Pn(L([σ], ∂σ)) = Pn−1(∂σ)tn.
Hence,

Pn(∆) = f1(c, d) − Pn−1(∂∆)tn = (f1(c, d) − Pn−1(∂∆)c) + Pn−1(∂∆).

Let Pn(∆, ∂∆) = Pn(L(∆, ∂∆)). Then from the lemma and Poincaré duality we get

Pn(∆, ∂∆) = f(c, d) + Pn−1(∂∆)tn.

Let ∆ be a complete fan and ∆�m its m-skeleton. Then L(∆�m) is a free Am-module and its
Poincaré polynomial is

Pm(∆�m) = Pn(∆)|tm+1=···=tn=0.

It is easy to see that Pm(∆�m) = f(c, d) + g(c, d)tm for some homogeneous cd-polynomials f and
g of degree m and m − 1, respectively. For example, if m = n − 1 and Pn(∆) = f(c, d)c + g(c, d)d,
then setting tn = 0, we have

Pn−1(∆�n−1) = f(c, d) + g(c, d)tn−1.

Lemma 3.2. Let ∆ be a quasi-convex n-dimensional fan and let ∆i be quasi-convex m-dimensional
fans, m < n, embedded in the m-skeleton ∆�m of ∆, such that every σ ∈ ∆�m occurs in ∆i�∂∆i

for precisely one i. Then

Pm(∆�m) =
∑

i

Pm(∆i, ∂∆i).

Proof. According to [BL03], the cellular complex C•
m(∆�m,L) computes the dual of L(∆). It suffices

to prove that the Poincaré polynomials of the dual modules are equal:

Pm(C•
m(∆�m,L)) =

∑
i

Pm(∆i).

This follows from the decomposition of ∆�m into a disjoint union

∆�m =
⋃
i

(∆i�∂∆i).

Definition 3.3. An n-dimensional quasi-convex fan ∆ is shellable if there exists an ordering of the
maximal cones σ1, σ2, . . . , σN , such that ∂∆ as well as

σ−
i := [σi] ∩ ([σ1] ∪ · · · ∪ [σi−1]) ⊂ ∂σi

for all i = 2, . . . , N are (n − 1)-dimensional shellable quasi-convex fans.

Example 3.4.

(i) If ∆ is a complete shellable fan, then ∆i = σ−
i ⊂ ∆�n−1 satisfy the conditions of Lemma 3.2

(the (n − 1)-skeleton of ∆ can be constructed by starting with σ−
N = ∂σN and attaching to it

cells σ−
N−1, σ

−
N−2, . . . , σ

−
2 ), hence

Pn−1(∆�n−1) =
N∑

i=2

Pn−1(σ−
i , ∂σ−

i ).

Let Pn−1(σ−
i , ∂σ−

i ) = fi(c, d) + gi(c, d)tn−1 for cd-polynomials fi and gi of degree n − 1 and
n − 2, respectively. Then

Pn(∆) =
N∑

i=2

fic + gid.
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(ii) As in the introduction, suppose that ∆ is a complete n-dimensional fan and we have

∆n−2 ⊂ Π ⊂ ∆n−1,

where the fan Π is combinatorially equivalent to a complete (n − 1)-dimensional fan. Let
∆n−1

�Π = {σ1, . . . , σk}. Then Π, [σ1], . . . , [σk] provide the ∆i in Lemma 3.2, hence

Pn−1(∆�n−1) = Pn−1(Π) +
∑

i

Pn−2(∂σi)tn−1.

From this it follows that

Pn(∆) = Pn−1(Π)c +
∑

i

Pn−2(∂σi)d.

Proposition 3.5. Let ∆ be a quasi-convex shellable n-dimensional fan. Then Pn(∆) is a
cd-polynomial with non-negative integer coefficients.

Proof. Let us fix a shelling σ1, . . . , σN of ∆ and complete ∆ to ∆ by adding an element σN+1 such
that ∂σN+1 = ∂∆. (The case when ∂∆ = ∅ can be handled similarly and is left to the reader.) Then
σ1, . . . , σN , σN+1 is a shelling of ∆ and as in the previous example, we get

Pn(∆) =
N+1∑
i=2

fic + gid,

where Pn−1(σ−
i , ∂σ−

i ) = fi(c, d) + gi(c, d); also fN+1 = Pn−1(∂Σ) and gN+1 = 0. From the exact
sequence

0 → L([σN+1], ∂σN+1) → L(∆) → L(∆) → 0
we get

Pn(∆) = Pn(∆) − Pn([σN+1], ∂σN+1)

= Pn(∆) − fN+1tn

=
N∑

i=1

fic + gid + Pn−1(∂∆).

