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Abstract

In this paper we investigate some new sequence spaces which naturally emerge from the concept
of almost convergence. Just as ordinary, absolute and strong summability, it is expected that almost
convergence must give rise to almost, absolutely almost and strongly almost summability. Almost
and absolutely almost summable sequences have been discussed by several authors. The object of
this paper is to introduce the spaces of strongly almost summable sequences which happen to be
complete paranormed spaces under certain conditions. Some topological results, characterisation of
strongly almost regular matrices, uniqueness of generalized limits and inclusion relations of such
sequences have been discussed.

Introduction

Let S be the set of all sequences real or complex and L denote the Banach
space of bounded sequences x = {xk}k-0 normed by \\x || = supks0|xt |. Let D be
the shift operator on S, that is, Dx = {xtK-i, D2x = {xk}°Z-2 and so on.

It may be recalled that [see Banach (1932)] Banach limit L is a nonnegative
linear functional on L such that L is invariant under the shift operator (that is,
L(Dx)= L(x)Vx e L) and that L{e)=\ where e = {1,1, • • •}. A sequence
x G L is called almost convergent [Lorentz (1948)] if all Banach limits of x
coincide. Let c denote the set of all almost convergent sequences. Lorentz (1948)
proved that

{ 1 m 1

x: lim r y\ xn+i exists uniformly in n\.
».-» m+\ fr'o J

The summability methods of real or complex sequences by infinite matrices
are of three types [see Maddox (1970), p. 185]—ordinary, absolute and strong. In
the same vein, it is expected that the concept of almost convergence must give
rise to three types of summability methods-almost, absolutely almost and
strongly almost. The almost summable sequences have been discussed by King
(1966), Schaefer (1969) and some others. More recently Das and Nanda
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I [2] Almost convergence 447

(unpublished) have considered absolute almost convergent and absolute almost
summable sequences. Therefore our only concern is the strongly almost summa-
ble sequences, which naturally come up for investigation.

The strongly summable sequences have been systematically investigated by
Hamilton and Hill (1938), Kuttner (1946) and some others. The spaces of
strongly summable sequences were introduced and studied by Maddox (1967,
1970).

The purpose of this paper is to introduce the spaces of strongly almost
summable sequences, which will fill up a gap in the existing literature.

Let A = (ank) be an infinite matrix of nonnegative real numbers and
p = {pk} be a sequence such that pk >0. (These assumptions are made through-
out.) We write Ax = {An(x)j if An(x) = S t ank | xk \

p" converges for each n (Here
and afterwards summation without limits runs over 1 to °°) and then we write

'""" {X} = ~r^+l % An+i (X} = ? a ("' fc' m} 'Xk '""
where

We define [see Maddox (1967)],

[A,p]0 = {jc: An(x)^>0};

[A,p] = {x: An(x - le)-*0 for some /};

and

[A,p]«, = {x: sup An(x)<<*>}.

The spaces [A,p]0, [A,p] and [A,p]«, are respectively called the spaces of
strongly summable to zero, strongly summable and strongly bounded se-
quences.

We now write

[A,p]0 = {x: fmn(JC) —>0 uniformly in n};

[A,p) = {x: tm.n(x -/e)—>0 for some / uniformly in n};

and

tm,n(x)<oo}.
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The sets [A, p]0, [A,p] and [A, p]» will be respectively called the spaces of
strongly almost summable to zero, strongly almost summable and strongly
almost bounded sequences.

If x is strongly almost summable to / we write xk —*• I [A, p]. A pair (A,p)
will be called strongly almost regular if

In Theorem 1 we obtain suitable conditions for the above sets to be
complete linear topological spaces and in Theorems 2 and 3 we discuss
r-convexity and locally boundedness for these spaces. Theorem 4 characterises
strongly almost regular matrices. In Theorems 5 and 6 we consider uniqueness of
generalised limits and inclusion relations for the strongly almost summable
sequences.

The main result

We first establish a number of useful propositions.

PROPOSITION 1. If p & L, then [A, p]0, [A, p] and [A, p]*, are linear spaces
over C.

