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Normality of Maximal Orbit Closures
for Euclidean Quivers

Grzegorz Bobiński

Abstract. Let ∆ be a Euclidean quiver. We prove that the closures of the maximal orbits in the varieties

of representations of ∆ are normal and Cohen–Macaulay (even complete intersections). Moreover, we

give a generalization of this result for the tame concealed-canonical algebras.

Introduction and the Main Results

Throughout the paper, k is a fixed algebraically closed field. By Z, N and N+, we

denote the sets of the integers, the non-negative integers and the positive integers,

respectively. Finally, if i, j ∈ Z, then [i, j] := {l ∈ Z | i ≤ l ≤ j} (in particular,

[i, j] = ∅ if i > j).

Let A be a finite-dimensional k-algebra. Given a non-negative integer d, one

defines modA(d) as the set of all k-algebra homomorphisms from A to the algebra

Md×d(k) of d × d-matrices. This set has a structure of an affine variety and its points

represent d-dimensional A-modules. Consequently, we call modA(d) the variety of

A-modules of dimension d. The general linear group GL(d) acts on modA(d) by con-

jugation: (g ·m)(a) := gm(a)g−1 for g ∈ GL(d), m ∈ modA(d) and a ∈ A. The orbits

with respect to this action are in one-to-one correspondence with the isomorphism

classes of the d-dimensional A-modules. Given a d-dimensional A-module M, we

denote the orbit in modA(d) corresponding to the isomorphism class of M by O(M)

and its Zariski-closure by O(M).

Singularities appearing in the orbit closures of the above form are the object of

intensive studies (see, for example, [1, 4, 12, 15, 33, 42, 48–51], and we also refer to a

survey article of Zwara [52]). In particular, Zwara and the author [11] proved that

if A is a hereditary algebra of Dynkin type A or D, then O(M) is a normal Cohen–

Macaulay variety, which has rational singularities if the characteristic of k is 0. Recall

that Gabriel [28] proved that the hereditary algebras of Dynkin type are precisely the

hereditary algebras of finite representation type. Thus it is an interesting question

if the orbit closures have good geometric properties for all hereditary algebras of

finite representation type. The remaining case of hereditary algebras of type E is

still open, but there are some partial results in this direction [46]. On the other hand,

Zwara [47] exhibited an example of a module over the Kronecker algebra whose orbit

closure is neither normal nor Cohen–Macaulay. This example generalizes easily to an
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arbitrary hereditary algebra of infinite representation type [19]. However, it is still

an interesting problem to determine for which classes of modules over hereditary

algebras of infinite representation type the corresponding orbit closures have good

properties. In the paper, we study modules M such that O(M) is maximal, i.e., there

is no module N such that O(M) ⊆ O(N) and O(M) 6= O(N).

According to Drozd’s famous Tame and Wild Theorem [21, 26], the finite-dimen-

sional algebras of infinite representation type can be divided into two disjoint classes.

One class consists of the tame algebras, for which the indecomposable modules of

a given dimension form a finite number of one-parameter families. The other class

consists of the wild algebras, for which the classification of the indecomposable mod-

ules is as complicated as the classification of two non-commuting endomorphisms of

a finite-dimensional vector space, hence is considered to be hopeless. There are ex-

amples showing that varieties of modules over tame algebras have often better prop-

erties than those over wild algebras (see for example [8, 20, 40, 41]). Consequently,

we concentrate in the paper on the maximal orbits over the tame hereditary algebras.

We recall that the tame hereditary algebras are precisely the hereditary algebras of

Euclidean type.

The following theorem is the main result of the paper.

Theorem 1 Let M be a module over a tame hereditary algebra. If O(M) is maximal,

then O(M) is a normal complete intersection (in particular, Cohen–Macaulay).

It is known (see for example [35, Corollary 3.6]) that O(M) is maximal for each

indecomposable module M over a tame hereditary algebra. Consequently, we get the

following.

Corollary 2 If M is an indecomposable module over a tame hereditary algebra, then

O(M) is a normal complete intersection (in particular, Cohen–Macaulay).

Now we present the strategy of the proof of Theorem 1. Let M be a module over

a tame hereditary algebra A such that O(M) is maximal. If Ext1
A(M,M) = 0, then it

is well known that O(M) is smoothly equivalent to an affine space, hence the claim

is obvious in this case. Thus we may concentrate on the case Ext1
A(M,M) 6= 0. It

follows from [35, proof of Corollary 3.6] that in this situation M is periodic with

respect to the action of the Auslander–Reiten translation τ (see Section 1). Conse-

quently, Theorem 1 follows from the next theorem.

Theorem 3 Let M be a τ -periodic module over a tame hereditary algebra. If O(M) is

maximal, then O(M) is a complete intersection (in particular, Cohen–Macaulay).

If A is a tame hereditary algebra, then the τ -periodic A-modules are direct sums

of indecomposable modules, which lie in the sincere separating family of tubes in the

Auslander–Reiten quiver of A. Existence of such families characterizes the concealed-

canonical algebras [32,39]. Recall [31] that an algebra A is called concealed-canonical

if there exists a tilting bundle over a weighted projective line whose endomorphism

ring is isomorphic to A. Thus it is natural to try to generalize Theorem 3 to the case

of tame concealed-canonical algebras. Before we formulate this generalization, we

present some necessary definitions.
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Let A be a tame concealed-canonical algebra. For an A-module M, we denote by

dim M its dimension vector, i.e., the sequence indexed by the isomorphism classes

of the simple A-modules that counts the multiplicities of the composition factors in

the Jordan–Hölder filtration of M. In general, a sequence of non-negative integers

indexed by the isomorphism classes of the simple A-modules is called a dimension

vector. We call a dimension vector d singular if 〈d, d〉A = 0 and there exists a dimen-

sion vector x such that x ≤ d, 〈x, x〉A = 0 and |〈x, d〉A| = 2, where 〈−,−〉A denotes

the corresponding homological bilinear form (see Section 1). In Proposition 2.3 we

describe the tame concealed-canonical algebras for which there exist singular dimen-

sion vectors. In particular, this description implies that singular dimension vectors

do not exist for the tame hereditary algebras.

We have the following generalization of Theorem 3.

Theorem 4 Let M be a τ -periodic module over a tame concealed-canonical alge-

bra such that O(M) is maximal. Then O(M) is a complete intersection (in particular,

Cohen–Macaulay). Moreover, O(M) is not normal if and only if dim M is singular and

τM ≃ M.

In this paper we concentrate on the proof of Theorem 4. Instead of using the

framework of modules over algebras and the corresponding varieties, we use the

framework of representations of quivers (and the corresponding varieties). Gabriel’s

Theorem [28] says that we may do this replacement on the level of modules and rep-

resentations, while a result of Bongartz [14] justifies this passage on the level of vari-

eties. For background on the representation theory of quivers we refer to [2, 37, 38].

The paper is organized as follows. In Section 1 we recall basic information about

quivers and their representations. Next, in Section 2 we gather facts about the cat-

egories of modules over the tame concealed-canonical algebras. In Section 3 we in-

troduce varieties of representations of quivers, while in Section 4 we review facts on

semi-invariants with particular emphasis on the case of tame concealed-canonical al-

gebras. Next, in Section 5 we present a series of facts that we later use in Sections 6

and 7 to study orbit closures for the non-singular and singular dimension vectors, re-

spectively. Moreover, in Section 7 we make a remark about relationship between the

degenerations and the hom-order for the tame concealed-canonical algebras. Finally,

in Section 8 we give the proof of Theorem 4.

The author is grateful to Grzegorz Zwara for discussions that inspired this paper.

1 Quivers and Their Representations

By a quiver ∆ we mean a finite set ∆0 (called the set of vertices of ∆) together with

a finite set ∆1 (called the set of arrows of ∆) and two maps s, t : ∆1 → ∆0, which

assign to each arrow α its starting vertex sα and terminating vertex tα, respectively. By

a path of length n ∈ N+ in a quiver ∆ we mean a sequence σ = (α1, . . . , αn) of arrows

such that sαi = tαi+1 for each i ∈ [1, n − 1]. In particular, we treat every arrow of ∆

as a path of length 1. In the above situation we put ℓσ := n, sσ := sαn and tσ := tα1.

Moreover, for each vertex x we have a trivial path 1x at x such that ℓ1x := 0 and

s1x := x =: t1x. A subquiver ∆ ′ of a quiver ∆ is called convex if αi ∈ ∆
′
1 for each

i ∈ [1, n], provided (α1, . . . , αn) is a path in ∆ such that tα1, sαn ∈ ∆
′
0.
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For the rest of the paper we assume that the considered quivers do not have ori-

ented cycles, where by an oriented cycle we mean a path σ of positive length such that

sσ = tσ.

Let ∆ be a quiver. We define its path category k∆ to be the category whose objects

are the vertices of ∆ and, for x, y ∈ ∆0, the morphisms from x to y are the formal

k-linear combinations of paths starting at x and terminating at y. For x, y ∈ ∆0 we

denote by k∆(x, y) the space of the morphisms from x to y in k∆. If ω ∈ k∆(x, y)

for x, y ∈ ∆0, then we write sω := x and tω := y. By a representation of ∆ we

mean a functor from k∆ to the category mod k of finite-dimensional vector spaces.

We denote the category of representations of ∆ by rep∆. Observe that every repre-

sentation of ∆ is uniquely determined by its values on the vertices and the arrows.

Given a representation M of ∆, we denote by dim M its dimension vector defined by

(dim M)(x) := dimk M(x) for x ∈ ∆0. Observe the dim M ∈ N
∆0 for each represen-

tation M of ∆. We call the elements of N
∆0 dimension vectors. A dimension vector d

is called sincere if d(x) 6= 0 for each x ∈ ∆0.

