σ_{4}-ACTIONS ON HOMOTOPY SPHERES

CHAO-CHU LIANG

Let σ_{4} denote the group of all permutations of $\{a, b, c, d\}$. It has 24 elements, partitioned into five conjugacy classes: (1) the identity 1 ; (2) 6 transpositions: $(a b), \ldots,(c d)$; (3) 8 elements of order 3: $(a b c), \ldots,(b c d) ;(4) 6$ elements of order 4: $(a b c d), \ldots,(a d c b) ;(5) 3$ elements of order $2: x=(a b)(c d), y=(a c)(b d), z=(a d)(b c)$.

In this paper, we study the differentiable actions of σ_{4} on odd-dimensional homotopy spheres modelled on the linear actions, with the fixed point set of each transposition a codimension two homotopy sphere.

A simple $(2 n-1)$-knot is a differentiable embedding of a homotopy sphere $K^{2 n-1}$ into a homotopy sphere $\Sigma^{2 n+1}$ such that $\pi_{j}(\Sigma-K)=$ $\pi_{j}\left(S^{1}\right)$ for $j<n$. For $n \geqq 3$, the isotopy type of a simple ($2 n-1$)-knot is determined by any one of its Seifert matrices, an integral matrix with

$$
\operatorname{det}\left(A+\epsilon A^{\prime}\right)= \pm 1
$$

where A^{\prime} denotes the transpose of A and $\epsilon=(-1)^{n}[5$, p. 186].
For $g \in \sigma_{4}$, we let $F(g)$ denote the fixed point set of g under the σ_{4}-action.

In this paper, we will construct infinitely many distinct differentiable σ_{4}-actions on $(2 n+1)$-homotopy spheres $\Sigma^{2 n+1}$ with $F((a b))$ a simple ($2 n-1$)-knot for $n \geqq 3$. Actually, for $n=2 k$, we will show that the cobordism classes of σ_{4}-action on $(4 k+1)$-homotopy spheres (see the definition in Section 3 below) contains infinitely many copies of the integers \mathbf{Z}.

1. In this section, we review the linear representations of σ_{4}. We know that σ_{4} is a semi-direct product of the normal subgroup $H=\{1, x, y, z\}$ and the subgroup σ_{3} generated by ($a b$) and ($a b c$).

There are five inequivalent irreducible real representations for σ_{4} : the trivial representation I; the sign representation ϵ mapping odd permutations to -1 , and even ones to 1 ; the 2 -dimensional representation θ induced from the one on $\sigma_{4} / H=\sigma_{3}$ by sending ($a b$) to a reflection along an axis and $(a b c)$ to the rotation by $2 \pi / 3$; a 3 -dimensional representation ψ permuting four vectors $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ in \mathbf{R}^{3} with the first three linearly independent and $e_{1}+e_{2}+e_{3}+e_{4}=0$, e.g. with respect to the basis

Received February 27, 1979. This research was supported by the University of Kansas General Research Fund.
$\left\{e_{1}, e_{2}, e_{3}\right\}$ we have

$$
(a b) \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),(a b c) \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \text { and }(a b)(c d) \rightarrow\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right),
$$

[11, p. 77]; and $\epsilon \psi$, the tensor product of ϵ and ψ. We have the following table (compare the character table in [9, p. 43]):

	I	ϵ	θ	ψ	$\epsilon \psi$
dim of representation	1	1	2	3	3
codim of $F((a b))$	0	1	1	1	2
codim of $F((a b c))$	0	0	2	2	2
codim of $F(x)$	0	0	0	2	2

Therefore, we have the following six types of linear action of σ_{4} on \mathbf{R}^{m} with $\operatorname{codim} F((a b))=2:(0)(m-2) I+\epsilon+\epsilon$; (I) $(m-3) I+\epsilon+\theta$; (II) $(m-4) I+\theta+\theta$; (III) $(m-3) I+\epsilon \psi$; (IV) $(m-4) I+\epsilon+\psi$; (V) $(m-5) I+\theta+\psi$.

