MULTIPLICATION ON SPACES WITH COMULTIPLICATION*

C. S. Hoo

(received May 3, 1969)

Abstract

Let A be an H-space and K a space. It is well known that $[\mathrm{K}, \mathrm{A}]$ is a loop. Suppose A has a comultiplication as well, that is, cat $A<2$. Then we shall prove that [K, A] is a Moufang loop. This generalises a result of C. W. Norman who proved this for the case where A is the circle, the 3 -sphere or the 7 -sphere. It also improves the known result that $[K, A]$ is a diassociative loop if A has a comultiplication as well, since Moufang loops are diassociative.

1. We shall work in the category of spaces with base points and having the homotopy type of countable CW-complexes. All maps and homotopies are to respect base points which we shall usually denote by the symbol * . For simplicity, we shall frequently use the same symbol for a map and its homotopy class. Given spaces X, Y, we denote the set of homotopy classes of maps from X to Y by [X,Y]. The symbol Σ shall stand for the suspension functor.

We recall briefly that a loop is a set M together with a binary operation (which we shall denote by + even if the operation is not commutative) satisfying the following axioms: (1) there is an identity 0 in M satisfying $0+a=a=a+0$ for all a in M (2) the equations $x+a=b, a+y=b$ admit a unique pair of solutions x, y in M where a, b are elements of M. We observe that an associative loop is a group. Given elements a, b, c of a loop M, we define the commutator $[a, b]$ and associator $[a, b, c]$ by the equations $a+b=(b+a)+[a, b]$ and $(a+b)+c=\{a+(b+c)\}+[a, b, c]$.

We now recall some loop-theoretic notions. According to the axioms above, every element of a loop has a unique left inverse and a unique right inverse. A loop is called inversive if for every element of the loop its left inverse coincides with its right inverse. We denote the inverse of an element a of an inversive loop by -a. An inversive loop is called power associative if for every element a, we have

[^0]Canad. Math. Bull. vol. 12, no. 4, 1969
$(a+a)+a=a+(a+a),-a+(a+a)=a=(a+a)-a$, that is, $[a, a, a]=0,[a, a,-a]=0,[-a, a, a]=0$ for every element a. An inversive loop is called diassociative if for every two elements a, b of the loop, we have $[a, a, b]=0,[a, b, a]=0,[a, b, b]=0$, $[-\mathrm{a}, \mathrm{a}, \mathrm{b}]=0,[\mathrm{a}, \mathrm{b},-\mathrm{b}]=0$ and $[-\mathrm{a}, \mathrm{b}, \mathrm{a}]=0$. Thus, an inversive loop is power associative if the subloop generated by an element is a cyclic group, and an inversive loop is diassociative if the subloop generated by any two elements is a group. It is clear that a diassociative loop is power associative. Finally, we say that a loop is Moufang if it satisfies the identity $(a+b)+(c+a)=\{a+(b+c)\}+a$ for all elements a, b, c of the loop. It is known that a Moufang loop is diassociative (see Moufang's Theorem [2, page 117]).

For the sake of completeness, we briefly recall the definitions of the conilpotency, the category and the weak category of a space. Let X be a topological space and let ΣX be its suspension. Let $\phi: \Sigma X \rightarrow \Sigma X \vee \Sigma X$ be the suspension comultiplication and $\mu: \Sigma X \rightarrow \Sigma X$ the inverse. We define the basic cocommutator map $c: \Sigma X \rightarrow \Sigma X \vee \Sigma X$ by $\mathrm{c}=\nabla(1 \vee 1 \vee \mu \vee \mu)(\phi \vee \phi) \phi$ where $\nabla: \Sigma \mathrm{X} \vee \Sigma \mathrm{X} \vee \Sigma \mathrm{X} \vee \Sigma \mathrm{X} \rightarrow$ $\Sigma X \vee \Sigma X$ is the folding map. The cocommutator map c_{1} of weight 1 is the identity. Suppose the cocommutator map $c_{k}: \Sigma X \rightarrow \Sigma X \vee \ldots \vee \Sigma X$ (k terms) of weight k has been defined. We then define the cocommutator map of weight $(k+1)$ by $c_{k+1}=\left(c_{k} \vee 1\right) c: \Sigma X \rightarrow \Sigma X \vee \ldots \vee \Sigma X$ ($k+1$ terms). The conilpotency class of X, conil X, is the least integer $k \geq 0$ such that $c_{k+1} \simeq *$. If no such integer exists, we put conil $X=\infty$.

