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Spatial and spatio-temporal phenomena are commonly modelled as Gaussian
processes via the geostatistical model [4]. The geostatistical model has the benefit
of modelling the spatial dependence structure using covariance functions. Most
commonly, the covariance functions impose an assumption of spatial stationarity on
the process. That means the covariance between observations at particular locations
depends only on the distance between the locations [1]. It has been widely recognised
that most, if not all, processes manifest spatially nonstationary covariance structure
[6]. If the study domain is small in area or there is not enough data to justify more
complicated nonstationary approaches, then stationarity may be assumed for the sake
of mathematical convenience [3]. However, relationships between variables can vary
significantly over space, and a ‘global’ estimate of the relationships may obscure
interesting geographical phenomena [2, 3, 7].

In this thesis, we consider three different approaches for accounting for nonsta-
tionarity in both spatial and spatio-temporal processes. We first propose partitioning
the spatial or spatio-temporal data into subregions using the K-means algorithm
based on a set of appropriate geographic features. This allows for the fitting of
separate stationary covariance functions to the smaller subregions to account for local
differences in covariance across the study region. Second, we extend the concept of
covariance network regression to model the covariance matrix of both spatial and
spatio-temporal processes. The resulting covariance estimates are found to be more
flexible in accounting for spatial autocorrelation than standard stationary approaches.
The third approach involves developing a geographic random forest methodology that
uses a neighbourhood structure for each location based on the K-means algorithm.

Thesis submitted to Victoria University of Wellington in October 2020; degree approved on 11 August
2021; supervisor Nokuthaba Sibanda.
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

518

https://doi.org/10.1017/S0004972722000272 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722000272
https://doi.org/10.1017/S0004972722000272


[2] Spatio-temporal modelling for nonstationary point referenced data 519

We find that clustering based on geographic measures such as longitude and latitude
ensure that observations that are too far away to have any influence on the observations
near the locations where a local random forest is fitted are not selected to form the
neighbourhood.

In addition to developing flexible methods to account for nonstationarity, we
develop a pivotal discrepancy measure approach for goodness-of-fit testing of
spatio-temporal geostatistical models [5]. We find that partitioning the pivotal
discrepancy measures increases the power of the test.
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