By a relation in a quiver ∆ we mean a k-linear combination of paths of lengths at

least 2 having a common starting vertex and a common terminating vertex. Note that

each relation in a quiver ∆ is a morphism in k∆. A set R of relations in a quiver ∆

is called minimal if 〈R \ {ρ}〉 6= 〈R〉 for each ρ ∈ R, where for a set X of morphisms

in k∆ we denote by 〈X〉 the ideal in k∆ generated by X. Observe that each minimal

set of relations is finite. By a bound quiver ∆ we mean a quiver ∆ together with

a minimal set R of relations. Given a bound quiver ∆ we denote by k∆ its path

category, i.e., k∆ := k∆/〈R〉. Moreover, for x, y ∈ ∆0 we denote by k∆(x, y) the

space of the morphisms from x to y in k∆. By a representation of a bound quiver ∆

we mean a functor from k∆ to mod k. In other words, a representation of ∆ is a

representation M of ∆ such that M(ρ) = 0 for each ρ ∈ R. We denote the category

of representations of a bound quiver ∆ by rep∆. Moreover, we denote by ind∆

the full subcategory of rep∆ consisting of the indecomposable representations. It is

known that rep∆ is an abelian Krull–Schmidt category.

A bound quiver ∆ ′ is called a convex subquiver of a bound quiver ∆ if ∆ ′ is a

convex subquiver of ∆ and R ′
= R ∩ k∆ ′. If ∆ ′ is a convex subquiver of a bound

quiver ∆, then rep∆
′ can be naturally identified with an exact subcategory of rep∆,

where by an exact subcategory of rep∆ we mean a full subcategory X of rep∆ such

that X is an abelian category and the inclusion functor X →֒ rep∆ is exact. In

particular, if ∆ ′ is a convex subquiver of a tame bound quiver ∆, then ∆
′ is either

tame or representation-finite (we say that a bound quiver ∆ is tame/representation-

finite if rep∆ is of tame/finite representation type, respectively).

Let ∆ be a bound quiver. For each vertex x of ∆ we denote by Sx the simple

representation at x, i.e., Sx(x) := k, Sx(y) := 0 for y ∈ ∆0 \ {x}, and Sx(α) := 0 for

α ∈ ∆1. More generally, if d is a dimension vector, then we put Sd :=
⊕

x∈∆0
Sd(x)

x .

Next, for each vertex x we denote by Px the projective representation at x defined in

the following way: Px(y) := k∆(x, y) for y ∈ ∆0 and Px(ω) is the composition (on

the left) with ω for a morphism ω in k∆. If M is a representation of ∆ and x ∈ ∆0,

then according to Yoneda’s Lemma the map

Hom∆(Px,M) → M(x), f 7→ f (1x),
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is an isomorphism. In particular, this implies that

Hom∆(Px, Py) ≃ k∆(y, x)

for any x, y ∈ ∆0. For ω ∈ k∆(y, x) we denote the corresponding map Px → Py

by Pω . Observe that Pω is the composition (on the right) with ω. Moreover, if M is a

representation of ∆, then, under the Yoneda isomorphisms, the induced map

Hom∆(Pω,M) : Hom∆(Py ,M) → Hom∆(Px,M), f 7→ f ◦ Pω,

can be identified with M(ω).

Let ∆ be a bound quiver. An important role in the representation theory of quiv-

ers is played by the Auslander–Reiten translations τ and τ− (see [2, Section IV.2]

for the definition). We list their properties which we need in our proofs. First,

τM = 0 (τ−M = 0) if and only if M is projective (injective, respectively). Moreover,

τ−τX ≃ X (ττ−X ≃ X) for each indecomposable representation X of ∆, which is

not projective (injective, respectively). We say that a representation M of∆ is periodic

if there exists n ∈ N+ such that τ nM ≃ M. We have a celebrated Auslander–Reiten

formula, which implies that

dimk Ext1
∆

(M,N) = dimk Hom∆(N, τM)

for any representations M and N of ∆ such that pdim
∆

M ≤ 1. Dually, if M and N

are representations of ∆ and idim∆ N ≤ 1, then

dimk Ext1
∆

(M,N) = dimk Hom∆(τ−N,M).

Let ∆ be a bound quiver. We define the corresponding Tits forms

〈−,−〉∆ : Z
∆0 × Z

∆0 → Z and q∆ : Z
∆0 → Z

by

〈d ′, d ′ ′〉∆ :=
∑

x∈∆0

d ′(x)d ′ ′(x) −
∑

α∈∆1

d ′(sα)d ′ ′(tα) +
∑

ρ∈R

d ′(sρ)d ′ ′(tρ),

for d ′, d ′ ′ ∈ Z
∆0 , and q∆(d) := 〈d, d〉∆, for d ∈ Z

∆0 . Bongartz [13, Proposition 2.2]

proved that

〈dim M, dim N〉∆ = dimk Hom∆(M,N) − dimk Ext1
∆

(M,N) + dimk Ext2
∆

(M,N)

for any M,N ∈ rep∆, provided gl. dim∆ ≤ 2.
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2 Separating Exact Subcategories

In this section we present facts about sincere separating exact subcategories that we

use in our considerations. For the proofs we refer to [32, 36].

Let ∆ be a bound quiver and X a full subcategory of ind∆. We denote by addX

the full subcategory of rep∆ formed by the direct sums of representations from X.

We say that X is an exact subcategory of ind∆ if addX is an exact subcategory of

rep∆. We put

X+ := {X ∈ ind∆ : Hom∆(X,X) = 0}

and

X− := {X ∈ ind∆ : Hom∆(X,X) = 0}.

Let ∆ be a bound quiver. Following [32] we say that R is a sincere separating exact

subcategory of ind∆ provided the following conditions are satisfied:

(1) R is an exact subcategory of ind∆ consisting of periodic representations;

(2) ind∆ = R+ ∪ R ∪ R−;

(3) Hom∆(X,R) 6= 0 for each X ∈ R+ and Hom∆(R,X) 6= 0 for each X ∈ R−;

(4) P ∈ R+ for each indecomposable projective representation P of ∆ and I ∈ R−

for each indecomposable injective representation I of ∆.

Lenzing and de la Peña [32] proved that there exists a sincere separating exact sub-

category R of ind∆ if and only if ∆ is concealed-canonical, i.e., rep∆ is equivalent

to the category of modules over a concealed-canonical algebra. In particular, if this

the case, then gl. dim∆ ≤ 2.

For the rest of the section we fix a bound quiver ∆ and a sincere separating exact

subcategory R of ind∆. Moreover, we put P := R+ and Q := R−. Finally, we denote

by P, R and Q the sets of the dimension vectors of the representations from addP,

addR and addQ, respectively.

It is known that pdim
∆

P ≤ 1 for each P ∈ P and idim∆ Q ≤ 1 for each

Q ∈ Q. Next, pdim
∆

R = 1 and idim∆ R = 1 for each R ∈ R. Moreover,

Hom∆(Q,P) = 0. Since the categories P and Q are closed under the actions of τ
and τ−, using the Auslander–Reiten formulas we also obtain that Ext1

∆
(P,R ∪ Q) =

0 = Ext1
∆

(P ∪ R,Q). The above properties imply that 〈d ′, d ′ ′〉∆ ≥ 0 if either d ′ ∈ P

and d ′ ′ ∈ R + Q or d ′ ∈ P + R and d ′ ′ ∈ Q. Similarly, 〈d ′ ′, d ′〉∆ ≤ 0 if either d ′ ∈ P

and d ′ ′ ∈ R or d ′ ∈ R and d ′ ′ ∈ Q.

We have R =
∐

λ∈X
Rλ for some infinite set X and connected uniserial cate-

gories Rλ, λ ∈ X. For λ ∈ X we denote by rλ the number of the pairwise non-

isomorphic simple objects in addRλ. Then rλ < ∞ for each λ ∈ X. Let X0 := {λ ∈
X : rλ > 1}. Then |X0| < ∞ and we call the sequence (rλ)λ∈X0

the type of ∆ (this

definition does not depend on the choice of a sincere separating exact subcategory

of ind∆). It is known that ∆ is tame if and only if
∑

λ∈X0

1
rλ

≥ |X0| − 2, where by

definition the empty sum equals 0. Observe that this implies that |X0| ≤ 4 provided

∆ is tame. Moreover, if ∆ is tame and |X0| = 4, then ∆ is of type (2, 2, 2, 2).

Fix λ ∈ X. If Rλ,0, . . . ,Rλ,rλ−1 are chosen representatives of the isomorphism

classes of the simple objects in addRλ, then we may assume that τRλ,i = Rλ,i−1 for

each i ∈ [0, rλ − 1], where we put Rλ,i := Rλ,i mod rλ for i ∈ Z. For i ∈ Z and n ∈ N+,

there exists a unique (up to isomorphism) representation inRλ, whose top and length
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in addRλ are Rλ,i and n, respectively. We fix such representation and denote it by R(n)
λ,i

and its dimension vector by en
λ,i . Then the composition factors of R(n)

λ,i are (starting

from the top): Rλ,i , Rλ,i−1, . . . ,Rλ,i−(n−1). Consequently, en
λ,i =

∑

j∈[i−n+1,i] eλ, j ,

where eλ, j := dim Rλ, j for j ∈ Z. Moreover, if i ∈ Z and m, n ∈ N+, then we have an

exact sequence 0 → R(m)
λ,i−n → R(m+n)

λ,i → R(n)
λ,i → 0. Obviously, for each R ∈ Rλ there

exist i ∈ Z and n ∈ N+ such that R ≃ R(n)
λ,i . Moreover, it is known that the vectors

eλ,0, . . . , eλ,rλ−1 are linearly independent. Consequently, if R ∈ addRλ, then there

exist uniquely determined qR
0 , . . . , qR

rλ−1 ∈ N such that dim R =
∑

i∈[0,rλ−1] qR
i eλ,i .

Observe that the numbers qR
0 , . . . , qR

rλ−1 count the multiplicities in which the mod-

ules Rλ,0, . . . ,Rλ,rλ−1 appear as composition factors in the Jordan–Hölder filtration

of R in the category addRλ.