PROOF. We consider only [A,p]. Others can be treated similarly. If
H = suppk and K = max(l,2H"'), we have [see Maddox (1967), p. 346].

(1) \ak+bk\^SK(\ak\^+\bk\^)

and for A G C,

(2) |A|"*=imax(l, | A | " ) .

Suppose that xk —» / [A, p], yk —> l'[A, p] and A, fi £ C. Then we have

tm,n(\x +ny- (XI + / i / » S KKjm,n(x - le) + KK2tm,n(y - I'e)

where K, = sup | A \Pt and K2 = sup | /x \Pk, and this implies that Ax +
/*y->(A/ + / i / ' ) [ ^ ,p ] .

This completes the proof.
It is evident that

« [A,,p]oC[A,p]0,[A,p]C[A,p],

[A,P)»c[A,pUA,p]oc[A,p],

[A,P]oC[A,p]a.

But we have been able to prove '[A,p] C[A,p]J only under additional
restrictions on A.
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We have

PROPOSITION 2. [A,p]C[A,p]» if

(3) || A || = sup ^ a(n, k, m)<°°
m Jc

PROOF. Suppose that xk —* l[A, p] and (3) holds. Now by the inequality (1),

tm,n(x)= tm,n(x -le + le)

a(n, k,m) \l
k

SKtmn(x - le)+K(sup\l\Pk)^l a(n,k,m).

Therefore x £ [A, p]«, and this completes the proof.

REMARK. Some known sequence spaces are obtained by specialising A and
therefore some of the results proved here extend the corresponding results
obtained for the special cases.

PROPOSITION 3. Let p G L, then [A,p]0 and [A, p]«, (infpt >0) are linear
topological spaces paranormed by g defined by

g ( x ) = sup [<„,,„(*)]1/M

where M = max (1, H = sup pk). If (3) holds, then [A,p] has the same paranorm.

PROOF. Clearly g(0) = 0 and g(x) = g ( - x ) . Since M g l , by Minkowski's
inequality it follows that g is subadditive. We now show that the scalar
multiplication is continuous. It follows from the inequality (2) that

Therefore x -~* 0 => Ax —» 0 (for fixed A). Now let A -> 0 and x be fixed. Given
e > 0 3N such that

(5) fm,n(Ax)<e/2(Vn,Vw > N)

Since rm,n(x) exists for all m, we write

and

, ( B y*
S-\2K(m)) •
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Then for | A | < 5,

(6) rm,n(Ax)<e/2(Vn,lSm =S7V).

It follows from (5) and (6) that

A->()=> Ax->0 (x fixed).

This proves the assertion about [A, p]0.
If inf pk = 0 > 0 and 0 < | A | < 1, then Vx G [A, p]»,

Therefore [A, p]« has the paranorm g. If (3) holds it is clear from Proposition 2
that g(x) exists for each x E.[A,p].

This completes the proof.

REMARK. It is evident that g is not a norm in general. But if pk = p Vfc, then
clearly g is a norm for l ^ p < o o and a p-norm for 0 < p < 1.

PROPOSITION 4. [A,p]o and [A,p]~ are complete with respect to their
paranorm topologies. [A,p] is complete if (3) holds and

(7) 2 a(n,k,m)—>0 uniformly in n2
k

PROOF. Let {x1} be a Cauchy sequence in [A, p]0. Then 3 a sequence x such
that g(x' -x)—»0 (i-»o°). Since g is subadditive it follows that x G[A, p]0.

The completness of [A, p]» can be similarly obtained.
We now consider [A, p]. If (3) holds and {x'} is a Cauchy sequence in [A, p],

Then (as above) 3x such that g(xj - x)—•(). If (7) holds then from inequality (4)
it is clear that [A,p] = [A, p]0.

This completes the proof.
Combining the above facts we obtain our main result.

THEOREM 1. Let p G L. Then [A,p]0 and [A,p]^ (infpk >0) are complete
linear topological spaces paranormed by g. If (3) and (7) hold then [A,p] has the
same property. If further pk = pVfc, they are Banach spaces for l S p < » and
p-normed spaces for 0 < p < 1.

Some topological results

We now study locally boundedness and r-convexity for the spaces of
strongly almost summable sequences. We start with some definitions.

