ON A GENERALIZATION OF A THEOREM OF WIENER

BY
JAMIL A. SIDDIQI ${ }^{1}$)

1. Let $V[0,2 \pi]$ denote the class of all normalized functions F of bounded variation in $[0,2 \pi]$ such that $F(x)=2^{-1}\{F(x+0)+F(x-0)\}$ and $F(x+2 \pi)-F(x)$ $=F(2 \pi)-F(0)$ for all x and let $\left\{C_{n}\right\}$ be the sequence of Fourier-Stieltjes coefficients of F. Wiener [9] (cf. Bari [1, p. 212], Zygmund [10, p. 108]) proved the following theorem.

Theorem A. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable $(C, 1)$ to 0 .

Lozinskiǐ [4] gave the following alternative criterion for continuity of a function of $V[0,2 \pi]$.

Theorem B. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable to zero by logarithmic means.

Matveev [5] generalized Theorems A and B as follows:
Theorem C. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable (\bar{N}, p) to zero where (\bar{N}, p) is a Riesz method of summability such that either
(a) $n p_{n} \downarrow 0$ and $P_{n}=p_{1}+\cdots+p_{n} \rightarrow \infty(n \rightarrow \infty)$ or
(b) $p_{n}>0, n p_{n} \uparrow$ and $n p_{n}=O\left(P_{n}\right)(n \rightarrow \infty)$.

In this paper we first show that Theorem C follows from the following theorem.
Theorem D. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable (\bar{N}, p) to zero where $(\bar{N}, p$) is a regular Riesz method of summability satisfying the strong regularity condition

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\Delta p_{k}\right|=o\left(P_{n}\right) \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

where $\Delta p_{k}=p_{k}-p_{k+1}$ for $k=1, \ldots, n-1$ and $\Delta p_{n}=p_{n}$.
Theorem D is contained in the following theorem.
Theorem E. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable (\bar{N}, p) to zero by a regular Riesz method of summability such that

[^0]\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{n}^{-1} \sum_{k=1}^{n} p_{k} \exp (2 \pi i k t)=\lim _{n \rightarrow \infty}\left|P_{n}^{-1}\right| \sum_{k=1}^{n}\left|p_{k}\right| \exp (2 \pi i k t)=0 \tag{2}
\end{equation*}
$$

\]

for all $t \in(0,1)$.
If we consider the method (\bar{N}, p) defined by taking $p_{1}=1, p_{k}=1+\left[(-1)^{k} / k\right]$, then (\bar{N}, p) is a strongly regular positive matrix for which $\left\{n p_{n}\right\}$ is not monotonic. This shows that Matveev's Theorem C is properly contained in our Theorem D. We next show that condition (1) is not necessary for the validity of Theorem \mathbf{D} by constructing an (\bar{N}, p) matrix with $p_{n} \geq 0$ satisfying (2) but not (1).

Finally, we show that although the sufficiency part of Theorem C remains valid the necessity part does not if in Theorem C the condition (b) is replaced by the following condition attributed to Matveev in Bari [1, p. 256]:
(b') $p_{n}>0$ and $n p_{n} \uparrow$ but $n p_{n} \leq n^{\alpha}(n=1,2, \ldots)$ for some $\alpha>0$.
Theorem E is a particular case of the following theorem contained in a generalization of Wiener's Theorem A given by the author in [8] (cf. also [7]).

Theorem F. For a function $F \in V[0,2 \pi]$ to be continuous, it is necessary and sufficient that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ be summable A by a regular matrix $A=\left(a_{n, k}\right)$ for which

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n, k} \exp (2 \pi i k t)=\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty}\left|a_{n, k}\right| \exp (2 \pi i k t)=0
$$

for all $t \in(0,1)$.
2. In order to prove that Theorem C of Matveev is a particular case of Theorem D , we prove the following theorem.