Now for each integer $n \geq 1$, let X^{n} denote the cartesian product of n copies of X and let $T_{1}\left(X^{n}\right)$ be the subspace of X^{n} consisting of all points with at least one coordinate at the base point $*$ of X. Let $j: T_{1}\left(X^{n}\right) \rightarrow X^{n}$ be the inclusion and let $\Delta: X \rightarrow X^{n}$ be the diagonal map. Then we say that the category of X is less than n, \quad cat $X<n, \quad$ if there is a map $\phi: X \rightarrow T_{1}\left(X^{n}\right)$ such that $j \phi \simeq \Delta$. The weak category of X, wcat X, is the least integer $k \geq 0$ such that $\mathrm{q} \Delta \simeq *$ where $\Delta: X \rightarrow X^{k+1}$ is the diagonal map and $q: X^{k+1} \rightarrow X^{(k+1)}$ is the projection of the cartesian product onto the smashed product.
2. We now recall some results from [8]. Let A be an H-space with multiplication $\phi: A \times A \rightarrow A$. Let K be a space. Then we have a loop $[K, A]$. For each integer $n \geq 1$, let $T_{1}\left(K^{n}\right)$ denote the subset of K^{n} consisting of points with at least one coordinate equal to the base point $*$ of K. Let $j_{n}: T_{1}\left(K^{n}\right) \rightarrow K^{n}$ be the inclusion, and $q_{n}: K^{n} \rightarrow K^{(n)}$ be the projection where $K^{(n)}$ denotes the smashed product of n copies
of K. Then we have a cofibration $T_{1}\left(K^{n}\right) \xrightarrow{j_{n}} K^{n} \xrightarrow{q_{n}} K^{(n)}$. Let $\Delta_{\mathrm{n}}: \mathrm{K} \rightarrow \mathrm{K}^{\mathrm{n}}$ be the diagonal map. We have homomorphisms $j_{n}^{\#}:\left[K^{n}, A\right] \rightarrow\left[T_{1}\left(K^{n}\right), A\right], \Delta_{n}^{\#}:\left[K^{n}, A\right] \rightarrow[K, A]$. Then it is shown in [8] that $\Delta_{n}^{\#}\left(\operatorname{ker} j_{n}^{\#}\right)$ is a normal subloop of $[K, A]$. Let us denote $\Delta_{n}^{\#}\left(\operatorname{ker~}_{j}^{\#}{ }_{n}^{\#}\right)$ by G_{n} for each $n \geq 1$. Then $G_{1}=[K, A]$ and $G_{n+1} \subset G_{n}$ (see [8]). It is also shown in [8] that $G_{n} / G_{n+1} \subset Z\left(G_{1} / G_{n+1}\right)$ where $Z\left(G_{1} / G_{n+1}\right)$ is the centre of the loop G_{1} / G_{n+1}.