For 0 < r g 1 a non-void subset U of a linear space is said to be absolutely
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r-convex if x, y £ U and | A |' + | /* |r ̂  1 together imply that \x + fiy G U. It is
clear that if U is absolutely r-convex, then it is absolutely r-convex for t < r. A
linear topological space X is said to be r-convex if every neighbourhood of 0 £ X
contains an absolutely r-convex neighbourhood of 0 G X. The r-convexity for
r > 1 is of little interest, since X is r-convex for r > 1 if and only if X is the only
neighbourhood of 0 £ X, [see Maddox and Roles (1969)]. A subset B of X is said
to be bounded if for each neighbourhood U of 0 e X3 an integer N > 1 such
that B C NU. X is called locally bounded if there is a bounded neighbourhood
of zero.

We first prove:

THEOREM 2. Let 0 < pk S I . Then [A, p]0 and [A, p]« are locally bounded if
infpk >0. // (3) holds, then [A, p] has the same property.

PROOF. We shall only prove for [A,p]oc. Let infpt = 0 >0. If x £[A,p],»,
then 3 a constant K' > 0 such that

2 a(n, k, m) \xk |p* gK;(Vm,n).
k

For this K' and given 8 > 0 choose an integer N > 1 such that

Since 1/N < 1 and pk S 6 we have

Then for all m and n, we get

2 a(n, k, m) -£
1

s — ̂  a(n, k, m) \xk \p"

Therefore by taking supremum over m and n we get,

{x:g(x)SK'}QN{x:g(x)^S}.

For every S > 0 3N > 1 for which the above inclusion holds and so

is bounded.
This completes the proof.
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It is known that every locally bounded linear topological space is r-convex
for some r such that 0 < r g 1. But the following theorem gives exact conditions
for r-convexity.

THEOREM 3. LetO<pkSl. Then [A,p]oand [A, p]*, are r-convex for all r
where 0 < r < lim inf pk. Moreover, if pk = p ^ lVfc, then they are p-convex. [A, p]
has the same properties if (3) holds.

PROOF. We shall prove the theorem only for [A,p]^. Let x G [A, p]» and

r £ (0, lim inf pk). Then 3/c0 such that r ^ pk(V/c > k0). Now define

2 a(n, k, m) \xk \' + 2 a(n,k,m)\xk\"
k].

k = 1 k = kn

Since r S pk S 1 (Vfe > k0), g is subadditive. Further for 0 < | A | S 1,

| A \p" g | A |r (\/k > k0)

Therefore for such A we have

Now for 0 < 5 < 1,

is an absolutely r-convex set, for | A |r + | /u. |r S 1 and x,yGU imply that

g(Ax + fiy) g g(Ax) + g(/Lty) s | A \'g(x)+ | M |rg

s (| A | ' + | /* | ' )« ^ &

If pk = pVfc, then for 0 < 8 < 1,

is an absolutely p-convex set. This can be obtained by a similar analysis and
therefore we omit the details.

This completes the proof.

REMARK. The conclusions of Theorems 2 and 3 also hold for the spaces of
strongly summable sequences. The proofs are similar and therefore omitted.
These results do not appear anywhere, although Maddox and Roles (1969) have
obtained some results in some special cases.

Some further results

Let X and Y be two nonempty subsets of the space S of sequences. If
x={xk}EX implies that {2kankxk}G V, we say that A defines a (matrix)
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transformation from X into Y, and we write A : X—> V. (X, Y) denotes the class
of matrices A such that A : X—> Y. Let c0 and c0 respectively denote the linear
spaces of null sequences and sequences almost convergent to zero.

We now characterise the class of strongly almost regular matrices.

THEOREM 4. Let 0< d ̂ pk § H < ° o . Then (A, p) is strongly almost regular
if and only if A G (c0, c0).

REMARK. It is known that [see King (1966)] A G (c0, c0) if and only if

(i) ||A||<oc;

(ii) lim a(n, k, m) = 0 uniformly in n, (Vfc).

To prove Theorem 4 we require the following result.