We refer to a σ_{4}-action as one of type (r) (where r is one of the above six types) if the slice representation at a fixed point [1, p. 171] is the same as that of the linear action of type (r). Types (0), (I), and (II) have been studied in [7], [8].

By examining the character table in [9, p. 43], we see the two restrictions $\epsilon \psi \mid \sigma_{3}=\epsilon+\theta$ and $\psi \mid \sigma_{3}=I+\theta$.
2. A σ_{4}-action of type (0) is a semifree involution, and a σ_{4}-action of type (I) or (II) is a σ_{3}-action. Thus the following theorem is essentially proved in [7] and [8].

Theorem 1. Let C be a Seifert matrix of the form

$$
C=A\left(A-\epsilon A^{\prime}\right)^{-1} A
$$

with

$$
\left|\operatorname{det}\left(A+\epsilon A^{\prime}\right)\right|=1=\left|\operatorname{det}\left(A-\epsilon A^{\prime}\right)\right| .
$$

Then there exists a differentiable σ_{4}-action of type (r) ($r=0, \mathrm{I}, \mathrm{II}$) on a homotopy sphere $\Sigma^{2 n+1}, n \geqq 3$, such that the simple knot ($\Sigma, F((a b))$) has C as its Seifert matrix.

Recall that σ_{4} can be expressed as the semi-direct product of H and σ_{3}, i.e., $0 \rightarrow H \rightarrow \sigma_{4} \xrightarrow{p} \sigma_{3} \rightarrow 0$, with $\sigma_{3}=\left\{1, t, t^{2}, w_{1}, w_{2}, w_{3}\right\}$, where $P((a b))$ $=w_{1}, P((a b c))=t$, etc.
Theorem 2. Let $r=$ III, IV, or V. Let C be a Seifert matrix of the form $\left(\begin{array}{rr}B & O \\ O & -B\end{array}\right)$ with

$$
B=A\left(A-\epsilon A^{\prime}\right)^{-1} A,
$$

and

$$
\left|\operatorname{det}\left(A+\epsilon A^{\prime}\right)\right|=1=\left|\operatorname{det}\left(A-\epsilon A^{\prime}\right)\right| .
$$

Then there exists a differentiable σ_{4}-action of type (r) on a homotopy sphere $\Sigma^{2 n+1}, n \geqq 3$, such that the simple knot $(\Sigma, F((a b)))$ has C as its Seifert matrix.

Proof. Consider a linear action of type (III), (IV) or (V) on a standard sphere. Since $H=Z_{2}+Z_{2}$, and $\operatorname{codim} F(x)=\operatorname{codim} F(y)=\operatorname{codim}$ $F(z)=2$, the orbit space $S^{2 n+1} / H=S^{2 n+1} /\{x\} /\{y\}$ is again a sphere M_{1}. Also, we have an induced σ_{3}-action on $M_{1}=S^{2 n+1} / H$. But we have

$$
0 \rightarrow Z_{3} \rightarrow \sigma_{3} \rightarrow Z_{2} \rightarrow 0
$$

Thus $t \in \sigma_{3}$ gives rise to a Z_{3}-action on M_{1}. Finally, w_{1} generates an involution T on $M_{1} /\{t\}$. That is, we have the following sequence, where each φ_{i} is an orbit map.

Using the explicit expression of the representations mentioned in Section 1 , it is easy to see that $\varphi_{1}(F((a b)))$ is a $(2 n-1)$-disk in M_{1}, and $\varphi_{2} \varphi_{1}(F((a b)))$ is a $(2 n-1)$-disk D_{1} in M_{2}. Also, $\varphi_{1}(F(x) \cup F(y) \cup F(z))$ is a union of three $(2 n-1)$-disks whose common intersection $\varphi_{1}(F(H))$ is a $(2 n-2)$-sphere, and $\varphi_{2} \varphi_{1}(F(x) \cup F(y) \cup F(z))$ is a $(2 n-1)$-disk D_{2} in M_{2}. Furthermore, the $(2 n-1)$-sphere $D_{1} \cup D_{2}$ is the fixed point set of the involution T on M_{2}. We write $D_{1}{ }^{\prime}=\varphi_{3}\left(D_{1}\right)$ and $D_{2}{ }^{\prime}=\varphi_{3}\left(D_{2}\right)$ in $M_{3}=S^{2 n+1} / \sigma_{4}$.