Theorem 1. A. If $\left\{n p_{n}\right\}$ is positive and decreasing, then (\bar{N}, p) is strongly regular if and only if $P_{n} \rightarrow \infty(n \rightarrow \infty)$.
B. If $\left\{n p_{n}\right\}$ is positive and increasing, then the following propositions are equivalent:
(i) $p_{n}=o\left(P_{n}\right)(n \rightarrow \infty)$,
(ii) (\bar{N}, p) is strongly regular,
(iii) $\sum_{k=1}^{n} p_{k} \exp (2 \pi i k t)=o\left(P_{n}\right)(n \rightarrow \infty)$ for all $t \in(0,1)$.

Proof. The proof of the assertion A is trivial since under the hypothesis of A, $\sum_{k=1}^{n}\left|\Delta p_{k}\right|=p_{1}$. If $\left\{n p_{n}\right\}$ is increasing and $p_{n}=o\left(P_{n}\right)(n \rightarrow \infty)$, then

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta p_{k}\right| & =\sum_{k=1}^{n-1}\left|k p_{k}-(k+1) p_{k+1}+p_{k+1}\right| \frac{1}{k}+p_{n} \\
& \leq \sum_{k=1}^{n-1}\left[(k+1) p_{k+1}-k p_{k}+p_{k+1}\right] \frac{1}{k}+p_{n} \\
& \leq 2 \sum_{k=1}^{n-1} \frac{p_{k+1}}{k}+2 p_{n} .
\end{aligned}
$$

Given any $\epsilon>0$, there exists an integer N such that $1 / N<\epsilon$ and for all $n \geq N$, $p_{n} \leq \epsilon P_{n}$. If we choose $n>2 N$, we have

$$
\begin{aligned}
\sum_{k=1}^{n-1} \frac{p_{k+1}}{k} & =\sum_{k=1}^{N} \frac{p_{k+1}}{k}+\sum_{N+1}^{[n / 2]} \frac{p_{k+1}}{k}+\sum_{[n / 2]+1}^{n-1} \frac{p_{k+1}}{k} \\
& \leq \sum_{k=1}^{N} \frac{p_{k+1}}{k}+([n / 2]+1) p_{[n / 2]+1} \sum_{N+1}^{[n / 2]} \frac{1}{k(k+1)}+\epsilon P_{n} \sum_{[n / 2]+1}^{N-1} \frac{1}{k}
\end{aligned}
$$

Since $\left\{n p_{n}\right\}$ is increasing, we have for all $n \geq 1$,

$$
P_{n}=\sum_{1}^{n} p_{k} \geq \sum_{[n / 2]+1}^{n} k p_{k} \cdot \frac{1}{k} \geq([n / 2]+1) p_{[n / 2]+1} \sum_{[n / 2]+1}^{n} \frac{1}{k}
$$

so that for $n>2 N$

$$
\begin{aligned}
\sum_{k=1}^{n-1} \frac{p_{k+1}}{k} & \leq \sum_{k=1}^{N} \frac{p_{k+1}}{k}+A P_{n} \sum_{N+1}^{\infty} \frac{1}{k(k+1)}+\epsilon B P_{n} \\
& <\sum_{k=1}^{N} \frac{p_{k+1}}{k}+\epsilon C P_{n}
\end{aligned}
$$

where A, B, C are positive constants independent of n.
Since

$$
P_{n}=\sum_{1}^{n} k p_{k} \frac{1}{k} \geq p_{1} \sum_{1}^{n} \frac{1}{k},
$$

it follows that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$ so that, on the one hand (\bar{N}, p) is regular and on the other

$$
\lim _{n \rightarrow \infty} \sup P_{n}^{-1} \sum_{k=1}^{n-1} \frac{p_{k+1}}{k} \leq \epsilon
$$

But ϵ being arbitrary, it follows that

$$
\lim _{n \rightarrow \infty} P_{n}^{-1} \sum_{k=1}^{n-1} \frac{p_{k+1}}{k}=0
$$

and consequently that

$$
\sum_{k=1}^{n}\left|\Delta p_{k}\right|=o\left(P_{n}\right) \quad(n \rightarrow \infty)
$$

Thus (\bar{N}, p) is strongly regular.
Suppose now that (\bar{N}, p) is strongly regular, then applying Abel's transformation, we get

$$
\sum_{k=1}^{n} p_{k} \exp (2 \pi i k t)=\sum_{k=1}^{n} \Delta p_{k} \frac{\exp (2 \pi i t)-\exp (2 \pi i k t)}{1-\exp (2 \pi i t)}
$$

from which it follows that B (iii) holds. If B (iii) holds, applying Lebesgue's bounded convergence theorem we get

$$
\sum_{1}^{n} p_{k}^{2}=o\left(P_{n}^{2}\right) \quad(n \rightarrow \infty)
$$

which implies $\mathbf{B}(\mathbf{i})$.