Suppose conil $K<n$. Then we claim that $G_{n}=0$. For suppose $f \varepsilon G_{n}$. Then we have $f=f_{1} \Delta_{n}$ where $f_{1} \varepsilon \operatorname{Ker} j_{n}^{\#}$, that is, $f_{1} j_{n} \simeq *: T_{1}\left(K^{n}\right) \rightarrow A$. From the cofibration $T_{1}\left(K^{n}\right) \xrightarrow{j_{n}} K^{n} \xrightarrow{q_{n}} K^{(n)}$ it follows that $f_{1} \simeq f_{2} q_{n}$ where $f_{2}: K^{(n)} \rightarrow A$. Hence we have $\mathrm{f}=\mathrm{f}_{2} \mathrm{q}_{\mathrm{n}} \Delta_{\mathrm{n}}$, and hence $\Sigma \mathrm{f}=\Sigma \mathrm{f}_{2} \Sigma\left(\mathrm{q}_{\mathrm{n}} \Delta_{\mathrm{n}}\right)$. Since conil $K<\mathrm{n}$, we have that $\Sigma\left(\mathrm{q}_{\mathrm{n}} \Delta_{\mathrm{n}}\right) \simeq *$ by $[3 ; 4 ; 6]$. Hence $\Sigma f \simeq *$. Since A is an H -space, $\Sigma:[\mathrm{K}, \mathrm{A}] \rightarrow[\Sigma \mathrm{K}, \Sigma \mathrm{A}]$ is one-to-one. Hence $\mathrm{f} \simeq *$. Thus we see that if conil $\mathrm{K}<\mathrm{n}$, we have an ascending chain of normal subloops $0=G_{n} \subset G_{n-1} \subset \ldots \subset G_{1}=[K, A]$ such that $G_{i} / G_{i+1} \subset Z\left(G_{1} / G_{i+1}\right)$. Hence as in [8], we have that [K,A] is a loop which is centrally nilpotent of class $\leq n-1$ and nuclearly nilpotent of class $\leq\left[\frac{1}{2} n\right]$ where $[x]$ denotes the integral part of x. This improves [8, Theorem 1.1] by replacing the condition w cat $K<n$ there by conil $\mathrm{K}<\mathrm{n}$. We have normalised w cat and cat in this paper so that our value is one less than in [8], and we observe that with the normalisation, conil $K \leq w c a t K \leq c a t K$ (see [3]). Strict inequalities can occur (see [3]). We state our result formally as the following theorem.

THEOREM 1. Let A be an H-space and K a space. If conil $\mathrm{K}<\mathrm{n}$, then [K, A] is a loop which is centrally nilpotent of class $\leq n-1$ and nuclearly nilpotent of class $\leq\left[\frac{1}{2} n\right]$.

We now consider the normal subloops G_{i} of $[\mathrm{K}, \mathrm{A}]$. With the same assumptions as in Theorem 1, we have the following result.

THEOREM 2. Let $f \varepsilon G_{r}, g \varepsilon G_{s}, h \varepsilon G_{t}$. Then the associator $[f, g, h] \varepsilon G_{r+s+t}$ and hence $(f+g)+h=f+(g+h)$ if $r+s+t \geq n$.

COROLLARY. If conil $K<n$, then $G_{\left[\frac{n+2}{3}\right]}$ is a group. Hence if conil $\mathrm{K}<3$, then $[\mathrm{K}, \mathrm{A}]$ is a group.