If the action is of type (III) or (IV), then $\operatorname{codim} F((a b c))=2$. Thus M_{2} is a sphere, and so is M_{3}. But when the action is of type (V), then $\operatorname{codim} F((a b c))=4$, and M_{2} is no longer a manifold.

Let W be a small open neighborhood of $D_{2}{ }^{\prime}$ in M_{3}. Then we define $U=\left(\varphi_{3} \circ \varphi_{2} \circ \varphi_{1}\right)^{-1}(W)$.

From the principal orbit type theorem [1, p. 179], we know that we may embed a disk $D^{2 n+1}$ in M_{3} near D_{1}^{\prime} such that

$$
\begin{aligned}
& D^{2 n+1} \cap \varphi_{3} \varphi_{2} \varphi_{1}(F(g))=\emptyset \quad \text { for all } g \in \sigma_{4} \quad \text { and } \\
& D^{2 n+1} \cap W=\emptyset
\end{aligned}
$$

We construct a simple knot $K^{2 n-1}$ in $D^{2 n+1}$ with A as its Seifert matrix, [3, p. 255-257]. We then take the connected sum of $K^{2 n-1}$ and D_{1}^{\prime} in M_{3} (the connected sum operation \# takes place away from $\varphi_{3} \varphi_{2} \varphi_{1}(F(g))$ and $W)$. Now we use $D_{2}^{\prime} \cup D_{1}^{\prime} \# K^{2 n-1}$ as the branched point set to construct
a 2 -fold branched covering

$$
\stackrel{\beta_{3}}{\Sigma_{2}} \xrightarrow{M_{3}}
$$

[2]. The branched covering transformation gives us an involution T^{\prime} on Σ_{2}.

Since a neighborhood of $\varphi_{3} \varphi_{2} \varphi_{1}(F((a b c)))$ is disjoint from $K^{2 n-1}$, we may identify $\varphi_{2} \varphi_{1}(F((a b c)))$ with

$$
\beta_{3}{ }^{-1} \varphi_{3} \varphi_{2} \varphi_{1}(F((a b c))) .
$$

We construct a 3 -fold branched covering

$$
\begin{gathered}
\beta_{2} \\
\Sigma_{1} \rightarrow \Sigma_{2}
\end{gathered}
$$

with $\varphi_{2} \varphi_{1}(F((a b c)))$ as branched point set. In [8], we showed that Σ_{1} is a homotopy sphere, and that we may lift the involution T^{\prime} to Σ_{1}, which together with the branched covering transformation Z_{3} on Σ_{1} gives us a σ_{3}-action Σ_{1}

As in the preceding paragraph, we may identify $\left(\varphi_{3} \varphi_{2}\right)^{-1}(W)$ with $\left(\beta_{3} \beta_{2}\right)^{-1}(W)$. We then construct an H-action on a homotopy sphere Σ with an orbit space Σ_{1} as follows: we first use $\varphi_{1}(F(z) \cup F(y))$ as branched point set to construct a 2 -fold branched cover

$$
\begin{gathered}
\alpha_{2} \\
\Sigma^{\prime} \rightarrow \Sigma_{1}
\end{gathered}
$$

with associated involution G_{2}, then use $\alpha_{2}{ }^{\prime} \varphi_{1}(F(x))$ as branched point set to construct a 2 -fold branched cover

$$
\stackrel{\alpha_{1}}{\Sigma \rightarrow \Sigma^{\prime}}
$$

with involution G_{1}. We define $\beta_{1}=\alpha_{2} \circ \alpha_{1}$. It is easy to see that the H-action on

$$
U^{\prime}=\beta_{1}^{-1}\left(\varphi_{3} \varphi_{2}\right)^{-1}(W)
$$

is equivalent to the H-action on

$$
U=\left(\varphi_{3} \varphi_{2} \varphi_{1}\right)^{-1}(W) .
$$

The map of the complement $\Sigma-U^{\prime} \rightarrow \Sigma^{\prime}-\varphi\left(U^{\prime}\right)$ is a regular covering. According to [1, p. 64-67], we may lift G_{2} to $\Sigma-U^{\prime}$ inducing an H^{\prime}-action on $\Sigma-U^{\prime}$, where H^{\prime} is a semidirect product of Z_{2} and Z_{2}. Since the lifting is unique [1, p. 66], and we may take $H\left|\partial U=H^{\prime}\right| \partial U$, then $H^{\prime}=H$.