It is interesting to note that if the hypothesis of monotonicity on the sequence $\left\{n p_{n}\right\}$ is dropped, then the method (\bar{N}, p) may neither be strongly regular nor satisfy $\mathrm{B}(\mathrm{iii})$ and yet satisfy the condition $p_{n}=o\left(P_{n}\right)(n \rightarrow \infty)$ as can be seen by choosing $p_{n}=0$ or 1 according as n is even or odd.
3. We now show that there exist (\bar{N}, p) matrices with $p_{n} \geq 0$ that satisfy condition (2) without being strongly regular. It will follow that strong regularity of (N, \bar{p}) is not a necessary condition for the equivalence of the continuity of functions $F \in$ $V[0,2 \pi]$ and the summability (N, \bar{p}) to zero of the associated sequences $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ formed by the Fourier-Stieltjes coefficients of F.

The construction of the positive (\bar{N}, p) matrix in question is based on the use of the coefficients of the Rudin-Shapiro polynomials as given in Rudin [6]. These are defined as follows.

We set $P_{0}(x)=Q_{0}(x)=x$ and define P_{k} and Q_{k} inductively by

$$
\left.\begin{array}{l}
P_{k+1}(x)=P_{k}(x)+x^{2^{k}} Q_{k}(x) \\
Q_{k+1}(x)=P_{k}(x)-x^{2^{2 k}} Q_{k}(x)
\end{array}\right\} k=0,1,2, \ldots
$$

Clearly $P_{1}(x)=x+x^{2}$ and $Q_{1}(x)=x-x^{2}$. We observe that P_{k} is a polynomial of degree 2^{k} and that P_{k} is a partial sum of P_{k+1}. Hence we can define a sequence $\left\{\epsilon_{n}\right\}$ by setting ϵ_{n} equal to the nth coefficient of P_{k}, where $2^{k}>n$. Clearly $\epsilon_{n}=1$ or -1 . It has been shown by Rudin [6] that

$$
\begin{equation*}
\left|\sum_{n=1}^{N} \epsilon_{n} \exp (2 \pi \operatorname{in} \theta)\right| \leq 5 \sqrt{N} \text { for } \theta \in[0,1], \quad N=1,2, \ldots \tag{3}
\end{equation*}
$$

Brillhart and Carlitz [2] have shown that if we write

$$
n=r_{0}+r_{1} \cdot 2+r_{2} \cdot 2^{2}+\cdots+r_{k} \cdot 2^{k} \quad(k \geq 0), \quad r_{i}=0 \quad \text { or } \quad 1,
$$

then

$$
\epsilon_{n}=(-1)^{r_{0} r_{1}+r_{1} r_{2}+\cdots+r_{k-1} r_{k} .}
$$

It follows that the set $\left\{\epsilon_{4 n+1}, \epsilon_{4 n+2}, \epsilon_{4 n+3}, \epsilon_{4 n+4}\right\}$ consists of either three +1 's and one -1 or three -1 's and one +1 . If we put $p_{n}=\epsilon_{n}+1$, then for $t \in(0,1)$

$$
\frac{1}{P_{n}} \sum_{1}^{n} p_{k} \exp (2 \pi i k t)=\frac{1}{P_{n}} \sum_{1}^{n} \epsilon_{k} \exp (2 \pi i k t)+\frac{1}{P_{n}} \sum_{1}^{n} \exp (2 \pi i k t)
$$

tends to zero in view of (3) and the fact that $P_{n} \geq[n / 4] \cdot 2$ so that (2) holds. But (\bar{N}, p) is not strongly regular since

$$
\frac{1}{P_{n}} \sum_{k=1}^{n}\left|\Delta p_{k}\right| \geq \frac{1}{3[n / 4]}([n / 4]-1)
$$

which does not tend to zero as $n \rightarrow \infty$.
4. Passing now to the consideration of Matveev's Theorem C with hypothesis (b) replaced by (b^{\prime}), we first prove the following theorems.

