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ovACTIONS ON HOMOTOPY SPHERES 

CHAO-CHU LIANG 

Let (74 denote the group of all permutations of {a, b, c, d). It has 24 
elements, partitioned into five conjugacy classes: (1) the identity 1; 
(2) 6 transpositions: (ab),..., (cd) ; (3) 8 elements of order 3: 
(abc), . . . , (bcd)\ (4) 6 elements of order 4: (abed), . . . , (adeb); (5) 3 
elements of order 2: x = (ab)(cd),y = (ac)(bd),z = (ad) (be). 

In this paper, we study the differentiate actions of a4 on odd-dimen
sional homotopy spheres modelled on the linear actions, with the fixed 
point set of each transposition a codimension two homotopy sphere. 

A simple (2n — l)-knot is a differentiate embedding of a homotopy 
sphere K2n~l into a homotopy sphere S2W+1 such that 7r^(2 — K) = 
-ÏÏJ(S1) for j < n. For n ^ 3, the isotopy type of a simple (2n — l)-knot 
is determined by any one of its Seifert matrices, an integral matrix with 

det (A + eA') = ± 1 , 

where A' denotes the transpose of A and e = ( — l)n [5, p. 186]. 
For g G (74, we let F(g) denote the fixed point set of g under the 

(74-action. 
In this paper, we will construct infinitely many distinct differentiable 

(74-actions on (2n + l)-homotopy spheres S2W+1 with F((ab)) a simple 
(2n — l)-knot for n ^ 3. Actually, for n = 2k, we will show that the 
cobordism classes of o-4-action on (Ak + 1)-homotopy spheres (see the 
definition in Section 3 below) contains infinitely many copies of the 
integers Z. 

1. In this section, we review the linear representations of o-4. We know 
that cr4 is a semi-direct product of the normal subgroup H = {1, x, y, z) 
and the subgroup <73 generated by (ab) and (abc). 

There are five inequivalent irreducible real representations for o-4: the 
trivial representation / ; the sign representation e mapping odd permu
tations to — 1 , and even ones to 1; the 2-dimensional representation 6 
induced from the one on a4/H = 0-3 by sending (ab) to a reflection along 
an axis and (abc) to the rotation by 27r/3 ; a 3-dimensional representation 
i/' permuting four vectors {ei, e2, e%, e±) in R3 with the first three linearly 
independent and ei + e2 + es + e^ = 0, e.g. with respect to the basis 
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\eu e2, e3\ we have 

/0 1 0\ /0 1 0\ 
(oft) - • I 1 0 0 I, (aie) -» I 0 0 1 J, and (oft) (erf) -

\ 0 0 1/ \ 1 0 0 / 

[11, p. 77]; and e^, the tensor product of e and \p. We have the following 
table (compare the character table in [9, p. 43]): 

I e 0 * ** 
dim of representation 1 1 2 3 3 
codim of F((ab)) 0 1 1 1 2 
codim of F ((abc)) 0 0 2 2 2 
codim of F(x) 0 0 0 2 2 

Therefore, we have the following six types of linear action of o-4 on Rm 

with codim F((ab)) = 2: (0) (m - 2)1 + e + e; (I) (m - 3)7 + e + 0; 
(II) (w - 4)7 + 0 + 0; (III) (w - 3 ) / + ^\ (IV) (m - 4)7 + € + ^; 
(V) (m - 5)7 + 0 + *. 

We refer to a o-4-action as one of type (r) (where r is one of the above 
six types) if the slice representation at a fixed point [1, p. 171] is the 
same as that of the linear action of type (r). Types (0), (I), and (II) 
have been studied in [7], [8]. 

By examining the character table in [9, p. 43], we see the two restric
tions ê |(73 = e + 0 and \j/\az = 1 + 6. 

2, A ^-action of type (0) is a semifree involution, and a <T4-action of 
type (I) or (II) is a o-3-action. Thus the following theorem is essentially 
proved in [7] and [8]. 

THEOREM 1. Let C be a Seifert matrix of the form 

C = A (A - eA')~lA 

with 

|det (A + eA')\ = 1 = |det (A - eA')\. 

Then there exists a differentiable abaction of type (r) (r = 0, I, II) on a 
homotopy sphere S2n+1, n ^ 3, such that the simple knot (2 , F((ab))) has 
C as its Seifert matrix. 

Recall that o-4 can be expressed as the semi-direct product of H and o-3, 
P 

i.e., 0 —» H —> c4 —> 0-3 —•> 0, with cr3 = {1, t, t2, W\, w2, w3}, where P((ab)) 

= Wi, P((abc)) = /, etc. 

