ON A GENERALIZATION OF A THEOREM OF WIENER BY JAMIL A. SIDDIQI(¹)

1. Let $V[0, 2\pi]$ denote the class of all normalized functions F of bounded variation in $[0, 2\pi]$ such that $F(x)=2^{-1}{F(x+0)+F(x-0)}$ and $F(x+2\pi)-F(x)$ = $F(2\pi)-F(0)$ for all x and let $\{C_n\}$ be the sequence of Fourier-Stieltjes coefficients of F. Wiener [9] (cf. Bari [1, p. 212], Zygmund [10, p. 108]) proved the following theorem.

THEOREM A. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable (C, 1) to 0.

Lozinskii [4] gave the following alternative criterion for continuity of a function of $V[0, 2\pi]$.

THEOREM B. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable to zero by logarithmic means.

Matveev [5] generalized Theorems A and B as follows:

THEOREM C. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable (\overline{N}, p) to zero where (\overline{N}, p) is a Riesz method of summability such that either

(a) $np_n \downarrow 0$ and $P_n = p_1 + \cdots + p_n \to \infty \quad (n \to \infty)$ or

(b) $p_n > 0$, $np_n \uparrow$ and $np_n = O(P_n) (n \to \infty)$.

In this paper we first show that Theorem C follows from the following theorem.

THEOREM D. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable (\overline{N}, p) to zero where (\overline{N}, p) is a regular Riesz method of summability satisfying the strong regularity condition

(1)
$$\sum_{k=1}^{n} |\Delta p_k| = o(P_n) \quad (n \to \infty)$$

where $\Delta p_k = p_k - p_{k+1}$ for $k = 1, \ldots, n-1$ and $\Delta p_n = p_n$.

Theorem D is contained in the following theorem.

THEOREM E. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable (\overline{N}, p) to zero by a regular Riesz method of summability such that

Received by the editors December 30, 1970 and, in revised form, May 10, 1971.

⁽¹⁾ This research was supported by the National Research Council of Canada Grant A-4057.

(2)
$$\lim_{n \to \infty} P_n^{-1} \sum_{k=1}^n p_k \exp(2\pi i kt) = \lim_{n \to \infty} |P_n^{-1}| \sum_{k=1}^n |p_k| \exp(2\pi i kt) = 0$$

for all $t \in (0, 1)$.

If we consider the method (\overline{N}, p) defined by taking $p_1 = 1$, $p_k = 1 + [(-1)^k/k]$, then (\overline{N}, p) is a strongly regular positive matrix for which $\{np_n\}$ is not monotonic. This shows that Matveev's Theorem C is properly contained in our Theorem D. We next show that condition (1) is not necessary for the validity of Theorem D by constructing an (\overline{N}, p) matrix with $p_n \ge 0$ satisfying (2) but not (1).

Finally, we show that although the sufficiency part of Theorem C remains valid the necessity part does not if in Theorem C the condition (b) is replaced by the following condition attributed to Matveev in Bari [1, p. 256]:

(b') $p_n > 0$ and $np_n \uparrow$ but $np_n \le n^{\alpha}$ (n = 1, 2, ...) for some $\alpha > 0$.

Theorem E is a particular case of the following theorem contained in a generalization of Wiener's Theorem A given by the author in [8] (cf. also [7]).

THEOREM F. For a function $F \in V[0, 2\pi]$ to be continuous, it is necessary and sufficient that $\{|C_k|^2\}$ or $\{|C_k|\}$ be summable A by a regular matrix $A = (a_{n,k})$ for which

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{n,k}\exp\left(2\pi ikt\right)=\lim_{n\to\infty}\sum_{k=0}^{\infty}|a_{n,k}|\exp\left(2\pi ikt\right)=0$$

for all $t \in (0, 1)$.

2. In order to prove that Theorem C of Matveev is a particular case of Theorem D, we prove the following theorem.

THEOREM 1. A. If $\{np_n\}$ is positive and decreasing, then (\overline{N}, p) is strongly regular if and only if $P_n \to \infty$ $(n \to \infty)$.

B. If $\{np_n\}$ is positive and increasing, then the following propositions are equivalent:

- (i) $p_n = o(P_n)(n \to \infty)$,
- (ii) (\overline{N}, p) is strongly regular,
- (iii) $\sum_{k=1}^{n} p_k \exp(2\pi i k t) = o(P_n)(n \to \infty)$ for all $t \in (0, 1)$.