By induction on dimension we know that fi, gi and Pn−1(∂∆) are homogeneous cd-polynomials with
integer coefficients, and so is Pn(∆).

4. Non-negativity of the cd-index

In this section we prove the main theorem. An essential step in the proof is to compare H0(∆�m,L)
with its dual module H0(C•

m(∆�m,L)). To do this we look for a sheaf F on ∆�m such that the
cellular complex of F ⊗ L computes H0(∆�m,L).

Throughout this section we fix a complete n-dimensional fan ∆ and an orientation on the cones
of ∆ (in fact, we only need the signs orσ

τ for σ > τ , dim σ = dim τ + 1). We consider sheaves on the
m-skeleton ∆�m of ∆.

Definition 4.1. A sheaf F of finite-dimensional vector spaces on ∆�m is called semi-Gorenstein if
for any σ ∈ ∆�m and any i > 0

H i(C•
m(Star σ, F )) = 0.

If, moreover, for any σ ∈ ∆�m

dim H0(C•
m(Star σ, F )) = dim Fσ,

the sheaf F is called Gorenstein.
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Example 4.2. (i) The constant sheaf R∆ is Gorenstein on ∆.

(ii) If ∆′ ⊂ ∆�m is an m-dimensional Gorenstein subfan and R∆′ the constant sheaf on ∆′ extended
by zero, then R∆′ is a Gorenstein sheaf on ∆�m.

(iii) If F is a semi-Gorenstein sheaf on ∆�m, then its restriction to ∆�k for k � m is again semi-
Gorenstein.

Remark 4.3. From the definition it is clear that a semi-Gorenstein sheaf on ∆�m is determined by
its restriction to the degree [m − 1,m] part ∆[m−1,m] of ∆. Indeed, if F is defined on Star σ�{σ},
where dimσ � m − 2, then

Fσ � Hm−dim σ−1(C•
m(Star σ�{σ}, F )),

with the obvious boundary maps. However, not every sheaf on ∆[m−1,m] extends to a semi-Gorenstein
sheaf on ∆�m.

Let F,G be semi-Gorenstein sheaves on ∆�m. A morphism F |∆[m−1,m] → G|∆[m−1,m] extends
uniquely to a morphism F → G (inductively, Fσ → Gσ is defined as a morphism of cohomologies
above). As for τ ∈ ∆m−1 the restriction map⊕

σ>τ

Fσ → Fτ

is surjective, a morphism F → G is uniquely determined by its restriction to ∆m, but not every
morphism F |∆m → G|∆m extends to a morphism F → G.

Given a semi-Gorenstein sheaf F on ∆�m, we define a new sheaf F∨ on ∆�m as follows. Set

F∨
σ = H0(C•

m(Star σ, F ))∗

(the vector space dual), and let the restriction maps be induced by the projections

C•
m(Star τ, F ) → C•

m(Star σ, F )

for τ < σ.
A morphism of semi-Gorenstein sheaves F → G induces a morphism G∨ → F∨, hence we get a

contravariant functor from the category of semi-Gorenstein sheaves to the category of sheaves. This
functor is exact: given an exact sequence of semi-Gorenstein sheaves, applying the functor (·)∨ gives
an exact sequence (this follows from the vanishing of higher cohomology: we get an exact sequence
of degree zero cohomology).

Lemma 4.4. If F is semi-Gorenstein on ∆�m, then F∨ is also semi-Gorenstein.

Proof. For σ ∈ ∆m, let Gσ be the constant sheaf Fσ on {σ}, extended by zero. Consider the exact
sequence

0 → K → F →
⊕

dimσ=m

Gσ → 0.