Let R =
⊕

λ∈X
Rλ for Rλ ∈ addRλ, λ ∈ X. Then we put qR

λ,i := qRλ

i for λ ∈ X

and i ∈ [0, rλ − 1]. Next, we put pR
λ := min{qR

λ,i : i ∈ [0, rλ − 1]} for λ ∈ X, and

pR
λ,i := qR

λ,i − pR
λ for λ ∈ X and i ∈ [0, rλ − 1]. Then

dim R =

∑

λ∈X

pR
λhλ +

∑

λ∈X

∑

i∈[0,rλ−1]

pR
λ,ieλ,i ,

where hλ :=
∑

i∈[0,rλ−1] eλ,i for λ ∈ X. It is known that hλ = hµ for any λ, µ ∈ X.

We denote this common value by h. Then

dim R = pRh +
∑

λ∈X

∑

i∈[0,rλ−1]

pR
λ,ieλ,i ,

where pR :=
∑

λ∈X
pR
λ. It is known that pR

= pR ′

and pR
λ,i = pR ′

λ,i for any λ ∈ X and

i ∈ [0, rλ − 1], if R,R ′ ∈ addR and dim R = dim R ′. Consequently, for each d ∈ R

there exist uniquely determined pd ∈ N and pd
λ,i ∈ N, λ ∈ X, i ∈ [0, rλ − 1], such

that for each λ ∈ X there exists i ∈ [0, rλ − 1] with pd
λ,i = 0 and

d = pdh +
∑

λ∈X

∑

i∈[0,rλ−1]

pd
λ,ieλ,i .

Let λ, µ ∈ X, i, j ∈ Z and m, n ∈ N+. Then

dimk Hom∆(R(n)
λ,i ,R(m)

µ, j ) = min{q
R(m)
µ, j

λ,i mod rλ
, q

R(n)
λ,i

µ,( j−m+1) mod rλ
}.

In particular, if λ ∈ X, i ∈ [0, rλ − 1], n ∈ N+, R ∈ addR and Hom∆(R(n)
λ,i ,R) 6= 0,

then qR
λ,i 6= 0. Moreover, the above formula together with the Auslander–Reiten

formula imply that

〈en
i,λ, d〉∆ = pd

λ,i mod rλ
− pd

λ,(i−n) mod rλ

and

〈d, en
i,λ〉∆ = pd

λ,(i−n+1) mod rλ
− pd

λ,(i+1) mod rλ
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for any λ ∈ X, i ∈ Z, n ∈ N+, and d ∈ R. Consequently, 〈h, d〉∆ = 0 = 〈d,h〉∆ for

each d ∈ R. In particular, q∆(h) = 0. On the other hand, if d ∈ R, then q∆(d) = 0

if and only if d = pdh. One also shows that h is indivisible.

We also need some other properties of the Tits form, which we list now (the proofs

can be found in [36, Sections 4.9 and 5.2]).

Proposition 2.1 Assume that ∆ is tame. Then the following hold.

(i) q∆(d) ≥ 0 for each dimension vector d.

(ii) If q∆(d) = 0 for a dimension vector d, then d ∈ P ∪ R ∪ Q and

〈d, d0〉∆ + 〈d0, d〉∆ = 0 for each dimension vector d0.

(iii) If d ∈ P ∪ Q is non-zero, then 〈d,h〉∆ 6= 0.

(iv) If d ∈ P ∪ Q is non-zero and q∆(d) = 0, then 〈d, d0〉∆ 6= 0 for each non-zero

vector d0 ∈ R. In particular,

|〈d,h〉∆| ≥ max{rλ : λ ∈ X}.

(v) If there exists non-zero d ∈ P ∪ Q such that q∆(d) = 0, then
∑

λ∈X0

1
rλ

=

|X0| − 2. In particular, if this is the case, then max{rλ : λ ∈ X} ≥ 2, and

max{rλ : λ ∈ X} = 2 if and only if ∆ is of type (2, 2, 2, 2).

As a consequence we obtain the following.

Corollary 2.2 Let d ∈ R, d ′ ∈ P + R and d ′ ′ ∈ Q. If pd > 0, d ′ + d ′ ′
= d and

d ′ ′ 6= 0, then 〈d ′ ′, d ′〉∆ ≤ −pd − 1. Moreover, 〈d ′ ′, d ′〉∆ = −pd − 1 if and only if

one of the following conditions is satisfied:

(i) q∆(d ′ ′) = 1 and 〈d ′ ′, d〉∆ = −pd (in particular, 〈d ′ ′,h〉∆ = −1);

(ii) q∆(d ′ ′) = 0 and 〈d ′ ′, d〉∆ = −2.

Proof Put d0 := d − pdh. Then d0 ∈ R. We have

〈d ′ ′, d ′〉∆ = 〈d ′ ′, d − d ′ ′〉∆ = −q∆(d ′ ′) + pd〈d ′ ′,h〉∆ + 〈d ′ ′, d0〉∆.

Now 〈d ′ ′, d0〉∆ ≤ 0. Moreover, 〈d ′ ′,h〉∆ ≤ −1 and q∆(d ′ ′) ≥ 0. Finally, if

q∆(d ′ ′) = 0, then 〈d ′ ′,h〉∆ ≤ −2, hence the inequality follows.

These considerations also imply that 〈d ′ ′, d ′〉∆ = −pd − 1 if and only if one of

the following conditions is satisfied:

(i) q∆(d ′ ′) = 1, 〈d ′ ′,h〉∆ = −1 and 〈d ′ ′, d0〉∆ = 0;

(ii) q∆(d ′ ′) = 0, pd
= 1, 〈d ′ ′,h〉∆ = −2 and 〈d ′ ′, d0〉∆ = 0.

These conditions immediately lead to (and follow from) the conditions given in the

corollary.

We call a dimension vector d ∈ R singular if pd > 0 and there exists a dimension

vector x such that x ≤ d, q∆(x) = 0 and |〈x, d〉∆| = 2. It follows from the proposi-

tion below that this definition coincides with the definition given in the introduction.

Proposition 2.3 Let d ∈ R be such that pd > 0.

(i) If d is singular, then d = h and ∆ is of type (2, 2, 2, 2).
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(ii) There exist d ′ ∈ P + R and d ′ ′ ∈ Q such that d ′ + d ′ ′
= d, q∆(d ′ ′) = 0 and

〈d ′ ′, d〉∆ = −2 if and only if d is singular.

Proof (i) Fix a dimension vector x such that x ≤ d, q∆(x) = 0 and |〈x, d〉∆| = 2.

Proposition 2.1(ii) implies that x ∈ P∪R∪Q. Since 〈x, d〉∆ 6= 0, x /∈ R. In particular,

x is non-zero. By symmetry, we may assume x ∈ P. If d0 := d − pdh, then 2 =

pd〈x,h〉∆ + 〈x, d0〉∆. Using Proposition 2.1(iv) and (v) we obtain that pd
= 1 and

d0 = 0, i.e., d = h. Moreover, ∆ must be of type (2, 2, 2, 2) by Proposition 2.1(v).

(ii) One implication is obvious. Now assume d is singular, i.e., there exists a

dimension vector x such that x ≤ d, q∆(x) = 0 and |〈x, d〉∆| = 2. From (i) we know

that d = h. Easy calculations show that 〈h,h− x〉∆ = −〈h, x〉∆ and q∆(h− x) = 0.

Thus Proposition 2.1(ii) implies that, up to symmetry, x ∈ P and h− x ∈ Q, and the

claim follows.

We finish this section with an example showing that singular dimension vectors

exist. Fix λ ∈ k \ {0, 1}. Let ∆ be the quiver

•

α1

����
��
��
��
��

•

β1yytt
tt
tt

• •

α2

[[8888888888
β2

eeJJJJJJ

γ2

yytt
tt
tt

δ2

����
��
��
��
��

•

γ1
eeJJJJJJ

•

δ1

[[8888888888

and R := {α1α2+β1β2+γ1γ2, α1α2+β1β2+λδ1δ2}. Then ∆ is a concealed-canonical
algebra of type (2, 2, 2, 2) (in fact, it is one of Ringel’s canonical algebras [36]). More-
over, the vector

2
2

3 1
2
2

is singular – the corresponding vector x can be taken to be

1
1

1 1
1
1

,

the other choice being
1
1

2 0
1
1

.
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3 Varieties of Representations

First we recall some facts from algebraic geometry. Let X be a closed subvariety of

an affine space A
n, n ∈ N. We say that X is a complete intersection if there exist

polynomials f1, . . . , fm ∈ k[A
n] such that dimX = n − m and

{ f ∈ k[A
n] : f (x) = 0 for each x ∈ X} = ( f1, . . . , fm).

For x ∈ X we denote by TxX the tangent space to X at x. We will use the following

consequences of Serre’s criterion (see for example [27, Theorem 18.15]).

Proposition 3.1 Let X be a complete intersection and

Xreg := {x ∈ X : dimk TxX = dimX}.

(i) The variety X is normal if and only if dim(X \ Xreg) < dimX− 1.

(ii) Let f1, . . . , fm ∈ k[X],

Y := {x ∈ X : fi(x) = 0 for each i ∈ [1,m]},

and

U := {x ∈ Y ∩ Xreg : ∂ f1(x), . . . , ∂ fm(x) are linearly independent}.

If U ∩ C 6= ∅ for each irreducible component C of Y, then

{ f ∈ k[X] : f (x) = 0 for each x ∈ Y} = ( f1, . . . , fm).

In particular, Y is a complete intersection of dimension dimX− m.

Let ∆ be a quiver and d a dimension vector. By rep
∆

(d) we denote the set of

the representations M of ∆ such that M(x) = kd(x) for each x ∈ ∆0. We may

identify rep
∆

(d) with the affine space
∏

α∈∆1
Md(tα)×d(sα)(k). The group GL(d) :=

∏

x∈∆0
GL

(

d(x)
)

acts on rep
∆

(d) by conjugation: (g ·M)(α) := g(tα)M(α)g(sα)−1

for g ∈ GL(d), M ∈ rep
∆

(d) and α ∈ ∆1. Under this action the GL(d)-orbits in

rep
∆

(d) correspond to the isomorphism classes of the representations of ∆ with di-

mension vector d. We denote the GL(d)-orbit of a representation M ∈ rep
∆

(d) by

O(M).