Proof. The proof of the assertion A is trivial since under the hypothesis of A, $\sum_{k=1}^{n} |\Delta p_k| = p_1$. If $\{np_n\}$ is increasing and $p_n = o(P_n)$ $(n \to \infty)$, then

$$\sum_{k=1}^{n} |\Delta p_{k}| = \sum_{k=1}^{n-1} |kp_{k} - (k+1)p_{k+1} + p_{k+1}| \frac{1}{k} + p_{n}$$

$$\leq \sum_{k=1}^{n-1} [(k+1)p_{k+1} - kp_{k} + p_{k+1}] \frac{1}{k} + p_{n}$$

$$\leq 2 \sum_{k=1}^{n-1} \frac{p_{k+1}}{k} + 2p_{n}.$$

https://doi.org/10.4153/CMB-1972-050-4 Published online by Cambridge University Press

[June

280

Given any $\epsilon > 0$, there exists an integer N such that $1/N < \epsilon$ and for all $n \ge N$, $p_n \le \epsilon P_n$. If we choose n > 2N, we have

$$\sum_{k=1}^{n-1} \frac{p_{k+1}}{k} = \sum_{k=1}^{N} \frac{p_{k+1}}{k} + \sum_{N+1}^{\lfloor n/2 \rfloor} \frac{p_{k+1}}{k} + \sum_{\lfloor n/2 \rfloor+1}^{n-1} \frac{p_{k+1}}{k}$$
$$\leq \sum_{k=1}^{N} \frac{p_{k+1}}{k} + (\lfloor n/2 \rfloor+1) p_{\lfloor n/2 \rfloor+1} \sum_{N+1}^{\lfloor n/2 \rfloor} \frac{1}{k(k+1)} + \epsilon P_n \sum_{\lfloor n/2 \rfloor+1}^{N-1} \frac{1}{k}.$$

Since $\{np_n\}$ is increasing, we have for all $n \ge 1$,

$$P_n = \sum_{1}^{n} p_k \ge \sum_{[n/2]+1}^{n} k p_k \cdot \frac{1}{k} \ge ([n/2]+1) p_{[n/2]+1} \sum_{[n/2]+1}^{n} \frac{1}{k}$$

so that for n > 2N

$$\sum_{k=1}^{n-1} \frac{p_{k+1}}{k} \le \sum_{k=1}^{N} \frac{p_{k+1}}{k} + AP_n \sum_{N+1}^{\infty} \frac{1}{k(k+1)} + \epsilon BP_n$$

<
$$\sum_{k=1}^{N} \frac{p_{k+1}}{k} + \epsilon CP_n,$$

where A, B, C are positive constants independent of n. Since

$$P_n = \sum_{1}^n k p_k \frac{1}{k} \ge p_1 \sum_{1}^n \frac{1}{k},$$

it follows that $P_n \to \infty$ as $n \to \infty$ so that, on the one hand (\overline{N}, p) is regular and on the other

$$\lim_{n\to\infty}\sup P_n^{-1}\sum_{k=1}^{n-1}\frac{p_{k+1}}{k}\leq\epsilon.$$

But ϵ being arbitrary, it follows that

$$\lim_{n \to \infty} P_n^{-1} \sum_{k=1}^{n-1} \frac{p_{k+1}}{k} = 0$$

and consequently that

$$\sum_{k=1}^{n} |\Delta p_k| = o(P_n) \quad (n \to \infty).$$

Thus (\overline{N}, p) is strongly regular.

Suppose now that (\overline{N}, p) is strongly regular, then applying Abel's transformation, we get

$$\sum_{k=1}^{n} p_k \exp(2\pi i k t) = \sum_{k=1}^{n} \Delta p_k \frac{\exp(2\pi i t) - \exp(2\pi i k t)}{1 - \exp(2\pi i t)},$$

from which it follows that B(iii) holds. If B(iii) holds, applying Lebesgue's bounded convergence theorem we get

$$\sum_{1}^{n} p_{k}^{2} = o(P_{n}^{2}) \quad (n \to \infty)$$

which implies B(i).

It is interesting to note that if the hypothesis of monotonicity on the sequence $\{np_n\}$ is dropped, then the method (\overline{N}, p) may neither be strongly regular nor satisfy B(iii) and yet satisfy the condition $p_n = o(P_n)$ $(n \to \infty)$ as can be seen by choosing $p_n = 0$ or 1 according as *n* is even or odd.

3. We now show that there exist (\overline{N}, p) matrices with $p_n \ge 0$ that satisfy condition (2) without being strongly regular. It will follow that strong regularity of (N, \overline{p}) is not a necessary condition for the equivalence of the continuity of functions $F \in V[0, 2\pi]$ and the summability (N, \overline{p}) to zero of the associated sequences $\{|C_k|^2\}$ or $\{|C_k|\}$ formed by the Fourier-Stieltjes coefficients of F.

The construction of the positive (\overline{N}, p) matrix in question is based on the use of the coefficients of the Rudin-Shapiro polynomials as given in Rudin [6]. These are defined as follows.