Here K = F |∆�m−1 , hence K is semi-Gorenstein on ∆�m−1. The sheaves Gσ are clearly semi-
Gorenstein on ∆�m. For τ ∈ ∆�m−1 we get an exact sequence of complexes

0 → C•
m(Star τ,K) → C•

m(Star τ, F ) →
⊕

dimσ=m

C•
m(Star τ,Gσ) → 0,

hence an exact sequence of cohomology

0 → H0(C•
m(Star τ, F )) →

⊕
dim σ=m

H0(C•
m(Star τ,Gσ)) → H0(C•

m−1(Star τ,K)) → 0.
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Thus, we get an exact sequence of sheaves

0 → K∨ →
⊕

dimσ=m

G∨
σ → F∨ → 0,

where K∨ is constructed as a sheaf on ∆�m−1. By induction on m we may assume that K∨

is semi-Gorenstein on ∆�m−1. The sheaves G∨
σ are constant sheaves on [σ] extended by zero,

hence semi-Gorenstein on ∆�m. Now a long-exact cohomology sequence

· · · →
⊕

dim σ=m

H i(C•
m(Star τ,G∨

σ )) → H i(C•
m(Star τ, F∨)) → H i(C•

m−1(Star τ,K∨)) → · · ·

shows that F∨ is also semi-Gorenstein.

Lemma 4.5. The functor (·)∨ is an anti-involution on the category of semi-Gorenstein sheaves on
∆�m.

Proof. We construct a canonical isomorphism F∨∨ � F on ∆[m−1,m]. If dim σ = m, then we
have canonically (F∨∨)σ = F ∗∗

σ � Fσ. We claim that this isomorphism extends uniquely to an
isomorphism F∨∨ � F . For dim τ = m − 1, F∨

τ is defined by the exact sequence

0 → (F∨
τ )∗ →

⊕
σ>τ

Fσ → Fτ → 0.

Similarly, (F∨∨)τ is defined by

0 → ((F∨∨)τ )∗ →
⊕
σ>τ

F∨
σ → F∨

τ → 0.

As the second sequence is the dual of the first, this gives the isomorphism (F∨∨)τ � Fτ compatible
with restrictions resσ

τ .

Let us now return to sheaves of A-modules on ∆�m. We will be considering sheaves of the type
L ⊗ F , where F is a semi-Gorenstein sheaf and the tensor product is over R.

Proposition 4.6. Let F be a semi-Gorenstein sheaf on ∆�m. Then in Db(Am) we have an isomor-
phism

C•
m(∆�m,L ⊗ F ) � RHom(C•

m(∆�m,L ⊗ F∨), ωm).

Proof. Bressler and Lunts [BL03] construct a dualizing functor D on the derived category Db(M(A))
of finitely generated A-modules and show that

RΓ(∆�m, D(F)) � RHom(C•
m(∆�m,F), ωm)

for any F ∈ Db(M(A)). This result together with D(L) � L gives duality between Γ(∆�m,L) and
C•

m(∆�m,L), hence Poincaré duality when m = n.
We show that for F ∈ Db(M(A)) there exists a canonical isomorphism

C•
m(∆�m, D(F) ⊗ F ) � RHom(C•

m(∆�m,F ⊗ F∨), ωm). (4)

Then D(L) � L proves the proposition.
The complex of sheaves D(F) has stalk at σ isomorphic to

RHomDb(Am)(C
•
m([σ],F), ωm).

To make this an actual complex of sheaves, one first resolves F in projective sheaves of free Am-
modules of the type Pσ, which is the constant sheaf Am on [σ], extended by zero to a sheaf on ∆�m;
then C•

m([σ],Pσ) is a complex of free Am-modules and we can replace RHomDb(Am) with HomAm .
Now it suffices to prove the isomorphism (4) for F = Pσ.
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Let us fix a σ ∈ ∆�m and consider the double complex of free Am-modules

(0 → K−m → K−m+1 → · · · → K0 → 0) ⊗ ωm,

where

K−m+i =
⊕

τ�σ, dim τ=i

C•
m(Star τ, F ),

and the differentials are induced by the projections with signs orσ
τ . We claim that this double

complex represents both sides of the isomorphism (4) when F = Pσ.
For a cone ρ ∈ ∆�m the stalk of D(Pσ) ⊗ F is the complex

(D(Pσ) ⊗ F )ρ = HomAm(C•
m([ρ],Pσ), ωm) ⊗ Fρ

= HomAm(C•
m([ρ ∩ σ], Am), ωm) ⊗ Fρ

= (C•
m([ρ ∩ σ], R))∗ ⊗ ωm ⊗ Fρ.

This is precisely the contribution from ρ to the double complex: ρ ∈ Star τ for τ � σ if and only if
τ ∈ [ρ ∩ σ].