The corollary follows immediately from Theorem 2.
Proof of Theorem 2. Let $\phi: A \times A \rightarrow A$ be the H-structure on A. Let $j_{3}: T_{1}\left(A^{3}\right) \rightarrow A^{3}$ be the inclusion. Then it can be checked that $\phi(\phi \times 1) j_{3} \simeq \phi(1 \times \phi) j_{3}$. From the cofibration $T_{1}\left(A^{3}\right) \xrightarrow{j_{3}} A^{3} \xrightarrow{q_{3}} A^{(3)}$ it follows that we can write $\phi(\phi \times 1)=\phi(1 \times \phi)+\psi q_{3}$ where $\psi: A^{(3)} \rightarrow A$. We have the map $(f \times g \times h) \Delta_{3}: K \rightarrow A^{3}$ and hence we have $(f+g)+h=\{f+(g+h)\}+\psi \mathrm{q}_{3}(\mathrm{f} \times \mathrm{g} \times \mathrm{h}) \Delta_{3}$. We observe that $\psi \mathrm{q}_{3}(\mathrm{f} \times \mathrm{g} \times \mathrm{h}) \Delta_{3}$ is the associator $[\mathrm{f}, \mathrm{g}, \mathrm{h}]$. Since $f \varepsilon G_{r}, g \varepsilon G_{s}, h \varepsilon G_{t}$ we can write $f=f_{1} q_{r} \Delta_{r}, g=g_{1} q_{s} \Delta_{s}$, $h=h_{1} q_{t} \Delta_{t}$. Hence the associator $[f, g, h]=\psi q_{3}(f \times g \times h) \Delta_{3}$ $=\psi q_{3}\left(f_{1} \times g_{1} \times h_{1}\right)\left(q_{r} \times q_{s} \times q_{t}\right) \Delta_{r+s+t}$ $=\psi\left(\mathrm{f}_{1} \wedge \mathrm{~g}_{1} \wedge \mathrm{~h}_{1}\right) \mathrm{q}_{3}\left(\mathrm{q}_{\mathrm{r}} \times \mathrm{q}_{\mathrm{s}} \times \mathrm{q}_{\mathrm{t}}\right) \Delta_{\mathrm{r}+\mathrm{s}+\mathrm{t}}$ $=\psi\left(f_{1} \wedge g_{1} \wedge h_{1}\right) q_{r+s+t} \Delta_{r+s+t}$. Thus [f,g,h] εG_{r+s+t}. If conil $\mathrm{K}<\mathrm{n}$ and $\mathrm{r}+\mathrm{s}+\mathrm{t} \geq \mathrm{n}$ we have $\Sigma\left(\mathrm{q}_{\mathrm{r}+\mathrm{s}+\mathrm{t}} \Delta_{\mathrm{r}+\mathrm{s}+\mathrm{t}}\right)=0$. Hence $\Sigma[f, g, h]=0$. Since A is an H-space, Σ is one-to-one, and hence $[f, g, h]=0$. Thus $(f+g)+h=f+(g+h)$. This proves Theorem 2.

THEOREM 3. Let $f \varepsilon G_{r}, g \varepsilon G_{s}$. Then the commutator $[f, g] \varepsilon G_{r+s}$.

Proof. We have the H -structure $\phi: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$. Let $\phi_{1}: A \times A \rightarrow A$ be any other H-structure on A. Then $\phi j \simeq \nabla$ and $\phi_{1} \mathrm{j} \simeq \nabla$ where $j: A \vee A \rightarrow A \times A$ is the inclusion and $\nabla: A \vee A \rightarrow A$ is the folding map. Hence we can write $\phi=\phi_{1}+\psi \mathrm{q}_{2}$ where $q_{2}: A^{2} \rightarrow A^{(2)}$ is the projection and $\psi: A^{(2)} \rightarrow A$ is a map and + is the operation in $\left[A^{2}, A\right]$ induced by ϕ. Composing with ($f \times g$) Δ we have $f+g=(f \oplus g)+\psi q_{2}(f \times g) \Delta$ where \oplus is the operation in $[\mathrm{K}, \mathrm{A}]$ induced by ϕ_{1}. Now we can write $\mathrm{f}=\mathrm{f}_{1} \mathrm{q}_{\mathrm{r}} \Delta_{\mathrm{r}}, \mathrm{g}=\mathrm{g}_{1} \mathrm{q}_{\mathrm{s}} \Delta_{\mathrm{s}}$ and hence $\psi \mathrm{q}_{2}(\mathrm{f} \times \mathrm{g}) \Delta=\psi \mathrm{q}_{2}\left(\mathrm{f}_{1} \times \mathrm{g}_{1}\right)\left(\mathrm{q}_{\mathrm{r}} \times \mathrm{q}_{\mathrm{s}}\right) \Delta_{\mathrm{r}+\mathrm{s}}$ $=\psi\left(f_{1} \wedge g_{1}\right) q_{r+s} \Delta_{r+s}$. Thus $f+g=(f \oplus g)+\psi\left(f_{1} \wedge g_{1}\right) q_{r+s} \Delta_{r,+s}$.