Now we have an H-action on Σ, and a σ_{3}-action on $\Sigma_{1}=\Sigma / H$. We then use the argument in the preceding paragraph to lift the σ_{3}-action via the regular covering

$$
\Sigma \stackrel{\beta_{1}}{U^{\prime}} \Sigma_{1}-\beta_{1}\left(U^{\prime}\right)
$$

thus inducing a J-action on $\Sigma-U^{\prime}$, where J is defined by $0 \rightarrow H \rightarrow J \rightarrow$ $\sigma_{3} \rightarrow 0$. Since

$$
U^{\prime}=\left(\beta_{3} \beta_{2} \beta_{1}\right)^{-1}\left(D_{2}^{\prime}\right)
$$

is σ_{4}-equivariantly diffeomorphic to

$$
U=\left(\varphi_{3} \varphi_{2} \varphi_{1}\right)^{-1}\left(D_{2}^{\prime}\right),
$$

then from the uniqueness of the lifting [$\mathbf{1}, \mathrm{p} .66$], we conclude that $J=\sigma_{4}$ and we thus obtain a σ_{4}-action on Σ. We have the following sequence, with $\beta_{1}=\alpha_{2} \alpha_{1}$:

From the construction of the σ_{1}-action, we see that $\beta_{1}(F((a b)))$ is a disk, and ($\left.\Sigma_{1}, \beta_{1}(F(x)) \cup \beta_{1}(F((a b)))\right)$ has B as its Seifert matrix [$\mathbf{6}$, p. 52]. Since α_{1} (respectively α_{2}) is a branched covering map with a trivial knot $F(x)$ (respectively $\alpha_{1}(F(y) \cup \mathrm{F}(z))$) as its branched point set, and x reverses the orientation of $\mathrm{F}((a b))$, we conclude that the knot $(\Sigma, \mathrm{F}((a b)))$ has $C=\left(\begin{array}{lr}B & O \\ O-B\end{array}\right)$ as its Seifert matrix.

As in [7] or [8] we have the following corollary.
Corollary. For each $\gamma=0, \mathrm{I}, \ldots, \mathrm{V}$; and $n \geqq 3$, there exist infinitely many σ_{4}-actions on $(2 n+1)$-homotopy spheres (having the same orbit space) of type (r).
3. Let $I=[0,1]$ denote the unit interval. We call two σ_{4}-actions γ_{1}, γ_{2} on a homotopy sphere $\Sigma^{2 n+1}$ cobordant if there exists a σ_{4}-action γ on $\Sigma \times I$ such that

$$
\gamma \mid \Sigma \times 0=\gamma_{1} \quad \text { and } \quad \gamma \mid \Sigma \times 1=\gamma_{2} .
$$

The cobordance is an equivalence relation. Thus we have the notion of cobordism classes.

Theorem 3. For $k \geqq 2$, the cobordism classes of σ_{4}-actions on $(4 k+1)$ homotopy spheres contains infinitely many copies of \mathbf{Z} for each type (r), $r=0, \mathrm{I}, \ldots, \mathrm{V}$.

Proof. A σ_{4}-action of type (0) is an involution, hence this case of the therrem follows from that in [7, (4.3)].
For an action of type (I) or (II), which is just a σ_{3}-action, we restrict the action to $\mathbf{Z}_{2} \subseteq \sigma_{3}$. The theorem follows from Theorem 1 above and [7, (4.3)].

For actions of type (III), (IV), (V), we cannot use the above proof directly since the Seifert matrices $C=\left(\begin{array}{lr}B & O \\ O & B\end{array}\right)$ are null-cobordant. Instead, we consider the involution induced by the σ_{3}-action on $\Sigma^{2 n+1} / H$.