LEMMA 1. [see Maddox (1967), p. 347] If pk, qk >0, then

Co(<j)Cc0(p)0 liminf-^X).
qk

PROOF OF THEOREM 4. Necessity. Suppose that (A,p) is strongly almost
regular. Therefore

\xk - l ^ - ^ O ^ 2 a(n,k,m)\xk - / | - » 0
k

uniformly in n. Again since l/pk 2 l / H > 0 , by Lemma 1

xk-*l d> \Xk - / | 1 / p " ^ - 0 .

Thus

xk^l ^ ^ a(n,k,m)(xk- 1)^-0

k

uniformly in n and therefore A €E (c0, c0).

Sufficiency. Since pk § 6 >0, by Lemma 1,

Again we have A G (c0, c0). Therefore xt —> /[A, p] and this concludes the proof.
Note that pk == H is superfluous in the sufficiency and 6 S pk is superfluous

in the necessity.
We next consider the uniqueness of generalised limits.

THEOREM 5. Suppose that A G (c0, c0) and p = {pk} converges to a positive
limit. Then x = {xk}—> I => xk —* l[A,p] uniquely if and only if
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(8) 2 a (n, k, m y/> 0 uniformly in n.
k

PROOF. Necessity Suppose that A G (c0, c0) and {pk} be bounded. Let xk -* I
imply that xk —> l[A, p] uniquely. We have e —» 1[A, p]. Therefore the condition
(8) must hold. For, otherwise e —* 0[A, p] which contradicts the uniqueness of /.

Note that the restriction on {pk} (except boundedness) is superfluous for the
necessity.

Sufficiency. Suppose that the condition (8) holds and A G (c0, c0) and that
p t —>r>0 . Further assume that xk^>I implies xk—>l[A,p] and xk —»/'[A, p]
where | / — /' | = a > 0. Then we get

(9) lim 2 a(n,k,m)uk = 0 (uniformly in n)
"— °° k

where

uk = | xk - I |Pk + | xk - V I"'.

By the assumption we have uk —* a'. Since A €E (c0, c0), uk —* a' implies that

(10) "£ a(n,k,m) \uk - a' \^>0 (uniformly in n)
k

But we have

a"2 u(n,l:,m)=E a(n,k,m)uk
k k

(11)

+ ^ «(w, fc, m) | Mfc — a' |

Now by (9), (10) and (11) it follows that

lim ^ a(n,k,m) = 0 (uniformly in n).
m—oo k

Since this contradicts (8), we must have 1 = 1'. This completes the proof.
Suppose that 0 < pk ^qk- We conclude this note by showing that [A, q]C

[A, p] is not true in general. However the inclusion holds for a special class. We
prove

THEOREM 6. (a) Suppose that | |A | |<°° and qk/pk is bounded, then
[A, q] C[A,p]. (b) Let A be an almost regular matrix and suppose that qk/pk —*°°,
then [A,q]jt[A,p].

PROOF, (a) Write wk=\xk-l \"k and pk/qk = Ak. So that 0 < A g At S 1 (A
constant). Let x e[A,q]. Then
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2 a(n, k, m) wk—*Q (uniformly in n)2
Define uk = wk (wk g 1), = 0 (wk < 1) and vk = 0 (wk s 1), = Wk (wk < 1). So that
wk = uk + vk, wk

k = ul" + vik. Now it follows that u£k S « , ^ wk, vi" S vt We
have the inequality [see Maddox (1967), p. 351]

2 a(n,k,m) wi*^2 a(n,k,m) wk
k k

Therefore x G [A, p] and this completes the proof.
(b) It is known that [see Duran (1972), corollary to Theorem 1] no matrix is

both almost regular and almost schur. Therefore, if A Is almost regular, it
follows that there is always a sequence y = {yk} consisting of 0's and l's which is
not almost A-summable. Consequently, b = {bk} defined by b = (y + c)/4 is not
almost A-summable. Define xk = bk"

k. Then xk-£0 [A,p). But xk-*0 [A,q]
since | bk \ ^\< 1 and qk/pk —>°°. This completes the proof.

Finally, the author is grateful to Professor G. Das for suggestions and
guidance and to the referee for some valuable comments.
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