Clearly $\psi\left(f_{1} \wedge g_{1}\right) q_{r+s} \Delta_{r+s} \varepsilon G_{r+s}$. If we take ϕT for ϕ_{1} where $T: A \times A \rightarrow A \times A$ is the switching map, then $f \oplus g$ is just $g+f$, and hence we see that $[f, g] \varepsilon G_{r+s}$. This proves Theorem 3 .

We observe that in the general case if $r+s \geq n$, then our usual arguments will show that $\psi \mathrm{q}_{2}(f \times g) \Delta=0$ and hence $f+g=f \oplus g$. This gives us the following corollary.

COROLLARY. Let $f \varepsilon G_{r}, g \varepsilon G_{s}$. Then if $r+s \geq n$, $f+g=f \oplus g$ where,$+ \oplus$ are induced by H-structures ϕ, ϕ_{1} on A. Thus the loop structure on $G_{\left[\frac{1}{2}(n+1)\right]}$ is independent of the H-structure on A and hence $G_{\left[\frac{1}{2}(n+1)\right]}$ is an abelian group. In particular, if conil $K<2$, then the loop structure of $[K, A]$ is independent of the \underline{H}-structure on A and hence $[K, A]$ is an abelian group.
3. We now consider conilpotency and category conditions on the H-space.

THEOREM 4. Let (A, ϕ) be an H-space such that conil $A<3$. Then for any space $K,[K, A]$ is a power associative loop.

Proof. Since conil $A<3$, by the above. we see that [A, A] is a group. Hence there is an element -1 in [A, A] such that $1-1=0=-1+1$. Let f be an element of $[K, A]$. Then $0=(1-1) f=f+(-1) f$ and $0=(-1+1) f=(-1) f+f$. Thus [K, A] is inversive. Also $(f+f)+f=(1+1) f+f=\{(1+1)+1\} f=\{1+$ $(1+1)\} f=f+(f+f),(-f)+(f+f)=(-1) f+(1+1) f=\{(-1)+$ $(1+1)\} f=f=\{(1+1)-1\} f=(f+f)-f$. Thus [K,A] is a power associative loop.

We now state a result from [8] that we shall need.
THEOREM 5 (Norman [8]). Let (A, ϕ) be an H-space and K a space such that cat $K<4$. Then the associator in $[K, A]$ satisfies the expansions

$$
\begin{aligned}
& {\left[a+a_{1}, b, c\right]=[a, b, c]+\left[a_{1}, b, c\right]} \\
& {\left[a, b+b_{1}, c\right]=[a, b, c]+\left[a, b_{1}, c\right]} \\
& {\left[a, b, c+c_{1}\right]=[a, b, c]+\left[a, b, c_{1}\right] .}
\end{aligned}
$$

Finally, we recall another known result.

THEOREM 6 (O'Neill [9]). Let (A, ϕ) be an H-space such that cat $A<2$. Then for any space $K,[K, A]$ is a diassociative loop.

We are now ready to prove our result. Suppose (A, ϕ) is an H-space. Let K be a space such that cat $\mathrm{K}<4$. Then by the above results, we see that $[\mathrm{K}, \mathrm{A}]$ is a loop of central nilpotency ≤ 3, and that all associators in [K, A] lie in the centre of the loop. Since cat $\mathrm{K}<4$, the associators expand according to Theorem 5. It is then easily checked that [K, A] is Moufang if and only if the associators satisfy the rule $[a, b, c]=[a, c, a]+[b, c, a]$ for all a, b, c in $[K, A]$. Now, suppose further that cat $A<2$. Then, by Theorem 6, $[K, A]$ is diassociative so that $[a, c, a]=0$ for all a, c. Thus in this case, $[K, A]$ is Moufang if and only if $[a, b, c]=[b, c, a]$ for all a, b, c in $[K, A]$.

THEOREM 7. Let (A, ϕ) be an H-space such that cat $A<2$. If K is a space such that cat $K<4$, then $[K, A]$ is a Moufang loop.