On the other hand, taking cohomology inside each Ki, the double complex becomes(
(F∨

0 )∗ →
⊕

τ�σ, dim τ=1

(F∨
τ )∗ → · · ·

)
⊗ ωm = C•

m([σ], F∨)∗ ⊗ ωm

= HomAm(C•
m([σ], F∨ ⊗ Am), ωm)

= HomAm(C•
m(∆�m, F∨ ⊗Pσ), ωm)

which is the right-hand side of (4).

To simplify notation, let us denote

Pm(F ) = Pm(C•
m(∆�m,L ⊗ F )).

Then for F a semi-Gorenstein sheaf on ∆�m, the proposition gives that Pm(F ) and Pm(F∨) are
dual to each other. If F is Gorenstein, then Pm(F ) = Pm(F∨).

Lemma 4.7. Let F be a semi-Gorenstein sheaf on ∆�m. Assume that:

(i) we have a surjective morphism F∨ → F with kernel G;

(ii) Pm(F ) is a cd-polynomial

Pm(F ) = f(c, d) + g(c, d),

where f and g are homogeneous cd-polynomials of degree m and m − 1, respectively.

Then G is a Gorenstein sheaf on ∆�m−1 and

Pm−1(G) = g(c, d).

Proof. From the exact sequence

0 → G → F∨ → F → 0

we have dim Gσ = dim F∨
σ − dim Fσ. Computing the cohomology long-exact sequence of

0 → C•
m(Star σ,G) → C•

m(Star σ, F∨) → C•
m(Star σ, F ) → 0,

we get that H i(C•
m(Star σ,G)) = 0 for i > 1, hence G is semi-Gorenstein on ∆�m−1, and

0 → H0(C•
m(Star σ, F∨)) → H0(C•

m(Star σ, F )) → H1(C•
m(Star σ,G)) → 0
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shows that
dim G∨

σ = dim F∨
σ − dim Fσ = dim Gσ,

thus G is Gorenstein.
Proposition 4.6 gives that Pm(F∨) = f(c, d) + g(c, d)tm. Now from the exact sequence

0 → G ⊗ L → F∨ ⊗ L → F ⊗ L → 0,

we get

Pm−1(G)(1 − tn) = Pm(G) = −Pm(C•
m(∆�m,L ⊗ G))

= Pm(F ) − Pm(F∨) = g(c, d)(1 − tn).

This proves the last statement.

To apply the previous lemma, we need to see when a surjective morphism F∨ → F exists. As
F∨ is semi-Gorenstein on ∆�m, it suffices to construct such a morphism on ∆[m−1,m]. Moreover,
such a morphism is uniquely determined if we know it on ∆m. It is also easy to see that such a
morphism is surjective if and only if its restriction to ∆m is surjective. Let us see when a morphism
defined on ∆m extend to a morphism on ∆[m−1,m].

Suppose that G and F are semi-Gorenstein sheaves on ∆�m, and let φσ : Gσ → Fσ be given for
all σ ∈ ∆m. This map extends to a morphism of sheaves G → F if for all τ ∈ ∆m−1 the map

⊕
φσ

takes

Ker
(⊕

σ>τ

Gσ
resσ

τ−→ Gτ

)
→ Ker

(⊕
σ>τ

Fσ
resσ

τ−→ Fτ

)
.

Indeed, then we can lift an element in Gτ to
⊕

σ>τ Gσ and map it to
⊕

σ>τ Fσ followed by restriction
to Fτ .

When G = F∨, then Gσ = F ∗
σ and

Gτ = Ker
(⊕

σ>τ

Fσ
orσ

τ resσ
τ−→ Fτ

)∗
= Coker

(
F ∗

τ
orσ

τ (resσ
τ )∗−→

⊕
σ>τ

F ∗
σ

)
.

Now given φσ : F ∗
σ → Fσ for all σ ∈ ∆m, the compatibility condition becomes that the composition

F ∗
τ

orσ
τ (resσ

τ )∗−→
⊕
σ>τ

F ∗
σ

φσ−→
⊕
σ>τ

Fσ
resσ

τ−→ Fτ (5)

must be zero.
As an example, take F to be the constant sheaf R on ∆�m. Then φσ : R

∗ → R is given by a
constant cσ and the sequence (5) becomes

R
∗
τ

orσ
τ−→

⊕
σ>τ

R
∗
σ

cσ−→
⊕
σ>τ

Rσ
1−→ Rτ ,

the composition of which is ∑
σ>τ

orσ
τ cσ.