Now let ∆ be a bound quiver and d a dimension vector. By rep
∆

(d) we denote the

intersection of rep
∆

(d) with rep∆. Then rep
∆

(d) is a closed GL(d)-invariant subset

of rep
∆

(d) and we call it the variety of representations of ∆ of dimension vector d. If

M ∈ rep
∆

(d), then there exists a canonical map πM : TM rep
∆

(d) → Ext1
∆

(M,M)

with kernel TMO(M) [43, Section 3]. This map is an epimorphism if we consider

rep
∆

(d) as a scheme with a natural, but not necessarily reduced, structure. If we view

rep
∆

(d) as a variety with its reduced structure (as we do in this paper), then it does

not have to be an epimorphism in general. However, easy arguments show (see for

example [9, proof of Proposition 2.2]), that if gl. dim∆ ≤ 2 and Ext2
∆

(M,M) = 0,

then πM is an epimorphism.
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Let ∆ be a bound quiver and d a dimension vector. If M,N ∈ rep
∆

(d) and there

exists an exact sequence 0 → N ′ → M → N ′ ′ → 0 such that N ≃ N ′ ⊕ N ′ ′, then

N ∈ O(M) [17, Lemma 1.1]. In particular, Sd ∈ O(M) for each M ∈ rep
∆

(d). If V is

a GL(d)-invariant subset of rep
∆

(d) and M ∈ V, then we say that the orbit O(M) is

maximal in V if O(N) = O(M) for each N ∈ V such thatO(M) ⊆ O(N). If∆ is tame

concealed-canonical and M ∈ rep
∆

(d), thenO(M) is maximal in rep
∆

(d) if and only

if Ext1
∆

(M ′,M ′ ′) = 0 for each decomposition M = M ′ ⊕ M ′ ′ [45, Corollary 6].

Put a∆(d) := dim GL(d) − q∆(d) for a bound quiver ∆ and a dimension vector

d. The following facts were proved in [10].

Proposition 3.2 Let d be the dimension vector of a periodic representation over a tame

concealed-canonical bound quiver ∆. Then the following hold.

(i) The variety rep
∆

(d) is a normal complete intersection of dimension a∆(d).

(ii) If there exists M ∈ rep
∆

(d) such that Ext1
∆

(M,M) = 0, then rep
∆

(d) = O(M).

(iii) If Ext1
∆

(M,M) 6= 0 for each M ∈ rep
∆

(d), then there exists a convex sub-

quiver ∆
′ of ∆ and a sincere separating exact subcategory R ′ of ind∆

′ such

that M ∈ addR ′ for each maximal orbit O(M) in rep
∆

(d).

(iv) If M ∈ rep
∆

(d), then πM is an epimorphism.

(v) If M ∈ rep
∆

(d), then dimk TM rep
∆

(d) = dimk rep
∆

(d) if and only if

Ext2
∆

(M,M) = 0.

Let d be the dimension vector of a periodic module over a tame concealed-canon-

ical bound quiver ∆. The above theorem implies that in order to prove that O(M)

is a normal complete intersection for each maximal orbit O(M) in rep
∆

(d), we may

assume that d is the dimension vector of a direct sum of modules from a sincere sepa-

rating exact subcategory of ind∆. Thus we fix a tame bound quiver ∆ and a sincere

separating exact subcategory R of ind∆. We will use freely notation introduced in

Section 2. It follows from [10, Section 3] that if d ∈ R, then M ∈ addR for each

maximal orbit O(M) in rep
∆

(d).

For a full subcategory X of ind∆ and a dimension vector d we denote by X(d)

the intersection of rep
∆

(d) with addX. If d ′, d ′ ∈ N
∆0 , C ′ ⊆ rep

∆
(d ′) and C ′ ′ ⊆

rep
∆

(d ′ ′), then we denote by C ′ ⊕ C ′ ′ the subset of rep
∆

(d ′ + d ′ ′) consisting of

all M such that M ≃ M ′⊕M ′ ′ for some M ′ ∈ C ′ and M ′ ′ ∈ C ′ ′. The following fact

follows from [5, Section 3].

Proposition 3.3 If d ′ ∈ P+R and d ′ ′ ∈ Q, then (P∪R)(d ′)⊕Q(d ′ ′) is an irreducible

constructible subset of rep
∆

(d ′ + d ′ ′) of dimension a∆(d ′ + d ′ ′) + 〈d ′ ′, d ′〉∆.

Using Corollary 2.2 and Proposition 2.3, we immediately get the following.

Corollary 3.4 Let d ∈ R, d ′ ∈ P + R and d ′ ′ ∈ Q. If pd > 0, d ′ + d ′ ′
= d and

d ′ ′ 6= 0, then

dim
(

(P ∪ R)(d ′) ⊕ Q(d ′ ′)
)

≤ a∆(d) − pd − 1.
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Moreover, the equality holds if and only if one of the following conditions is satisfied:

(i) q∆(d ′ ′) = 1 and 〈d ′ ′, d〉∆ = −pd (in particular, 〈d ′ ′,h〉∆ = −1), or

(ii) q∆(d ′ ′) = 0 and 〈d ′ ′, d〉∆ = −2 (in particular, ∆ is of type (2, 2, 2, 2) and

d = h).

Observe that

rep
∆

(d) = R(d) ∪
⋃

d ′∈P+R,d ′ ′∈Q

d ′+d ′ ′
=d,d ′ ′ 6=0

(P ∪ R)(d ′) ⊕ Q(d ′ ′)

for each d ∈ R. Indeed, if M ∈ (P ∪ R)(d) and we write M = M ′ ⊕ M ′ ′ for

M ′ ∈ addP and M ′ ′ ∈ addR, then 〈dim M ′,h〉∆ = 〈d,h〉∆ = 0, hence M ′
= 0

by Proposition 2.1(iii). The above formula together with Corollary 3.4 implies that

dim
(

rep
∆

(d) \ R(d)
)

≤ a∆(d) − pd − 1.

4 Stability and Semi-invariants

Let ∆ be a quiver and θ ∈ Z
∆0 . We treat θ as a Z-linear function Z

∆0 → Z in the

usual way. A representation M of ∆ is called θ-semi-stable if θ(dim M) = 0 and

θ(dim N) ≥ 0 for each subrepresentation N of M. The full subcategory of θ-semi-

stable representations of ∆ is an exact subcategory of rep∆. Two θ-semi-stable rep-

resentations are called S-equivalent if they have the same composition factors within

this category. If d is a dimension vector, then by a semi-invariant of weight θ we mean

a function c ∈ k[rep
∆

(d)] such that c(g · M) = χθ(g)c(M) for any g ∈ GL(d) and

M ∈ rep
∆

(d), where χθ(g) :=
∏

x∈∆0

(

det g(x)
) θ(x)

for g ∈ GL(d).

Now let ∆ be a bound quiver and d a dimension vector. If θ ∈ Z
∆0 , then a

function c ∈ k[rep
∆

(d)] is called a semi-invariant of weight θ if c is a restriction

of a semi-invariant of weight θ from k[rep
∆

(d)]. This definition differs from the

definition used in other papers on the subject (see for example [7, 23–25]), however

it is consistent with King’s approach [29]. We denote the space of the semi-invariants

of weight θ by SI[∆, d]θ. If θ ∈ Z
∆0 , then we put Λθ(d) :=

⊕

n∈N
SI[∆, d]nθ. Note

that Λθ(d) is a graded ring. For M ∈ rep
∆

(d) we denote by Iθ(M) the ideal in Λθ(d)

generated by the homogeneous elements c such that c(M) = 0.

The following results were proved in [29].

Proposition 4.1 Let ∆ be a bound quiver and d a dimension vector and θ ∈ Z
∆0 .

(i) If M ∈ rep
∆

(d), then M is θ-semi-stable if and only if there exists a semi-

invariant c of weight nθ for some n ∈ N+ such that c(M) 6= 0.

(ii) If M,N ∈ rep
∆

(d) are θ-semi-stable, then M and N are S-equivalent if and only

if Iθ(M) = Iθ(N).

Now we recall a construction from [24]. Let ∆ be a bound quiver. Fix a represen-

tation V of ∆. We define θV : Z
∆0 → Z by the condition

θV (dim M) = − dimk Hom∆(V,M) + dimk Hom∆(M, τV )
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for each representation M of ∆ (it follows from [3, Corollary IV.4.3] that θV is

well-defined). The Auslander–Reiten formula implies that θV
= −〈dim V,−〉∆ if

pdim
∆

V ≤ 1. Dually, if idim∆ V ≤ 1, then θV
= 〈−, dim τV 〉∆.

Now let d be a dimension vector. If θV (d) = 0, then we define a function cV ∈

k[rep
∆

(d)] in the following way. Let P1

f

−→ P0 → V → 0 be a minimal projective

presentation of V . There exist vertices x1, . . . , xn, y1, . . . , ym of ∆ such that P1 =
⊕

i∈[1,n] Pxi
and P0 =

⊕

j∈[1,m] Py j
. Moreover, there exist ωi, j ∈ k∆(y j , xi), i ∈

[1, n], j ∈ [1,m], such that f =
[

Pωi, j

]

j∈[1,m]
i∈[1,n]

. Consequently, if M ∈ rep
∆

(d), then

Hom∆( f ,M) =
[

M(ωi, j)
]

i∈[1,n]
j∈[1,m]

:
⊕

j∈[1,m]

M(y j) →
⊕

i∈[1,n]

M(xi).

In addition, one shows that

dimk Ker Hom∆( f ,M) = dimk Hom∆(V,M),

dimk Coker Hom∆( f ,M) = dimk Hom∆(M, τV ).

Consequently,

∑

i∈[1,n]

dimk M(xi) −
∑

j∈[1,m]

dimk M(y j)

= dimk Hom∆(M, τV ) − dimk Hom∆(V,M) = θV (d) = 0.

Thus it makes sense to define cV ∈ k[rep
∆

(d)] by

cV (M) := det Hom∆( f ,M)

for M ∈ rep
∆

(d). Note that cV (M) = 0 if and only if

Hom∆(V,M) = Ker Hom∆( f ,M) 6= 0.

It is known that cV ∈ SI[∆, d]θV (see [24, Section 3]). This function depends on the

choice of f , but functions obtained for different f s differ only by non-zero scalars.