THEOREM 2. Let r = III, IV, or V. Let C be a Seifert matrix of the form 

(0 - B) with 

B = A (A - (A')~lA, 
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and 

|det {A + eA')\ = 1 = |det (A - eA')\. 

Then there exists a differentiable abaction of type (r) on a homotopy sphere 
Z2n+1, n ^ 3, such that the simple knot (2, F{{ab))) has C as its Seifert 
matrix. 

Proof. Consider a linear action of type (III), (IV) or (V) on a standard 
sphere. Since H = Z2 -\- Z2, and codim F{x) = codim F(y) = codim 
F{z) = 2, the orbit space S2n+1/H = 52 w + 1 /{^î/bî is again a sphere ML 
Also, we have an induced ovaction on Mi = S2n+1/H. But we have 

0 —» Zz —» GZ —> Z2 —» 0. 

Thus / G 0-3 gives rise to a Z3-action on M\. Finally, W\ generates an 
involution T on M\/{t). That is, we have the following sequence, where 
each <pf is an orbit map. 

52»+i —£i—>. S2»+i/# ÏL-+ S2n+l/H/{t) — — > 52w+1/^4 

II II II 
Mi M2 M3 

Using the explicit expression of the representations mentioned in Section 
1, it is easy to see that <pi{F{{ab))) is a (2n — l)-disk in Mi, and 
<P2<Pi(F((ab)))isdi(2n - l)-diskl>iin M2. Also, *>i(F(*) U F(y) U F{z)) 
is a union of three (2n — 1)-disks whose common intersection (pi{F{H)) 
is a (2w — 2)-sphere, and <p2(pi{F{x) U jP(y) VJ F(z)) is a (2w — l)-disk 
D2 in M2. Furthermore, the (2n — 1)-sphere Z>i \J D2 is the fixed point 
set of the involution T on M2. We write D\ = ^3(Z>i) and I V = <Pz{D2) 
in M3 = 52W+V^4. 

If the action is of type (III) or (IV), then codim F {{abc)) = 2. Thus 
M% is a sphere, and so is Mz. But when the action is of type (V), then 
codim F{{abc)) = 4, and M2 is no longer a manifold. 

Let W be a small open neighborhood of ZV in M3. Then we define 
U = {<p3 o <p2 o ^ i ) - 1 ( ^ ) -

From the principal orbit type theorem [1, p. 179], we know that we 
may embed a disk D2n+l in M% near D\ such that 

D 2 ^ 1 C\ <pz<p2<pi{F(g)) = 0 for all g £ v4 and 

£>2n+i n ^ = 0. 

We construct a simple knot K2n~l in Z)2w+! with 4̂ as its Seifert matrix, 
[3, p. 255-257]. We then take the connected sum of K2n'1 and Dx' in Mz 

(the connected sum operation # takes place away from (fz<P2V\{F{g)) and 
W). Now we use D2 VJ D\ $ K2n~l as the branched point set to construct 
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a 2-fold branched covering 

£3 

[2]. The branched covering transformation gives us an involution T' on 
S2. 

Since a neighborhood of <pz<P2<pi(F((abc))) is disjoint from i£2n-1, we 
may identify (P2<Pi(F((abc))) with 

$rlVz<PiVi(F((abc))). 

We construct a 3-fold branched covering 

£2 
S i - > S 2 

with <P2<pi(F((abc))) as branched point set. In [8], we showed that Si is 
a homotopy sphere, and that we may lift the involution T' to Si, which 
together with the branched covering transformation Z3 on Si gives us 
a 0-3-action Si 

As in the preceding paragraph, we may identify (<P3<f2)~1(W) with 
{&z02)~l{W). We then construct an inaction on a homotopy sphere S 
with an orbit space Si as follows: we first use <pi(F(z) VJ F(y)) as 
branched point set to construct a 2-fold branched cover 

a2 

S ' - > S i 

with associated involution G2, then use ct2f<Pi(F(x)) as branched point 
set to construct a 2-fold branched cover 

Oil 

S - > S ' 

with involution G\. We define /3i = a2 o a\. It is easy to see that the 
iJ-action on 

is equivalent to the iJ-action on 

U = ( W 2 ^ i ) - W ) . 
The map of the complement S — Uf -^ S' — <p(Uf) is a regular covering. 
According to [1, p. 64-67], we may lift G2 to S — £/; inducing an i^-action 
on S — Uf, where H' is a semidirect product of Z2 and Z2. Since the 
lifting is unique [1, p. 66], and we may take H\dU = H'\dU, then 
H' = H. 