We set $P_0(x) = Q_0(x) = x$ and define P_k and Q_k inductively by

$$P_{k+1}(x) = P_k(x) + x^{2^k} Q_k(x) Q_{k+1}(x) = P_k(x) - x^{2^k} Q_k(x)$$
 $k = 0, 1, 2, ...$

Clearly $P_1(x) = x + x^2$ and $Q_1(x) = x - x^2$. We observe that P_k is a polynomial of degree 2^k and that P_k is a partial sum of P_{k+1} . Hence we can define a sequence $\{\epsilon_n\}$ by setting ϵ_n equal to the *n*th coefficient of P_k , where $2^k > n$. Clearly $\epsilon_n = 1$ or -1. It has been shown by Rudin [6] that

(3)
$$\left|\sum_{n=1}^{N} \epsilon_n \exp(2\pi i n \theta)\right| \leq 5\sqrt{N} \text{ for } \theta \in [0, 1], \quad N = 1, 2, \dots$$

Brillhart and Carlitz [2] have shown that if we write

$$n = r_0 + r_1 \cdot 2 + r_2 \cdot 2^2 + \dots + r_k \cdot 2^k$$
 $(k \ge 0), r_i = 0$ or 1,

then

$$\epsilon_n = (-1)^{r_0 r_1 + r_1 r_2 + \cdots + r_{k-1} r_k}$$

It follows that the set $\{\epsilon_{4n+1}, \epsilon_{4n+2}, \epsilon_{4n+3}, \epsilon_{4n+4}\}$ consists of either three +1's and one -1 or three -1's and one +1. If we put $p_n = \epsilon_n + 1$, then for $t \in (0, 1)$

$$\frac{1}{P_n} \sum_{1}^{n} p_k \exp(2\pi i kt) = \frac{1}{P_n} \sum_{1}^{n} \epsilon_k \exp(2\pi i kt) + \frac{1}{P_n} \sum_{1}^{n} \exp(2\pi i kt)$$

tends to zero in view of (3) and the fact that $P_n \ge \lfloor n/4 \rfloor \cdot 2$ so that (2) holds. But (\overline{N}, p) is not strongly regular since

$$\frac{1}{P_n} \sum_{k=1}^n \left| \Delta p_k \right| \ge \frac{1}{3[n/4]} \left([n/4] - 1 \right)$$

which does not tend to zero as $n \to \infty$.

4. Passing now to the consideration of Matveev's Theorem C with hypothesis (b) replaced by (b'), we first prove the following theorems.

THEOREM 2. There exist regular methods of summability (\overline{N}, p) for which $0 < np_n \uparrow$, $np_n \le n^{\alpha}$ for n = 1, 2, ... with $\alpha > 1$ but $p_n \ne o(P_n)$ $(n \rightarrow \infty)$.

THEOREM 3. Let (\overline{N}, p) be a method of summability such that $\{p_n\}$ is positive and $p_n \neq o(P_n) \ (n \to \infty)$. Then there exists a continuous nondecreasing function F in $V[0, 2\pi]$ such that $\{|C_k|^{\alpha}\}$ is not summable (\overline{N}, p) to zero for any $\alpha > 0$.

Proof of Theorem 2. Let α be an integer greater than 1. Choose a positive integer $n_1 > 1$ arbitrarily and set $n_k = n_1^{\beta^{k-1}}$ where $\beta = 2\alpha/(\alpha - 1)$ and k = 1, 2, ... Define a sequence $\{p_n\}$ as follows:

$$p_1 = 1, \quad p_2 = \frac{1}{2}, \quad \dots, \quad p_{n_1-1} = \frac{1}{n_1-1}$$

and

$$p_{n_k} = n_k^{\alpha-1}, \quad p_{n_k+1} = \frac{n_k^{\alpha}}{n_k+1}, \quad \dots, \quad p_{n_{k+1}-1} = \frac{n_k^{\alpha}}{n_{k+1}-1}$$

for k = 1, 2, ... Clearly the (\overline{N}, p) -method defined by the above sequence $\{p_k\}$ is a regular method of summability satisfying the conditions $0 < np_n \uparrow$ and $np_n \le n^{\alpha}$ for n=1, 2, ... Since

$$P_{n_{k}} = \left(1 + \frac{1}{2} + \dots + \frac{1}{n_{1} - 1}\right) + \left(\frac{1}{n_{1}} + \dots + \frac{1}{n_{2} - 1}\right) n_{1}^{\alpha} + \dots \\ + \left(\frac{1}{n_{k-1}} + \dots + \frac{1}{n_{k} - 1}\right) n_{1}^{\alpha\beta^{k-2}} + n_{1}^{(\alpha-1)\beta^{k-1}} \\ \leq \left(1 + \frac{1}{2} + \dots + \frac{1}{n_{k} - 1}\right) n_{1}^{\alpha\beta^{k-2}} + n_{1}^{(\alpha-1)\beta^{k-1}} \\ \leq (1 + \beta^{k-1} \log n_{1}) n_{1}^{\alpha\beta^{k-2}} + n_{1}^{(\alpha-1)\beta^{k-1}} \\ = p_{n_{k}} \left(1 + \frac{1 + \beta^{k-1} \log n_{1}}{n_{1}^{\alpha\beta^{k-2}}}\right),$$