In fact, we could start with an arbitrary projective presentation

P1

f

−→ P0 → V → 0

of V such that dimk Hom∆(P1,M) = dimk Hom∆(P0,M). As an easy consequence

we obtain the following (see [23, Proposition 2] and [24, Lemma 3.3]).

Lemma 4.2 Let ∆ be a bound quiver and d a dimension vector.

(i) If V = V1 ⊕V2, θV (d) = 0 and cV 6= 0, then θV1 (d) = 0 = θV2 (d).

(ii) If 0 → V1 → V → V2 → 0 is an exact sequence and θV (d) = θV1 (d) =

θV2 (d) = 0, then cV
= cV1 cV2 .
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The following result follows from the proof of [24, Theorem 3.2] (note that the

assumption about the characteristic of k made in [24, Theorem 3.2] is only neces-

sary for surjectivity of the restriction morphism, which we have for free with our

definition of semi-invariants).

Proposition 4.3 Let ∆ be a bound quiver and d a dimension vector. If θ ∈ Z
∆0 , then

the space SI[∆, d]θ is spanned by the functions cV for V ∈ rep∆ such that θV
= θ.

Now we apply our considerations in the case of tame concealed-canonical quivers.

For the rest of the section we fix a tame bound quiver ∆ and a sincere separating

exact subcategory R of ind∆. We will use notation introduced in Section 2. We fix

d ∈ R such that pd > 0 and put θ := −〈h,−〉∆. In particular, in the rest of the

paper when we speak about S-equivalence, it is always the one induced by this θ.

First observe that M ∈ rep∆ is θ-semi-stable if and only if M ∈ addR (recall

that θ(dim X) 6= 0 for X ∈ P∪Q according to Proposition 2.1(iii)). Consequently, if

M and N are θ-semi-stable, then M and N are S-equivalent if and only if qM
λ,i = qN

λ,i

for any λ ∈ X and i ∈ [0, rλ − 1]. In particular, we obtain the following.

Proposition 4.4 There are only finitely many isomorphism classes in each S-equiva-

lence class.

Now we fix V ∈ rep∆ such that θV
= nθ for some n ∈ N and cV 6= 0. We

show that V ∈ addR and dim V = nh. Indeed, write V = P ⊕ R ⊕ Q for P ∈
addP, R ∈ addR and Q ∈ addQ. If P 6= 0, then θP(d) ≤ −〈dim P,h〉∆ < 0 by

Proposition 2.1(iii), hence cV
= 0 by Lemma 4.2(i). Consequently, P = 0 and, dually,

Q = 0, thus V = R ∈ addR. In particular, pdim
∆

V = 1, hence−〈nh,−〉∆ = θV
=

−〈dim V,−〉∆, and this implies that dim V = nh.

For λ ∈ X we denote by Aλ(d) the set of all i ∈ [0, rλ−1] such that pd
λ,i = 0. Next,

for i ∈ Aλ(d) we denote by nλ,i the minimal n ∈ N+ such that pd
λ,(i−n) mod rλ

= 0 and

put Vλ,i := R
(nλ,i )

λ,i . Observe that θVλ,i (d) = −〈dim Vλ,i , d〉∆ = 0 for any λ ∈ X and

i ∈ Aλ(d). We put cλ,i := cVλ,i for λ ∈ X and i ∈ Aλ(d). More generally, if λ ∈ X

and J ⊆ Aλ(d), then we put Vλ, J :=
⊕

i∈ J Vλ,i and cλ, J := cVλ, J =
∏

i∈ J cλ,i . In

particular, we put Vλ := Vλ,Aλ(d) and cλ := cλ,Aλ(d) for λ ∈ X. Then cλ ∈ SI[∆, d]θ

for each λ ∈ X. Observe that Lemma 4.2(ii) implies that cλ = cR
(rλ)

λ,i for any λ ∈ X

and i ∈ Aλ(d). More generally, cn
λ = cR

(nrλ)

λ,i for any n ∈ N+, λ ∈ X and i ∈ Aλ(d).

We have the following information about Λθ(d).

Proposition 4.5 The algebra Λθ(d) is generated by the functions cλ, λ ∈ X.

Proof First we show that if λ ∈ X, i ∈ Z, n ∈ N+, θR(n)
λ,i (d) = 0, and cR(n)

λ,i 6= 0, then

pd
λ,i mod rλ

= pd
λ,(i−n) mod rλ

and pd
λ, j mod rλ

≥ pd
λ,i mod rλ

for each j ∈ [i − n + 1, i − 1].

Indeed, the former condition follows from the equality 〈e
(n)
λ,i , d〉∆ = −θR(n)

λ,i (d) = 0.

Moreover, if there exists j ∈ [i − n + 1, i − 1] such that pd
λ, j mod rλ

< pd
λ,i mod rλ

, then

Hom∆(R(n)
λ,i ,R) 6= 0 for each R ∈ R(d), hence cR(n)

λ,i = 0.
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We have the following important consequence of the above observation. Assume

that λ ∈ X, i ∈ [0, rλ − 1], n ∈ N+ and cR
(nrλ)

λ,i 6= 0. Then pd
λ, j ≥ pd

λ,i for each

j ∈ [0, rλ − 1], hence i ∈ Aλ(d). In particular, cR
(nrλ)

λ,i = cn
λ.

Now assume that R ∈ rep∆, θR
= nθ for some n ∈ N and cR 6= 0. We know

that R ∈ addR and dim R = nh. If R =
⊕

λ∈X
Rλ for Rλ ∈ Rλ, λ ∈ X, then

dim Rλ = pR
λh for each λ ∈ X. We show that cRλ = c

pR
λ

λ for each λ ∈ X, hence the

claim will follow from Lemma 4.2.

Fix λ ∈ X and write Rλ =
⊕

j∈[1,m] R
(n j )

λ,i j
for m ∈ N+, i1, . . . , im ∈ Z and

n1, . . . , nm ∈ N+. If n j ≡ 0 (mod rλ) for each j ∈ [1,m], then the claim fol-

lows. Thus assume n1 6≡ 0 (mod rλ). Since dim Rλ = pR
λh, we may assume that

i2 = i1 − n1. Then we have an exact sequence 0 → R(n2)
λ,i2

→ R(n1+n2)
λ,i1

→ R(n1)
λ,i1

→ 0,

hence Lemma 4.2(ii) implies that cR
= cR ′

, where

R ′ := R(n1+n2)
λ,i1

⊕
⊕

j∈[3,n]

R
(n j )

λ,i j
.

Now the claim follows by induction.

As a consequence we get the following.

Corollary 4.6 If M,N ∈ R(d), then M and N are S-equivalent if and only if there

exists µ ∈ k such that cλ(M) = µcλ(N) for each λ ∈ X.

Proof Follows immediately form Propositions 4.1(ii) and 4.5.

We list some consequences of the description of the maximal orbits in rep
∆

(d)

given in [10, Proposition 5] (see also [35, Theorem 3.5]). Recall that M ∈ R(d) for

each maximal orbit O(M) in rep
∆

(d). Next, if O(M) is maximal in rep
∆

(d), then

dimO(M) = a∆(d)− pd. In particular, the maximal orbits in rep
∆

(d) coincide with

the orbits of maximal dimension. Moreover, if λ ∈ X, then there exists at most one

i ∈ Aλ(d) such that cλ,i(M) = 0. We put

X̂(M) := {(λ, i) : λ ∈ X, i ∈ Aλ(d) and cλ,i(M) = 0}

and denote by X(M) the image of X̂(M) under the projection on the first coordinate.

If λ ∈ X, then λ ∈ X(M) if and only if pM
λ 6= 0. In particular, |X(M)| ≤ pd. Finally,

if M,N ∈ rep
∆

(d) are S-equivalent, the orbits O(M) and O(N) are maximal, and

X̂(M) ⊆ X̂(N), then O(M) = O(N).

For a representation V of ∆ such that θV (d) = 0 we denote by HV (d) the zero set

of cV , i.e., HV (d) := {M ∈ rep
∆

(d) : Hom∆(V,M) 6= 0}. Moreover, we say that an

exact sequence 0 → M → N → L → 0 is V -exact if the induced sequence

0 → Hom∆(V,M) → Hom∆(V,N) → Hom∆(V, L) → 0

is exact. We need the following version of [34, Corollary 7.4].

Proposition 4.7 Let V be a representation of ∆ such that θV (d) = 0.
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(i) If M ∈ HV (d) and dimk Hom∆(V,M) = 1, then

Ker ∂cV (M) = {Z ∈ TM rep
∆

(d) : πM(Z) is V -exact}.

(ii) If M ∈ HV (d) and dimk Hom∆(V,M) ≥ 2, then Ker ∂cV (M) = TM rep
∆

(d).

5 Auxiliary Lemmas

Throughout this section we fix a tame bound quiver ∆ and a sincere separating exact

subcategory R of ind∆. We use freely notation introduced in Section 2. We also fix

d ∈ R such that p := pd > 0.

Lemma 5.1 If λ0, . . . , λp ∈ X are pairwise different, then

⋂

l∈[0,p]

HVλl (d) =
⋂

λ∈X

HVλ(d) =
⋃

d ′∈P+R, d ′ ′∈Q

d ′+d ′ ′
=d, d ′ ′ 6=0

(P ∪ R)(d ′) ⊕ Q(d ′ ′).

Proof Obviously,
⋂

l∈[0,p] H
Vλl (d) ⊇

⋂

λ∈X
HVλ(d).

Now fix λ ∈ X, d ′ ∈ P + R and d ′ ′ ∈ Q such that d ′ + d ′ ′
= d and d ′ ′ 6= 0. If

P ∈ (P ∪ R)(d ′) and Q ∈ Q(d ′ ′), then Proposition 2.1(iii) implies that

dimk Hom∆(Vλ, P ⊕ Q) ≥ dimk Hom∆(Vλ,Q) = 〈h, d ′ ′〉∆ > 0,

hence (P ∪ R)(d ′) ⊕ Q(d ′ ′) ⊆ HVλ(d).

Finally, assume that R ∈ R(d)∩
⋂

l∈[0,p] H
Vλl (d). Then pR

λl
> 0 for each l ∈ [0, p].