Proof. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be elements of [K, A]. We need to show that $[\overline{a, b, c}]=[b, c, a]$. Now we can write $b+c=(c+b)+[b, c]$. Hence $[\mathrm{a}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{b}]=[\mathrm{a},(\mathrm{c}+\mathrm{b})+[\mathrm{b}, \mathrm{c}], \mathrm{c}+\mathrm{b}]=[\mathrm{a}, \mathrm{c}+\mathrm{b}, \mathrm{c}+\mathrm{b}]$ $+[a,[b, c], c+b]$. Since cat $A<2$, we have that $[a, c+b, c+b]$ $=0$. On the other hand, since conil $K \leq$ cat $K<4$, our results, Theorems 2 and 3 on associators and commutators, show that $[\mathrm{a},[\mathrm{b}, \mathrm{c}], \mathrm{c}+\mathrm{b}]=0$. Hence $[\mathrm{a}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{b}]=0$. Now expanding this associator according to Theorem 5 and using Theorem 6 , we see that $[\mathrm{a}, \mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{b}]=[\mathrm{a}, \mathrm{b}, \mathrm{c}]+[\mathrm{a}, \mathrm{c}, \mathrm{b}]$ since all the other terms vanish. Thus $[a, b, c]+[a, c, b]=0$. If we now apply the same process to the associator $[a+b, c, b+a]$, we obtain the equation $[a, c, b]+[b, c, a]=0$. Since these associators all lie in the centre of $[\mathrm{K}, \mathrm{A}]$, we obtain the equation $[\mathrm{a}, \mathrm{b}, \mathrm{c}]=[\mathrm{b}, \mathrm{c}, \mathrm{a}]$. Thus $[\mathrm{K}, \mathrm{A}]$ is Moufang.

Our main theorem now follows as a corollary of the above.
THEOREM 8. Let (A, ϕ) be an H-space such that cat $A<2$. Then for any space K, [K,A] is a Moufang loop.

Proof. Since cat $A<2$, it follows that cat $A^{3}<4$. Hence $\left[A^{3}, A\right]$ is a Moufang loop. Let $\pi_{1}, \pi_{2}, \pi_{3}: A^{3} \rightarrow A$ be the projections onto the factors. Then $\left(\pi_{1}+\pi_{2}\right)+\left(\pi_{3}+\pi_{1}\right)=\left\{\pi_{1}+\left(\pi_{2}+\pi_{3}\right)\right\}+\pi_{1}$. Let $\mathrm{f}, \mathrm{g}, \mathrm{h}$ be elements of $[\mathrm{K}, \mathrm{A}]$. Composing this equation on the right with $(f \times g \times h) \Delta_{3}$, we obtain the equation $(f+g)+(h+f)$ $=\{\mathrm{f}+(\mathrm{g}+\mathrm{h})\}+\mathrm{f}$. Thus $[\mathrm{K}, \mathrm{A}]$ is Moufang.

REFERENCES

1. R.H. Bruck, Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946) 245-354.
2. R.H. Bruck, A survey of binary systems. (Springer-Verlag, New York, 1966.)
3. T. Ganea, On some numerical homotopy invariants. Proc. Int. Congress of Mathematicians (1962) 467-472.
4. T. Ganea, P.J. Hilton and F.P. Peterson, On the homotopycommutativity of loop-spaces and suspensions. Topology 1 (1962) 133-142.
5. P.J. Hilton, Homotopy theory and duality. (Gordon and Breach, New York, 1965.)
6. C.S. Hoo, A note on a theorem of Ganea, Hilton and Peterson. Proc. Amer. Math. Soc. 19 (1968) 909-911.
7. C.S. Hoo, On the suspension of an H-space. Duke Math. J. 36 (1969) 315-324.
8. C. W. Norman, Homotopy loops. Topology 2 (1963) 23-43.
9. R.C. O'Neill, On H-spaces that are CW-complexes, I. Ill. J. Math. 8 (1964) 280-290.

University of Alberta
Edmonton

[^0]: *This research was supported by NRC Grant A-3026.