THEOREM 2. There exist regular methods of summability (\bar{N}, p) for which $0<n p_{n} \uparrow$, $n p_{n} \leq n^{\alpha}$ for $n=1,2, \ldots$ with $\alpha>1$ but $p_{n} \neq o\left(P_{n}\right)(n \rightarrow \infty)$.

Theorem 3. Let (\bar{N}, p) be a method of summability such that $\left\{p_{n}\right\}$ is positive and $p_{n} \neq o\left(P_{n}\right)(n \rightarrow \infty)$. Then there exists a continuous nondecreasing function F in $V[0,2 \pi]$ such that $\left\{\left|C_{k}\right|^{\alpha}\right\}$ is not summable (\bar{N}, p) to zero for any $\alpha>0$.

Proof of Theorem 2. Let α be an integer greater than 1 . Choose a positive integer $n_{1}>1$ arbitrarily and set $n_{k}=n_{1}^{\beta k-1}$ where $\beta=2 \alpha /(\alpha-1)$ and $k=1,2, \ldots$ Define a sequence $\left\{p_{n}\right\}$ as follows:

$$
p_{1}=1, \quad p_{2}=\frac{1}{2}, \quad \cdots, \quad p_{n_{1}-1}=\frac{1}{n_{1}-1}
$$

and

$$
p_{n_{k}}=n_{k}^{\alpha-1}, \quad p_{n_{k}+1}=\frac{n_{k}^{\alpha}}{n_{k}+1}, \quad \cdots, \quad p_{n_{k+1}-1}=\frac{n_{k}^{\alpha}}{n_{k+1}-1}
$$

for $k=1,2, \ldots$ Clearly the (\bar{N}, p)-method defined by the above sequence $\left\{p_{k}\right\}$ is a regular method of summability satisfying the conditions $0<n p_{n} \uparrow$ and $n p_{n} \leq n^{\alpha}$ for $n=1,2, \ldots$. Since

$$
\begin{aligned}
P_{n_{k}}= & \left(1+\frac{1}{2}+\cdots+\frac{1}{n_{1}-1}\right)+\left(\frac{1}{n_{1}}+\cdots+\frac{1}{n_{2}-1}\right) n_{1}^{\alpha}+\cdots \\
& +\left(\frac{1}{n_{k-1}}+\cdots+\frac{1}{n_{k}-1}\right) n_{1}^{\alpha \beta^{k-2}}+n_{1}^{(\alpha-1) \beta^{k-1}} \\
\leq & \left(1+\frac{1}{2}+\cdots+\frac{1}{n_{k}-1}\right) n_{1}^{\alpha \beta k-2}+n_{1}^{(\alpha-1) \beta^{k-1}} \\
\leq & \left(1+\beta^{k-1} \log n_{1}\right) n_{1}^{\alpha \beta^{k-2}}+n_{1}^{(\alpha-1) \beta^{k-1}} \\
= & p_{n_{k}}\left(1+\frac{1+\beta^{k-1} \log n_{1}}{n_{1}^{\alpha \beta^{k-2}}}\right),
\end{aligned}
$$

it follows that $\lim _{k \rightarrow \infty} P_{n_{k}}^{-1} p_{n_{k}}=1$ and consequently that $p_{n} \neq o\left(P_{n}\right)(n \rightarrow \infty)$.
Proof of Theorem 3. Since $p_{n} \neq o\left(P_{n}\right)$, there exists a $\delta>0$ and a sequence of positive integers n_{v} such that $n_{v+1} / n_{v} \geq q>3$ and $p_{n_{v}}>\delta P_{n_{v}}$.