Consequently, pR ≥
∑

l∈[0,p] pR
λl
> p, a contradiction.

Corollary 5.2 Let λ0, . . . , λp ∈ X be pairwise different. If C is an irreducible compo-

nent of
⋂

l∈[0,p] H
Vλl (d), then dimC = a∆(d) − p − 1 and there exist d ′ ∈ P + R and

d ′ ′ ∈ Q such that d ′ + d ′ ′
= d, d ′ ′ 6= 0 and C = (P ∪ R)(d ′) ⊕ Q(d ′ ′).

Proof It follows from Lemma 5.1 that C is an irreducible component of

(P ∪ R)(d ′) ⊕ Q(d ′ ′)

for some d ′ ∈ P + R and d ′ ′ ∈ Q such that d ′ + d ′ ′
= d and d ′ ′ 6= 0. Since

(P ∪ R)(d ′) ⊕ Q(d ′ ′) is irreducible by Proposition 3.3, C = (P ∪ R)(d ′) ⊕ Q(d ′ ′).

We know from Proposition 3.2(i) that dim rep
∆

(d) = a∆(d), hence Krull’s Prin-

cipal Ideal Theorem [30, Section V.3] implies that dimC ≥ a∆(d) − p − 1. On the

other hand, dimC = dim
(

(P∪R)(d ′)⊕Q(d ′ ′)
)

≤ a∆(d)− p− 1 by Corollary 3.4,

and the claim follows.

Lemma 5.3 Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈ [0, p]. If

C is an irreducible component of
⋂

l∈[0,p] H
Vλl , Jl (d), then C is an irreducible component

of
⋂

l∈[0,p] H
Vλl (d).
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Proof Similar to the proof of Corollary 5.2, we show that dimC ≥ a∆(d)−p−1. On

the other hand, C ⊆
⋂

l∈[0,p] H
Vλl (d), hence there exists an irreducible component C ′

of
⋂

l∈[0,p] H
Vλl (d) such that C ⊆ C ′. Corollary 5.2 says that dimC ′

= a∆(d)− p−1,

hence C = C ′.

Corollary 5.4 Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈ [0, p].

If C is an irreducible component of
⋂

l∈[0,p] H
Vλl , Jl (d), then dimC = a∆(d) − p − 1

and there exist d ′ ∈ P + R and d ′ ′ ∈ Q such that d ′ + d ′ ′
= d, d ′ ′ 6= 0 and

C = (P ∪ R)(d ′) ⊕ Q(d ′ ′).

Proof Immediate from Lemma 5.3 and Corollary 5.2.

Lemma 5.5 If d ′ ∈ P + R, d ′ ′ ∈ Q, d ′ + d ′ ′
= d and 〈d ′ ′, d ′〉∆ = −p − 1, then

there exists M ∈ (P ∪ R)(d ′) ⊕ Q(d ′ ′) such that Ext2
∆

(M,M) = 0.

Proof Before we start the proof we recall that the functions

rep
∆

(d) → Z,M 7→ dimk Ext2
∆

(M,M),

and

rep
∆

(d ′) × rep
∆

(d ′ ′) → Z, (P,Q) 7→ dimk Ext1
∆

(Q, P),

are upper semi-continuous, see [5, 3.4] and [22, Lemma 4.3], respectively.

Proposition 3.3 implies that (P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible set of dimen-

sion a∆(d) − p − 1, hence (P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible component of
⋂

λ∈X
Hλ(d) by Lemma 5.1 and Corollary 5.2. Let M ∈ (P∪R)(d ′)⊕Q(d ′ ′) be such

that O(M) is maximal in
⋂

λ∈X
Hλ(d) and

dimk Ext2
∆

(M,M) = min{dimk Ext2
∆

(N,N) : N ∈ (P ∪ R)(d ′) ⊕ Q(d ′ ′)}.

Write M = P ⊕ Q for P ∈ (P ∪ R)(d ′) and Q ∈ Q(d ′ ′).

There exists an exact sequence ξ : 0 → P → R → Q → 0 with R ∈ R(d).

Indeed, since M /∈ addR, O(M) is not maximal in rep
∆

(d), hence there exist in-

decomposable direct summands X and Y of M such that Ext1
∆

(Y,X) 6= 0. Since

O(M) is maximal in
⋂

λ∈X
Hλ(d), it follows that O(P) and O(Q) are maximal in

(P ∪ R)(d ′) and Q(d ′ ′), respectively, hence either X is a direct summand of P and Y

is a direct summand of Q or Y is a direct summand of P and X is a direct summand

of Q. However, the latter case in not possible, since Ext1
∆

(P,Q) = 0. Consequently,

we obtain an exact sequence of the above form. Finally, since O(M) is maximal in
⋂

λ∈X
Hλ(d), it follows that R 6∈

⋂

λ∈X
Hλ(d), hence R ∈ R(d) by Lemma 5.1. Note

that pdim
∆

R ≤ 1, hence the map Φ : Ext1
∆

(P, P) → Ext2
∆

(Q, P), ξ ′ 7→ ξ ′ ◦ ξ, is an

epimorphism.

Minimality of

dimk Ext2
∆

(M,M) = dimk Ext2
∆

(Q, P) = dimk Ext1
∆

(Q, P) + 〈d ′ ′, d ′〉∆

implies that the set

E := {(U ,V ) ∈ (P ∪ R)(d ′) × Q(d ′ ′) : dimk Ext1
∆

(V,U ) = dimk Ext1
∆

(Q, P)}
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is an open subset of (P ∪ R)(d ′) × Q(d ′ ′). However, (P ∪ R)(d ′) × Q(d ′ ′) is an

open subset of rep
∆

(d ′) × rep
∆

(d ′ ′) by [5, Lemmas 3.7 and 3.8] (these lemmas

are formulated in the case of canonical algebras, but the proofs transfer without any

changes to arbitrary concealed-canonical algebras). Consequently, E is an open sub-

set of rep
∆

(d ′) × rep
∆

(d ′ ′), hence TP,QE = TP rep
∆

(d ′) × TQ rep
∆

(d ′ ′). On the

other hand, [6, Proposition 3.3] implies that

TP,QE ⊆ {(Z ′,Z ′ ′) ∈ TP rep
∆

(d ′) × TQ rep
∆

(d ′ ′) : πP(Z ′) ◦ ξ + ξ ◦ πQ(Z ′ ′) = 0}.

Since πP is an epimorphism (as pdim
∆

P ≤ 1), this implies that Φ = 0. Since Φ is an

epimorphism, Ext2
∆

(Q, P) = 0, and the claim follows.

Proposition 5.6 Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈

[0, p]. If d ′ ∈ P + R, d ′ ′ ∈ Q and (P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible component

of
⋂

l∈[0,p] H
Vλl , Jl (d), then 〈dim Vλl, Jl

, d ′ ′〉∆ > 0 for each l ∈ [0, p]. Moreover, if

〈dim Vλl, Jl
, d ′ ′〉∆ = 1 for each l ∈ [0, p], then there exists M ∈ (P ∪R)(d ′) ⊕ Q(d ′ ′)

such that Ext2
∆

(M,M) = 0 and ∂cλ0, J0
(M), . . . , ∂cλp , Jp

(M) are linearly independent.

Proof We know from Lemma 5.3 that (P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible com-

ponent of
⋂

l∈[0,p] H
Vλl (d). In particular, dim

(

(P∪R)(d ′)⊕Q(d ′ ′)
)

= a∆(d)−p−1

by Corollary 5.2. Consequently, Proposition 3.3 implies that 〈d ′ ′, d ′〉∆ = −p − 1.

Using Lemma 5.5 we may choose M ∈ (P∪R)(d ′)⊕Q(d ′ ′) such that O(M) is maxi-

mal in
⋂

l∈[0,p] H
Vλl (d) and Ext2

∆
(M,M) = 0. Write M = P⊕Q for P ∈ (P∪R)(d ′)

and Q ∈ Q(d ′ ′).

First we prove that Hom∆(Vλl, Jl
, P) = 0 for each l ∈ [0, p]. This will imply in

particular that

〈dim Vλl, Jl
, d ′ ′〉∆ = dimk Hom∆(Vλl, Jl

,Q) = dimk Hom∆(Vλl, Jl
,M) > 0

for each l ∈ [0, p]. Write P = P ′ ⊕ R for P ′ ∈ addP and R ∈ add R, and as-

sume Hom∆(Vλl,i ,R) 6= 0 for some l ∈ [0, p] and i ∈ Jl. Then qR
λl,i

> 0. If

pR > 0, then 〈dim Q, dim R〉∆ ≤ 〈d ′ ′,h〉∆ < 0 by Proposition 2.1(iii) (recall that

d ′ ′ 6= 0 by Corollary 5.4). Otherwise, we fix n ∈ N such that qR
λ,(i+n) mod rλ

= 0 and

qR
λ,(i+ j) mod rλ

> 0 for each j ∈ [1, n − 1]. Then

〈d ′ ′, en
λl,i+n−1〉∆ = 〈d − dim P ′ − dim R, en

λl,i+n−1〉∆

≤ −pd
λl,(i+n) mod rλ

− 〈dim P ′, en
λ,i+n−1〉∆ − qR

λl,i
< 0.

This again implies that 〈dim Q, dim R〉∆ < 0, hence Ext1
∆

(Q,R) 6= 0. If 0 → R →
Q ′ → Q → 0 is a non-split exact sequence, then P ′ ⊕ Q ′ ∈

⋂

l∈[0,p] H
Vλl (d), since

dimk Hom∆(Vλ,Q ′) ≥ 〈h, dim Q ′〉∆ = 〈h, d ′ ′〉∆ > 0 for each λ ∈ X. Moreover,

M ∈ O(P ′ ⊕ Q ′) and M 6≃ P ′ ⊕ Q ′, which contradicts the maximality of O(M).