Let $\mathbf{Z}_{(2)}$ denote the ring of 2 -adic integers. It follows from $[\mathbf{1}, \mathrm{pp}$. 122-124] that both $F((a b))$ and the orbit space $\Sigma /\{x\}$ are $\mathbf{Z}_{(2)}$-spheres, and so therefore is $\Sigma /\{x\} /\{y\}=\Sigma / H$. Let $\beta: \Sigma \rightarrow \Sigma / H$ denote the orbit map. By restricting to $\mathbf{Z}_{2} \subseteq \sigma_{3}$, generated by ($a b$), we have an involution T on Σ / H with fixed point set

$$
F(T)=\beta(F(x)) \cup \beta(F((a b)))
$$

With the notion of Seifert manifolds and Seifert matrices for the $\mathbf{Z}_{(2)}$-knot $(\Sigma / H, F(T))$ [7, Section 4], we may use the arguments in [4], [10, (6.6)] and $[7,(4.2)]$ to show that the $\mathbf{Z}_{(2)}$-knot cobordism classes can be mapped surjectively to $C_{\epsilon}\left(\mathbf{Z}_{(2)}\right)$ (see $[7,(4.2)]$). We note that for the action constructed in Theorem 2 above, the corresponding knot $(\Sigma / H, F(T))$ has B as its Seifert matrix, and the $\mathbf{Z}_{(2)}-\mathrm{knot}(\Sigma / H / T$, $F(T)$) has A as its Seifert matrix [6]. If two σ_{4}-actions γ_{1}, γ_{2} are cobordant, then the corresponding $\mathbf{Z}_{(2)}$-knots $\left(\Sigma / H / T_{1}, F\left(T_{1}\right)\right),\left(\Sigma / H / T_{2}\right.$, $F\left(T_{2}\right)$) are also cobordant. Levine [4, p. 243] constructed an infinite sequence of linearly independent elements of $C_{+1}\left(\mathbf{Z}_{(2)}\right)$:

$$
A_{k}=\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 0 & k & 0 \\
0 & -k & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) k=1,2, \ldots
$$

that is, for each k, the set of direct sums $\bigoplus_{n} A_{k}$ (n copies of A_{k}) generates a copy of \mathbf{Z} in $C_{+1}\left(\mathbf{Z}_{(2)}\right)$. Since

$$
\left|\operatorname{det}\left(A_{k}+\epsilon A_{k}^{\prime}\right)\right|=1=\left|\operatorname{det}\left(A_{k}-\epsilon A_{k}^{\prime}\right)\right|
$$

we may use $\bigoplus_{n} A_{k}$ as A in Theorem 2 to construct a σ_{4}-action. The corresponding $\mathbf{Z}_{(2)}-\operatorname{knot}(\Sigma / H / T, F(T))$ has $\bigoplus_{n} A_{k}$ as its Seifert matrix.

The author wishes to thank the referee for helpful suggestions.

References

1. G. E. Bredon, Introduction to compact transformation groups (Academic Press, New York, 1972).
2. A. Durfee and L. Kauffman, Periodicity of branched cyclic covers, Math. Ann. 218 (1975), 157-174.
3. M. A. Kervaire, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
4. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
5. - An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.
6. C. C. Liang, Knots fixed by \mathbf{Z}_{p}-actions, and periodic links, Math. Ann. 233 (1978), 49-54.
7. - $\mathbf{Z}_{(2)}$-knot cobordism in codimension two, and involutions on homotopy spheres, Trans. Amer. Math. Soc. 256 (1979), 89-97.
8. - Some exotic dihedral group actions on homotopy spheres, Indiana Univ. Math. Jour. 28 (1979), 127-130.
9. J.-P. Serre, Linear presentations of finite groups (Springer-Verlag, New York-Heidel-berg-Berlin, 1977).
10. N. W. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 192 (1977).
11. B. L. Van der Waerden, Group theory and quantum mechanics, Die Grund. der Math. 214 (Springer-Verlag, New York-Heidelberg-Berlin, 1974).

University of Kansas,
Lawrence, Kansas