We form the Riesz product

$$
\prod_{v=1}^{\infty}\left(1+\cos n_{v} x\right)
$$

If we set

$$
g_{k}(x)=\prod_{i=1}^{k}(1+\cos n x)
$$

and

$$
F(x)-F(0)=\lim _{k \rightarrow \infty} \int_{0}^{x} g_{k}(t) d t
$$

then F is a nondecreasing singular function whose Fourier-Stieltjes coefficients $\left\{C_{k}\right\}$ are such that $C_{n_{\nu}}=1$ (cf. Zygmund [10, pp. 208-209]). It follows that

$$
P_{n_{\nu}}^{-1} \sum_{1}^{n_{\nu}} p_{k}\left|C_{k}\right|^{\alpha} \geq P_{n_{\nu}}^{-1} p_{n,}>\delta
$$

for all v so that $\left\{\left|C_{k c}\right|^{\alpha}\right\}$ is not summable (\bar{N}, p) to zero for any $\alpha>0$.
If a method (\bar{N}, p) satisfies the hypothesis (b^{\prime}) of Theorem C , then $(\bar{N}, p) \subset(\bar{N}, 1 / k)$ (cf. Hardy [3, p. 58]) so that if $\left\{\left|C_{k}^{2}\right|\right\}$ or $\left\{\left|C_{k}\right|\right\}$ is summable $(\bar{N}, p$) to zero, it is also summable ($\bar{N}, 1 / k$) to zero and hence by Theorem D, F is continuous since ($\bar{N}, 1 / k$) is clearly strongly regular. However, if a (\bar{N}, p) matrix satisfying the hypothesis (b^{\prime}) is not strongly regular (and such matrices do exist in view of Theorem 2), then by Theorem 3, there exist real-valued continuous functions $F \in V[0,2 \pi]$ with Fourier-Stieltjes coefficients $\left\{C_{k}\right\}$ such that $\left\{\left|C_{k}\right|^{2}\right\}$ or $\left\{\left|C_{k}\right|\right\}$ is not summable (\bar{N}, p) to zero as $n \rightarrow \infty$.

This shows that for (\bar{N}, p) matrices satisfying the hypothesis (b^{\prime}), the necessity part of Theorem C is not always true.

In connection with Theorem C , it is asserted in [5, pp. 467-68, Remark 4] that in (b) the hypothesis that $n p_{n}=O\left(P_{n}\right)$ cannot be dropped. However the example constructed there merely shows this for condition $p_{n}=o\left(P_{n}\right)$ which does not always imply $n p_{n}=O\left(P_{n}\right)$ even when $0<n p_{n} \uparrow$.

The above analysis shows that for the validity of Wiener's theorem for summability (\bar{N}, p) with $p_{n}>0$ and $\left\{n p_{n}\right\}$ monotonic the condition (2) is both necessary and sufficient.

References

1. N. Bari, A treatise on trigonometric series, Vol. 1, Pergamon Press, New York, 1964.
2. J. Brillhart and L. Carlitz, Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25 (1970), 114-118.
3. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.
4. S. M. Lozinskiǐ, On a theorem of N. Wiener, Dokl. Akad. Nauk SSSR, 48 (1945), 542-545.
5. V. A. Matveev, On the theorems of Wiener and Lozinskiǐ, Studies contemporary problems constructive theory of functions (Russian) Proc. Second All-Union Conf., Baku, 1962, 460-468. Akad. Nauk Azerbaĭdžan. SSR Dokl. 1965.
6. W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859.
7. J. A. Siddiqi, Coefficient properties of certain Fourier series, Math. Ann. 181 (1969), 242-254.
8. -, On mean values for almost periodic functions, Arch. Math. 20 (1969), 648-655.
9. N. Wiener, The quadratic variation of a function and its Fourier coefficients, Mass. J. Math. 3 (1924), 72-94.
10. A. Zygmund, Trigonometric series vol. 1, Cambridge Univ. Press, New York, 1959.
[^1]
[^0]: Received by the editors December 30, 1970 and, in revised form, May 10, 1971.
 ${ }^{(1)}$ This research was supported by the National Research Council of Canada Grant A-4057.

[^1]: Université de Sherbrooke, Sherbrooke, Québec