Now we assume that 〈dim Vλl, Jl
, d ′ ′〉∆ = 1 for each l ∈ [0, p] and we prove

that under this assumption ∂cλ0, J0
(M), . . . , ∂cλp , Jp

(M) are linearly independent. Our

assumption implies that

dimk Hom∆(Vλl, Jl
,M) = dimk Hom∆(Vλl, Jl

,Q) = 1
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for each l ∈ [0, p]. Let K :=
⋂

l∈[0,p] Ker ∂cVλl , Jl (M) ⊆ TM rep
∆

(d). We have the

canonical inclusion Ext1
∆

(Q, P) →֒ Ext1
∆

(M,M), which sends an exact sequence

ξ : 0 → P → N → Q → 0 to the sequence

ξ ′ : 0 → M → N ⊕ M → M → 0.

Using Proposition 4.7(i) we obtain that ξ ′ ∈ πM(K) if and only if

dimk Hom∆(Vλl, Jl
,N) = 1 for each l ∈ [0, p].

In particular, this implies that N ∈
⋂

l∈[0,p] H
Vλl , Jl (d). By the maximality of O(M),

N ≃ M, i.e., ξ splits, thus Proposition 3.2(iv) implies that

codimTM rep
∆

(d) K ≥ dimk Ext1
∆

(Q, P) ≥ −〈d ′ ′, d ′〉∆ = p + 1,

and this finishes the proof.

Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈ [0, p]. Assume that

(P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible component of
⋂

l∈[0,p] H
Vλl , Jl (d) for d ′ ∈ P+R

and d ′ ′ ∈ Q. We know from Corollary 5.4 that dim
(

(P ∪ R)(d ′) ⊕ Q(d ′ ′)
)

=

a∆(d) − p − 1. Consequently, either q∆(d ′ ′) = 0 or q∆(d ′ ′) = 1 by Corollary 3.4.

We prove that in the latter case there is always M ∈ (P ∪ R)(d ′) ⊕ Q(d ′ ′) such that

Ext2
∆

(M,M) = 0 and ∂cλ0, J0
(M), . . . , ∂cλp , Jp

(M) are linearly independent.

Corollary 5.7 Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈

[0, p]. If d ′ ∈ P + R, d ′ ′ ∈ Q, (P ∪ R)(d ′) ⊕ Q(d ′ ′) is an irreducible component

of
⋂

l∈[0,p] H
Vλl , Jl (d) and q∆(d ′ ′) = 1, then there exists M ∈ (P ∪ R)(d ′) ⊕ Q(d ′ ′)

such that Ext2
∆

(M,M) = 0 and ∂cλ0, J0
(M), . . . , ∂cλp , Jp

(M) are linearly independent.

Proof From the previous proposition we know that 〈dim Vλl, Jl
, d ′ ′〉∆ > 0 for each

l ∈ [0, p]. On the other hand, Corollary 3.4 implies that

〈dim Vλl, Jl
, d ′ ′〉∆ ≤ 〈h, d ′ ′〉∆ = 1

for each l ∈ [0, p]. Consequently, 〈dim Vλl, Jl
, d ′ ′〉∆ = 1 for each l ∈ [0, p], and the

claim follows from the previous proposition.

6 Non-singular Dimension Vectors

Throughout this section we fix a sincere separating exact subcategory R of ind∆

for a tame bound quiver ∆ and use freely notation introduced in Section 2. We

also fix d ∈ R such that p := pd > 0. Finally, we assume that d is not singular.

This assumption implies, according to Proposition 2.3(ii) and Corollary 3.4, that

q∆(d ′ ′) = 1 for any d ′ ∈ P + R and d ′ ′ ∈ Q such that d ′ + d ′ ′
= d and dim

(

(P ∪

R)(d ′) ⊕ Q(d ′ ′)
)

= a∆(d) − p − 1. Consequently, we have the following.
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Lemma 6.1 Let λ0, . . . , λp ∈ X be pairwise different and Jl ⊆ Aλl
(d), l ∈ [0, p]. If

C is an irreducible component of
⋂

l∈[0,p] H
Vλl , Jl (d), then there exists M ∈ C such that

Ext2
∆

(M,M) = 0 and ∂cλ0, J0
(M), . . . , ∂cλp , Jp

(M) are linearly independent.

Proof We know from Corollary 5.4 that dimC = a∆(d) − p − 1 and

C = (P ∪ R)(d ′) ⊕ Q(d ′ ′)

for d ′ ∈ P + R and d ′ ′ ∈ Q. Since q∆(d ′ ′) = 1, the claim follows from Corollary 5.7.

Corollary 6.2 If λ0, . . . , λp ∈ X are pairwise different, then

{

f ∈ k[rep
∆

(d)] : f (M) = 0 for each M ∈
⋂

l∈[0,p]

HVλl (d)
}

= (cλ0
, . . . , cλp

).

Proof We know from Proposition 3.2(i) that rep
∆

(d) is a complete intersection.

Moreover, the previous lemma implies that for each irreducible component C of
⋂

l∈[0,p] H
Vλl (d) there exists M ∈ C such that ∂cλ0

(M), . . . , ∂cλp
(M) are linearly in-

dependent and dimk Ext2
∆

(M,M) = 0. Then dimk TM rep
∆

(d) = dim rep
∆

(d) by

Proposition 3.2(v), hence the claim follows from Proposition 3.1(ii).

Proposition 6.3 Let λ0, . . . , λp ∈ X be pairwise different. If M,N ∈ R(d) and

there exists µ ∈ k such that cλl
(M) = µcλl

(N) for each l ∈ [0, p], then M and N are

S-equivalent.

Proof Lemma 5.1 implies that cλl
(M) 6= 0 for some l ∈ [0, p]. Without loss of

generality, we may assume that cλ0
(M) 6= 0. Then µ 6= 0 and cλ0

(N) 6= 0. For

l ∈ [0, p] we put µl :=
cλl

(M)

cλ0
(M)

. Observe that cλl
(N) = µlcλ0

(N) for each l ∈ [0, p].

Fix λ ∈ X, and put µ ′ := cλ(M)
cλ0

(M)
and µ ′ ′ := cλ(N)

cλ0
(N)

. We know from Lemma 5.1 that

cλ(V ) = 0 for each V ∈
⋂

l∈[0,p] H
Vλl (d), hence Corollary 6.2 implies that there exist

f0, . . . , fp ∈ k[rep
∆

(d)] such that cλ =
∑

l∈[0,p] flcλl
. Put f :=

∑

l∈[0,p] µl fl. Then

cλ(g · M) =
∑

l∈[0,p]

fl(g · M)cλl
(g · M)

=

∑

l∈[0,p]

µl fl(g · M)cλ0
(g · M) = f (g · M)cλ0

(g · M)

for each g ∈ GL(d). Recall that cλ and cλ0
are semi-invariants of the same weight,

hence f (g · M) = cλ(M)
cλ0

(M)
= µ ′ for each g ∈ GL(d). Similarly, f (g · N) = µ ′ ′ for each

g ∈ GL(d). Since O(M)∩O(N) 6= ∅ (Sd ∈ O(M)∩O(N)), µ ′
= µ ′ ′. Consequently,

cλ(M) = µ ′cλ0
(M) = µ ′ ′µcλ0

(N) = µcλ(N),

and the claim follows from Corollary 4.6.
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Proposition 6.4 If O(M) ⊆ rep
∆

(d) is maximal, then there exist λ0, . . . , λp ∈ X,

i0 ∈ Aλ0
(d), . . . , i p ∈ Aλp

(d), and µ1, . . . , µp ∈ k, such that

{ f ∈ k[rep
∆

(d)] : f (N) = 0 for each N ∈ O(M)}

= (cλ1,i1
− µ1cλ0,i0

, . . . , cλp ,i p
− µpcλ0,i0

).

In particular, O(M) is a complete intersection of dimension a∆(d) − p.

Proof First, let (λ1, i1), . . . , (λq, iq) be the pairwise different elements of X̂(M). We

put µl := 0 for l ∈ [1, q]. Next, we choose pairwise different λ0, λq+1, . . . , λp ∈

X\
(

X0∪X(M)
)

. Finally, we put i0 := 0, and il := 0 and µl :=
cλl

(M)

cλ0
(M)

for l ∈ [q+1, p].

Let

V := {N ∈ rep
∆

(d) : cλl,il
(N) − µlcλ0,i0

(N) = 0 for each l ∈ [1, p]}

and V ′ :=
⋂

l∈[0,p] H
Vλl ,il (d). Obviously V ′ ⊆ V. Moreover, every irreducible com-

ponent of V ′ has dimension a∆(d) − p − 1 by Corollary 5.4, hence Krull’s Prin-

cipal Ideal Theorem implies that every irreducible component of V has dimension

a∆(d) − p. In particular, Corollary 3.4 implies that R(d) ∩ C is a non-empty open

subset of C for each irreducible component C of V. Note that cλl
(R) =

cλ0
(R)

cλ0
(M)

cλl
(M)

for any l ∈ [0, p] and R ∈ R(d) ∩ V, thus Proposition 6.3 implies that R is S-

equivalent to M for each R ∈ V ∩ R(d). Consequently, there are only finitely many

orbits in R(d)∩V by Proposition 4.4. This implies that every irreducible component

of V is of the form O(R) for some R ∈ R(d). Fix R ∈ R(d) such that O(R) is an irre-

ducible component of V. Since dimO(R) = a∆(d)− p, O(R) is maximal in rep
∆

(R).

Moreover, R and M are S-equivalent and X̂(M) ⊆ X̂(R), hence O(R) = O(M). Con-

sequently, V = O(M).

Lemma 6.1 implies that there exists N ∈ V such that Ext2
∆

(N,N) = 0 and

∂cλ0,i0
(N), . . . , ∂cλp ,i p

(N) are linearly independent. Then obviously

∂cλ1,i1
(N) − µ1∂cλ0,i0

(N), . . . , ∂cλp ,i p
(N) − µp∂cλ0,i0

(N)

are linearly independent as well. Moreover, dim TN rep
∆

(d) = dim rep
∆

(d) by

Proposition 3.2(v). Since rep
∆

(d) is a complete intersection by Proposition 3.2(i),

the claim follows from Proposition 3.1(ii).

Proposition 6.5 If O(M) ⊆ rep
∆

(d) is maximal, then the variety O(M) is normal.