it follows that $\lim_{k\to\infty} P_{n_k}^{-1} p_{n_k} = 1$ and consequently that $p_n \neq o(P_n) \ (n \to \infty)$.

Proof of Theorem 3. Since $p_n \neq o(P_n)$, there exists a $\delta > 0$ and a sequence of positive integers n_v such that $n_{v+1}/n_v \ge q > 3$ and $p_{n_v} > \delta P_{n_v}$.

We form the Riesz product

$$\prod_{\nu=1}^{\infty} (1 + \cos n_{\nu} x).$$

If we set

$$g_k(x) = \prod_{i=1}^k (1 + \cos n x)$$

and

$$F(x)-F(0) = \lim_{k\to\infty} \int_0^x g_k(t) dt,$$

JAMIL A. SIDDIQI

then F is a nondecreasing singular function whose Fourier-Stieltjes coefficients $\{C_k\}$ are such that $C_{n_v} = 1$ (cf. Zygmund [10, pp. 208-209]). It follows that

$$P_{n_{\nu}}^{-1} \sum_{1}^{n_{\nu}} p_{k} |C_{k}|^{\alpha} \geq P_{n_{\nu}}^{-1} p_{n_{\nu}} > \delta$$

for all v so that $\{|C_k|^{\alpha}\}$ is not summable (\overline{N}, p) to zero for any $\alpha > 0$.

If a method (\overline{N}, p) satisfies the hypothesis (b') of Theorem C, then $(\overline{N}, p) \subset (\overline{N}, 1/k)$ (cf. Hardy [3, p. 58]) so that if $\{|C_k^2|\}$ or $\{|C_k|\}$ is summable (\overline{N}, p) to zero, it is also summable $(\overline{N}, 1/k)$ to zero and hence by Theorem D, F is continuous since $(\overline{N}, 1/k)$ is clearly strongly regular. However, if a (\overline{N}, p) matrix satisfying the hypothesis (b') is not strongly regular (and such matrices do exist in view of Theorem 2), then by Theorem 3, there exist real-valued continuous functions $F \in V[0, 2\pi]$ with Fourier-Stieltjes coefficients $\{C_k\}$ such that $\{|C_k|^2\}$ or $\{|C_k|\}$ is not summable (\overline{N}, p) to zero as $n \to \infty$.

This shows that for (\overline{N}, p) matrices satisfying the hypothesis (b'), the necessity part of Theorem C is not always true.

In connection with Theorem C, it is asserted in [5, pp. 467–68, Remark 4] that in (b) the hypothesis that $np_n = O(P_n)$ cannot be dropped. However the example constructed there merely shows this for condition $p_n = o(P_n)$ which does not always imply $np_n = O(P_n)$ even when $0 < np_n \uparrow$.

The above analysis shows that for the validity of Wiener's theorem for summability (\overline{N}, p) with $p_n > 0$ and $\{np_n\}$ monotonic the condition (2) is both necessary and sufficient.

References

1. N. Bari, A treatise on trigonometric series, Vol. 1, Pergamon Press, New York, 1964.

2. J. Brillhart and L. Carlitz, *Note on the Shapiro polynomials*, Proc. Amer. Math. Soc. 25 (1970), 114–118.

3. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.

4. S. M. Lozinskil, On a theorem of N. Wiener, Dokl. Akad. Nauk SSSR, 48 (1945), 542-545.

5. V. A. Matveev, On the theorems of Wiener and Lozinskii, Studies contemporary problems constructive theory of functions (Russian) Proc. Second All-Union Conf., Baku, 1962, 460–468. Akad. Nauk Azerbaĭdžan. SSR Dokl. 1965.

6. W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859.

7. J. A. Siddiqi, Coefficient properties of certain Fourier series, Math. Ann. 181 (1969), 242-254.

8. — , On mean values for almost periodic functions, Arch. Math. 20 (1969), 648-655.

9. N. Wiener, The quadratic variation of a function and its Fourier coefficients, Mass. J. Math. 3 (1924), 72–94.

10. A. Zygmund, Trigonometric series vol. 1, Cambridge Univ. Press, New York, 1959.

UNIVERSITÉ DE SHERBROOKE, SHERBROOKE, QUÉBEC

284