Now we have an i^-action on S, and a 0-3-action on Si = S/i7. We 
then use the argument in the preceding paragraph to lift the 0-3-action 
via the regular covering 

Pi 

s - t / ' - ^ - ^ i O / ' ) , 
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thus inducing a /-action on S — £/', where / is defined by 0 —•> H —> J —» 
0-3 —» 0. Since 

is (74-equivariantly diffeomorphic to 

£/ = ( w w i ) - 1 ^ ' ) , 

then from the uniqueness of the lifting [1, p. 66], we conclude that 
7=0-4 and we thus obtain a 0-4-action on 2. We have the following 
sequence, with /3i = a2ai: 

2 - ^ — • 2 / { x | ^ ^ > 2 / t f ^ > 2 , / W ^ > 2/(T4 . 

2' Si 22 M3 

From the construction of the o-i-action, we see that j3i(F((ab))) is a disk, 
and (2i, Pi(F(x)) U j8i(^((a6)))) has 5 as its Seifert matrix [6, p. 52]. 
Since «i (respectively <x2) is a branched covering map with a trivial knot 
F(x) (respectively ai(F(y) U F(s))) as its branched point set, and x 
reverses the orientation of F((a&)), we conclude that the knot 

(2, F((a6))) has C = I n H I as its Seifert matrix. 

As in [7] or [8] we have the following corollary. 

COROLLARY. For each y = 0, I, . . . , V; and n = 3, there exist infinitely 
many enactions on (2n + l)-homotopy spheres {having the same orbit 
space) of type (r). 

3. Let I = [0, 1] denote the unit interval. We call two 0-4-actions 
71, 72 on a homotopy sphere 22w+1 cobordant if there exists a 0-4-action 
7 on 2 X / such that 

7 | 2 X 0 = 71 and 7 | 2 X 1 = 72. 

The cobordance is an equivalence relation. Thus we have the notion of 
cobordism classes. 

THEOREM 3. For k ^ 2, the cobordism classes of abactions on (4fe + 1)-
homotopy spheres contains infinitely many copies of Z for each type (r), 
r = 0, I , . . . , V . 

Proof. A 0-4-action of type (0) is an involution, hence this case of the 
theorem follows from that in [7, (4.3)]. 

For an action of type (I) or (II), which is just a 0-3-action, we restrict 
the action to Z2 Q 0-3. The theorem follows from Theorem 1 above and 
[7, (4.3)]. 
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For actions of type (III), (IV), (V), we cannot use the above proof 

directly since the Seifert matrices C = I n „ I are null-cobordant. 

Instead, we consider the involution induced by the o-3-action on 22n+1/H. 
Let Z(2) denote the ring of 2-adic integers. It follows from [1, pp. 

122-124] that both F((ab)) and the orbit space 2/{x} are Z(2)-spheres, 
and so therefore is 2/{x}/{y} = 2/H. Let 0: 2 -> X/H denote the orbit 
map. By restricting to Z2 Q o"3, generated by (ab), we have an involution 
T on 2 / i ï with fixed point set 

F(T) = 0(F(x))Ul3(F((ab))). 

With the notion of Seifert manifolds and Seifert matrices for the Z(2)-knot 
(S/iJ , F(T)) [7, Section 4], we may use the arguments in [4], [10, (6.6)] 
and [7, (4.2)] to show that the Z(2)-knot cobordism classes can be 
mapped surjectively to CC(Z(2)) (see [7, (4.2)]). We note that for the 
action constructed in Theorem 2 above, the corresponding knot 
(2 / i ï , F(T)) has B as its Seifert matrix, and the Z(2)-knot (2/H/T, 
F(T)) has A as its Seifert matrix [6]. If two ^-actions yu 72 are co-
bordant, then the corresponding Z(2)-knots (2/H/Ti, F(Ti)), (X/H/T2, 
F(T2)) are also cobordant. Levine [4, p. 243] constructed an infinite 
sequence of linearly independent elements of C+i(Z (2 )): 

1 1 0 0 
0 0 k 0 
0 -k 0 1 
0 0 0 1 

Ak = \ n , A , )k= 1 , 2 , . . . , 

that is, for each k, the set of direct sums®w^4fc (n copies of Ak) generates 
a copy of Z in C+i(Z (2)). Since 

|det (Ak + eAk
f)\ = 1 = |det (Ak - eAk% 

we may use ®nAk as A in Theorem 2 to construct a 0-4-action. The 
corresponding Z(2)-knot (2/H/T, F(T)) has ®nAk as its Seifert matrix. 

The author wishes to thank the referee for helpful suggestions. 
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