Proof We know from Proposition 6.4 that there exist

λ0, . . . , λp ∈ X, i0 ∈ Aλ0
(d), . . . , i p ∈ Aλp

(d), and µ1, . . . , µp ∈ k,

such that

{ f ∈ k[rep
∆

(d)] : f (N) = 0 for each N ∈ O(M)} = (cλl,il
− µlcλ0,i0

: l ∈ [1, p]).
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Let

U := {N ∈ O(M) : dimk TNO(M) = dimO(M)}.

Proposition 3.2(v) implies that U is the set of all N ∈ O(M) such that Ext2
∆

(N,N) =

0 and ∂cλ1,i1
(N) − µ1∂cλ0,i0

(N), . . . , ∂cλp ,i p
(N) − µp∂cλ0,i0

(N) are linearly indepen-

dent.

By general theory, O(M) ⊆ U, hence O(M) \ U ⊆ V ′ ∪ V ′ ′, where V ′ :=
⋂

l∈[0,p] H
Vλl ,il (d) and V ′ ′ :=

(

O(M) \O(M)
)

∩R(d). Lemma 6.1 says that U∩C 6=

∅ for each each irreducible component C of V ′, thus dim(V ′ \ U) < dimV ′
=

a∆(d) − p − 1 = dimO(M) − 1. On the other hand, if R ∈ V ′ ′, then R is S-

equivalent to M by Proposition 6.3, hence V ′ ′ is a union of finitely many orbits ac-

cording to Proposition 4.4. Moreover, [48, Theorem 1.1] implies that R ∈ U for

each R ∈ V ′ ′ such that dimO(R) = dimO(M) − 1. Concluding, we obtain that

dim
(

O(M) \U
)

< dimO(M)− 1. Since O(M) is a complete intersection by Propo-

sition 6.4, the claim follows from Proposition 3.1(i).

7 Singular Dimension Vectors

Throughout this section we fix a sincere separating exact subcategory R of ind∆ for

a tame bound quiver ∆ and use freely notation introduced in Section 2. We also fix

singular d ∈ R. Proposition 2.3(i) implies that d = h and ∆ is of type (2, 2, 2, 2). Let

O(M) ⊆ rep
∆

(h) be maximal. It follows from [10, Proposition 5] that M ≃ R(rλ)
λ,i for

some λ ∈ X and i ∈ [0, rλ − 1]. We prove that O(M) is normal if and only if rλ = 2.

Note that X̂(M) = {(λ, j)}, where j := (i − 1) mod rλ. Moreover, Vλ, j = Rλ, j .

Proposition 7.1 We have

{ f ∈ k[rep
∆

(h)] : f (N) = 0 for each N ∈ O(M)} = (cλ, j).

In particular, O(M) is a complete intersection of dimension a∆(h) − 1.

Proof We know from Proposition 3.2(i) that rep
∆

(h) is an irreducible variety of di-

mension a∆(h), hence Krull’s Principal Ideal Theorem implies that every irreducible

component of HVλ, j (h) has dimension a∆(h) − 1. Observe that R(h) ∩ HVλ, j (h)

is a union of finitely many orbits. Since dim
(

HVλ, j (h) \ R(h)
)

≤ a∆(h) − 2 by

Corollary 3.4, this implies that every irreducible component of V is of the form O(R)

for a maximal orbit O(R) in rep
∆

(h). However, [10, Proposition 5] implies that

O(M) is a unique maximal orbit in rep
∆

(h) which is contained in HVλ, j (h), hence

HVλ, j (h) = O(M).

We know that dimk Ext1
∆

(M,M) = 1 and the non-split exact sequences in

Ext1
∆

(M,M) are of the form ξ : 0 → M → N → M → 0 with N ≃ R(2rλ)
λ,i .

In particular, dimk Hom∆(Vλ, j ,N) = 1. Consequently, the sequence 0 → M →
M ⊕ M → M → 0 is the only Vλ, j-exact sequence in Ext1

∆
(M,M). Proposi-

tions 4.7(i) and 3.2(iv) imply that ∂cVλ, j (M) is non-zero. Since rep
∆

(h) is a complete

intersection by Proposition 3.2(i) and dimk TM rep
∆

(d) = dim rep
∆

(d) by Proposi-

tion 3.2(v) (note that pdim
∆

M ≤ 1, since M ∈ R), the claim follows from Proposi-

tion 3.1(ii).
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Proposition 7.2 Let

U := {N ∈ O(M) : dimk TNO(M) = dimO(M)}.

(i) If rλ = 1, then dim
(

O(M) \ U
)

= dimO(M) − 1. In particular, O(M) is not

normal.

(ii) If rλ = 2, then dim
(

O(M)\U
)

< dimO(M)−1. In particular, O(M) is normal.

Proof Fix λ ′ ∈ X \ (X0 ∪{λ}). Lemma 5.1 implies that rep
∆

(h)\R(h) = HVλ(h)∩
HVλ ′ (h). By general theory O(M) ⊆ U, hence O(M) \ U ⊆ V ′ ∪ V ′ ′, where V ′ :=
(

O(M) \ O(M)
)

∩ R(h) and V ′ ′ := HVλ, j (h) ∩ HVλ ′ (h). We know that V ′ is a

union of finitely many orbits. Moreover, [48, Theorem 1.1] implies that R ∈ U for

each R ∈ V ′ such that dimO(R) = dimO(M) − 1. Consequently, dim(V ′ \ U) <
dimV ′ ≤ dimO(M) − 1.

Now let C be an irreducible component of V ′ ′. Corollary 5.4 implies that dimC =

a∆(h)−2 and there exist d ′ ∈ P+R and d ′ ′ ∈ Q such thatC = (P ∪ R)(d ′) ⊕ Q(d ′ ′).

Moreover, Corollary 3.4 implies that either q∆(d ′ ′) = 1 or q∆(d ′ ′) = 0. If q∆(d ′ ′) =

1, then Corollary 5.7 implies that U ∩ C 6= ∅.

Assume that q∆(d ′ ′) = 0 (according to Proposition 2.3(ii), this case appears,

since d ′ ′ is singular). Then 〈h, d ′ ′〉∆ = 2 by Corollary 3.4. If rλ = 2, then

〈dim Vλ, j , d ′ ′〉∆ = 1. Indeed, we know from Proposition 5.6 that 〈dim Vλ, j , d ′ ′〉∆ >
0. On the other hand, Proposition 2.1(iv) implies that

〈dim Vλ, j , d ′ ′〉∆ = 〈h, d ′ ′〉∆ − 〈eλ,i , d ′ ′〉∆ ≤ 2 − 1 = 1.

Consequently, Proposition 5.6 implies that also in this case U∩C 6= ∅. On the other

hand, if rλ = 1, then dimk Hom∆(Vλ, j ,N) ≥ 〈h, d ′ ′〉∆ = 2 for each N ∈ C. Thus in

this case U ∩ C = ∅ by Proposition 4.7(ii).

Concluding, dim
(

O(M) \ U
)

< dimO(M) − 1 if and only if rλ = 2. Since we

know from Proposition 7.1 that O(M) is a complete intersection, the claims about

(non-)normality of O(M) follow immediately from Proposition 3.1(i).

We finish this section with a remark about the relationship between the degen-

erations and the hom-order. Let ∆ ′ be a bound quiver and d0 a dimension vec-

tor. If U ,V ∈ rep
∆ ′(d0), then we say that V is a degeneration of U (and write

U ≤deg V ) if O(V ) ⊆ O(U ). Similarly, we write U ≤hom V if dimk Hom∆ ′(X,U ) ≤
dimk Hom∆ ′(X,V ) for each X ∈ rep∆

′ (equivalently, dimk Hom∆ ′(U ,X) ≤
dimk Hom∆ ′(V,X) for each X ∈ rep∆

′). Both ≤deg and ≤hom induce partial orders

in the set of the isomorphism classes of the representations of ∆ ′. It is also known

that ≤deg implies ≤hom. The reverse implication is not true in general, however ≤hom

implies ≤deg if either ∆
′ is of finite representation type [44] or gl. dim∆

′
= 1

and ∆
′ is of tame representation type [16] (i.e., R = ∅ and ∆

′ is an Euclidean

quiver). We present an example showing that ≤hom does not imply ≤deg for the tame

concealed-canonical algebras in general.

We return to the setup of this section and assume that rλ = 2. Let R := Rλ,0⊕Rλ,1.

Moreover, we fix d ′ ′ ∈ Q such that q∆(d ′ ′) = 0, 〈h, d ′ ′〉∆ = 2 and d ′ ∈ P, where

d ′ := h − d ′ ′. If N ∈ P(d ′) ⊕ Q(d ′ ′), then

dimk Hom∆(Rλ ′,i ′ ,R) ≤ 1 ≤ dimk Hom∆(Rλ ′,i ′ ,N)
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for any λ ′ ∈ X and i ′ ∈ [0, rλ ′ −1]. By adapting [18, Corollary 4.2] to the considered

situation we get that R ≤hom N for each N ∈ P(d ′) ⊕ Q(d ′ ′). On the other hand,

dimO(R) = a∆(d) − 2 = dim
(

P(d ′) ⊕ Q(d ′ ′)
)

,

hence P(d ′) ⊕ Q(d ′ ′) 6⊆ O(R), i.e., there exists N ∈ P(d ′) ⊕ Q(d ′ ′) such that R 6≤deg

N.

8 Proof of Theorem 4

Let M be a periodic representation of a tame concealed-canonical quiver ∆ such that

O(M) is maximal.

If Ext1
∆

(M,M) = 0, then O(M) = rep
∆

(d) by Proposition 3.2(ii). Consequently,

O(M) is a normal complete intersection by Proposition 3.2(i). Observe, that dim M

is not singular in this case.

Now assume Ext1
∆

(M,M) 6= 0. Using Proposition 3.2(iii) we may assume that

M ∈ addR for a sincere separating exact subcategory R of ind∆. Proposition

3.2(iv) implies that O(M) 6= rep
∆

(d). Consequently, pM 6= 0 (since dimO(M) =

dim rep
∆

(d) − pM) and the claim follows from Propositions 6.4 and 6.5.
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