This sum is zero for all τ precisely when the collection (cσ) defines a class in H0(C•(∆�m, R)).
When m < n then such a class is defined as follows. Choose dπ ∈ R for each π ∈ ∆m+1, and set
cσ =

∑
π>σ orπ

σdπ. Then for τ ∈ ∆m−1 we have∑
σ>τ

orσ
τ cσ =

∑
π>σ>τ

orσ
τ orπ

σdπ =
∑

π

dπ

( ∑
π>σ>τ

orσ
τ orπ

σ

)
= 0.

Choosing dπ generically ensures that all cσ are non-zero, hence φ : F∨ → F is surjective.
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Proposition 4.8. Let F be a semi-Gorenstein sheaf on ∆�m+1. Then there exists a surjective
morphism

F |∨∆�m → F |∆�m .

Proof. We look for φσ : F ∗
σ → Fσ for σ ∈ ∆m in the form of a composition

φσ : F ∗
σ

orπ
σ(resπ

σ)∗−→
⊕
π>σ

F ∗
π

φπ−→
⊕
π>σ

Fπ
resπ

σ−→ Fσ,

where φπ : F ∗
π → Fπ are defined for all π ∈ ∆m+1 independently of σ. Plugging this sequence into

the sequence (5), we get for each τ

F ∗
τ

orσ
τ (resσ

τ )∗−→
⊕
σ>τ

F ∗
σ

orπ
σ(resπ

σ)∗−→
⊕

π>σ>τ

F ∗
π

φπ−→
⊕

π>σ>τ

Fπ
resπ

σ−→
⊕
σ>τ

Fσ
resσ

τ−→ Fτ ,

whose composition is zero because for a fixed π and τ we have∑
π>σ>τ

orσ
τ orπ

σ resσ
τ resπ

σ = 0.

Thus, it suffices to find a linear map φπ : F ∗
π → Fπ for all π ∈ ∆m+1, such that the composition

φσ is an isomorphism for each σ ∈ ∆m. We claim that a general collection of φπ satisfies this
condition: for each σ there is a proper algebraic subset in

⊕
π HomR(F ∗

π , Fπ) for which φσ is not an
isomorphism.

Let us fix one σ. The condition for φσ not being an isomorphism is clearly algebraic. Thus,
it suffices to find one collection φπ that gives an isomorphism φσ. We may assume that orπ

σ = 1,
otherwise replace φπ by −φπ. Now an isomorphism φπ is given by a non-degenerate bilinear form
Bπ on F ∗

π and φσ is given by the restriction of
⊕

π Bπ to the subspace F ∗
σ ⊂ ⊕

π F ∗
π , provided that

this restriction is non-degenerate. If we take Bπ to be positive definite symmetric bilinear forms,
then their restriction is also positive definite, hence defines an isomorphism φσ.

Lemma 4.9. Let F be a semi-Gorenstein sheaf on ∆�m+1 such that Pm+1(F ) = f(c, d) + g(c, d),
where f and g are homogeneous cd-polynomials of degree m + 1 and m, respectively. If

f(c, d) = fm(c, d)c + gm(c, d)d,

then

Pm(F |∆�m) = fm(c, d) + gm(c, d).

Proof. Consider the exact sequence

0 → C•
m(∆�m, F ⊗ L)[−1] → C•

m+1(∆
�m+1, F ⊗L) →

⊕
dimσ=m+1

Fσ ⊗ Lσ → 0.

Let Pm+1(
⊕

dimσ=m+1 Fσ⊗Lσ) = h(c, d), which is a homogeneous cd-polynomial of degree m. Then

−Pm(F |∆�m)(1 − tm+1) − Pm+1(F ) + h(c, d) = 0.

It follows that Pm(F |∆�m) is the coefficient of tm+1 in Pm+1(F ).

Let us define operations C and D on semi-Gorenstein sheaves. If F is a semi-Gorenstein sheaf on
∆�m, let C(F ) be its restriction to ∆�m−1, and let D(F ) be the sheaf G on ∆�m−2 from Lemma 4.7
and Proposition 4.8. Such a sheaf G is not uniquely defined; however, the dimensions of its stalks are.
Given a cd-monomial w(c, d) of degree m, we can apply the operation w(C,D) to a semi-Gorenstein
sheaf F on ∆�m. The result is a semi-Gorenstein sheaf on the cone 0, hence a vector space.

716

https://doi.org/10.1112/S0010437X06001928 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06001928


The cd-index of fans and posets

Theorem 4.10. Let F be a semi-Gorenstein sheaf on ∆�m such that Pm(F ) = f(c, d) + g(c, d),
where f and g are homogeneous cd-polynomials of degree m and m− 1, respectively. If w(c, d) is a
cd-monomial of degree m, then

dim w(C,D)(F )0
is the coefficient of w(c, d) in f(c, d).

Proof. We prove it by induction on m, the case m = 0 being trivial.
Let f = fm−1(c, d)c + gm−1(c, d)d. Then by the previous lemma

Pm−1(C(F )) = fm−1(c, d) + gm−1(c, d),

and by Lemma 4.7

Pm−2(D(F )) = gm−1(c, d).

Now we are done by induction: if w = wm−1c, then the coefficient of w in f(c, d) is the coefficient
of wm−1 in fm−1(c, d), which is dim wm−1(C,D)(C(F ))0. If w = wm−2d, then the coefficient of w in
f(c, d) is the coefficient of wm−2 in gm−1(c, d), which is dim wm−2(C,D)(D(F ))0.

Applying this to F = R∆, we get the following.

Corollary 4.11. If ∆ is a complete n-dimensional fan, then Pn(∆) is a homogeneous cd-polynomial
with non-negative integer coefficients.

Corollary 4.12. If ∆ is a quasi-convex n-dimensional fan, then Pn(∆) is a cd-polynomial with
non-negative integer coefficients.

Proof. Embed ∆ in a complete fan ∆ of the same dimension. Let F be the constant sheaf R on
∆�∂∆, extended by zero to a sheaf on ∆. Then

Pn(F ) = Pn(∆) = f(c, d) + Pn−1(∂∆).

Now F is semi-Gorenstein, in fact F = R
∨
∆, where R∆ is the constant sheaf R on ∆ extended by

zero. The theorem gives that f(c, d) has non-negative integer coefficients, the previous corollary
proves the same for Pn−1(∂∆).

4.1 Gorenstein* posets

Let Λ be a Gorenstein* poset. Then B(Λ) is a well-complemented Gorenstein lattice and the theory
of semi-Gorenstein sheaves on B(Λ) works the same way as for complete fans. When working
with B-modules on B(Λ), the difference is that restriction to the m-skeleton should be restriction
to B(Λ�m), rather than restriction to B(Λ)�m. Then for Lemma 4.7 to hold, we need the sheaf
G to be supported on B(Λ�m).

If F is a sheaf of finite-dimensional vector spaces on B(Λ�m), let dim F : B(Λ�m) → Z be the
element in I(B(Λ�m)) such that

dim F (σ) = dim Fσ.

We consider sheaves F on B(Λ�m) satisfying the condition

dim F = π∗(f) (6)

for some f ∈ I(Λ�m). Recall that π : B(Λ) → Λ is the projection.

Lemma 4.13. If F is a semi-Gorenstein sheaf on B(Λ�m) satisfying condition (6), then F∨ satisfies
the same condition.
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Proof. Recall the definition of the operation E given in the introduction. We have

dim F∨ = E(dim F ).

Now it suffices to prove that E commutes with π∗:

E ◦ π∗(f) = π∗ ◦ E(f).

Then dim F∨ = π∗(E(f)).
For σ ∈ B(Λ�m),

E ◦ π∗(f)(x) =
∑
y�x

(−1)m−dim yf(π(y))

=
∑

σ∈Λ, σ�π(x)

(−1)m−dim σf(σ)
∑

y�x, π(y)=σ

(−1)dim σ−dim y.

The last sum runs over all elements in [σ,1) ⊂ B([0, x]). As B([0, x]) is Eulerian, this sum is 1.

The previous lemma implies that if F satisfies condition (6), then the sheaf G constructed in
Lemma 4.7 again satisfies the same condition. It follows that the operations C and D are well-
defined on such sheaves and the results also satisfy the same condition. Now all proofs above work
for semi-Gorenstein sheaves F on B(Λ�m) satisfying condition (6) with L replaced by B.

This proves Theorem 1.3. The operations C and D on semi-Gorenstein sheaves correspond to
operations C and D defined in the introduction. Thus, Theorem 4.10 implies Proposition 1.2 not
only for complete fans but also for Gorenstein* posets.
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