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THE TENSOR PRODUCT OF OPERATIONAL LOGICS 

ROBIN H. LOCK 

1. Introduction. The concept of an operational logic has been developed 
by Randall and Foulis ( [l]-[4], [10], [11] ) as a part of a larger effort to 
obtain a formalism suitable for expressing, comparing, and evaluating 
various approaches to empirical science, statistics, and in particular, 
quantum mechanics. The structure of these logics is similar to that of an 
orthomodular partially ordered set which is often used as a model for 
quantum logics. However, the operational logic is a more general structure 
which, among other features, allows for the creation of a tensor product of 
logics to represent the coupling of physical systems. Randall and Foulis 
have shown that, given certain reasonable physical constraints, such a 
product is not possible within the category of orthomodular posets [12]. 

The operational logic is actually derived in the Randall-Foulis 
formalism from the more primitive notion of a collection of physical 
experiments known as a manual or generalized sample space. The manual 
provides a link between the abstraction of a logic and the physical reality 
of empirical science. There may be many manuals associated with a single 
operational logic; each representing a slightly different experimental 
configuration. In this way a manual may be viewed as a refinement of the 
logic to give a more detailed account of the relationships between 
the physical quantities in question. 

A variety of products, including the tensor product, have been defined 
within the category of manuals in order to reflect different levels of 
influence exhibited by the states of the coupled systems. This tensor 
product of manuals may be extended in a natural way to a tensor product 
for operational logics. 

2. Operational logics. An operational logic can be defined (indepen­
dently of consideration for an underlying manual) as a set & equipped 
with a binary relation _L, a partially defined binary operation ©, a unary 
operation ', and special elements 0 and 1 which satisfy the axioms 
below. 

Al : (Orthogonal sum)/? © q is defined if and only if p JL q. 
A2: (Commutativity) If p _L q then q _L p and q ® p = p © q. 
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A3: (Associativity) If p _L q and r JL (p © q) then g J_ r, p _L (g © r) 
and 

p ® (q e r) = (p ® q) ® r. 

A4: (Orthocomplements) For any/? G ^ t h e r e is a unique/ / such that 
/? _L p' and/? ©/?' - 1. 

A5: (Maximality of 1) If p _L 1 then/? = 0. 
A6: (Minimality of 0) For any/? G J^/? _L 0 and/? © 0 = p. 
A7: (Consistency) If p _L /? then/? = 0. 

By no means is this a minimal set of axioms. We present them in this 
form to make the features of an operational logic as transparent as 
possible to those accustomed to working with similar logical structures. 
Other familiar concepts may be easily defined. For example, a partial 
order can be defined onJÇfby/? ^ q if and only if there is some r G ^ with 
p © r = q. Frazer and Hardegree, in a comparative study of quantum 
logics [6], have more formally called the operational logic an associative 
ortho-algebra. 

3. Manuals and their logics. A generalized sample space (manual), J ^ is a 
collection of nonempty sets known as operations. Each operation E G j / is 
thought of as the outcome set of a single physical experiment. An 
important feature of the manual is that these operations are allowed to 
overlap and contain common outcomes. Following the terminology of 
classical probablity, any subset of an operation is called an event and we 
may define the following relations on the set of j^-events, (o(s/). 

Definition 1. Events A and B are 
(i) orthogonal (A _L B) if they are disjoint and contained in a common 

operation. 
(ii) operational complements {A oc B) if A _L B and A U B is an entire 

operation in stf. 
(iii) operationally perspective (A op B) if there is an event C with A oc C 

and B oc C. 

Note that (iii) implies that operationally perspective events are in some 
sense equivalent since both are complements of the same event. This is 
formalized to give the only condition imposed on generalized sample 
spaces. 

Definition 2. (Manual Condition) A collection of nonempty sets is a 
manual or generalized sample space if for events A, B, and C, A op B and 
A _L C implies B ± C. 

This leads in a very natural way to the construction of a logic for a 
manual s/, denoted by TTÇSX?). A proposition in the logic is simply an 
equivalence class of "op" events and may be denoted by p(A) where A is 
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any event in that equivalence class. The rest of the structure in TT(S/) arises 
as follows. 

(i) 1 = p(E) for any operation E ^ se. 

( i i )O=/>(0). 
(iii) p(A) _L p(B)if and only if A _L B. 
(iv) Up(A) ± p(B) then/? {A) ©p(B) = P(A U B). 
(v)p(A)f = p{C) where C is any event with A oc C. 

(vi) /?(^4) ^É /?(2?) if and only if there is some event C with A Q C and 
C o p B. 

The manual condition is all that is necessary to ensure that (i)-(vi) are 
well-defined and (TT(S/), _1_, ffi, ', 0, 1) is an operational logic. The question 
of going the other way is of particular interest here, i.e., given an arbitrary 
operational logic J% does there exist a manual s/ with TT(S/) ~ J?! 
Fortunately, this can be answered affirmatively and will yield a 
construction, the finite partition of unity manual, which is important in 
finding the tensor product of two logics. 

Definition 3. Given an operational logic ££, {p, q, r} Q J? are jointly 
orthogonal if 

(i) p _L q, q _L r, r _L p and 
(ii) p © (q © r) is defined. 

In an obvious way this definition may be extended to define finite 
jointly orthogonal sets of propositions in ££. Such sets become maximal 
under the following condition. 

Definition 4. A finite partition of unity inJSfis a finite jointly orthogonal 
set of nonzero propositions in J2? {pl9 p2,. . . }, with ®pt = 1. 

If we let s/be the collection of all finite partitions of unity in J^one may 
easily show that se is a generalized sample space and that 77(J^) c^ J£ We 
sometimes denote this finite partition of unity manual associated with 
J ^ b y ^ ^ ) . In this way^#(«^f) can be thought of as a canonical manual for 
a given operational logic and will provide a key for the extension of the 
tensor product of manuals to the tensor product of operational logics. 

4. The tensor product. Three levels of products have been defined for 
generalized sample spaces: the cross, operational, and tensor products. 
Since the outcome set for each of these products is the same, we use 
juxtaposition, ef to denote product outcomes rather than e X f (<?,/) or 
e ® f The simplest of the products is the cross product, stf X ^ , which 
consists of all operations of the form EF where E e se and F G .f. By 
the notation EF we mean the set of all outcomes ef where e e E and 

Operations in the operational product, séŒl, are performed as follows. 
Select an operation E e se and execute it to obtain an outcome e. That 
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outcome determines precisely which operation Fe e 8S is to be executed. 
The final result will be reported as ef where e e E and / e Fe. By 
considering all possibilities for initial operations in se and following 
operations from $6 we obtain the manual 

- { . U eF'E G se, FJs 
\E e L 

In a similar manner we may define the manual srf3& to be all such 
operations initiated with operations F e S6. It is not difficult to show that 
each of se X 96, séS6, and j /â? are manuals, provided se and Si are 
manuals. 

To obtain the tensor product we combine the operations in both s&36and 
S&36 to form JZ^ . in general, srfâ6 will not be a manual but sufficient new 
operations may be added to satisfy the manual condition. Thus we define 
the tensor product, se ® S6, of two manuals to be the smallest manual 
containing stf$6. It can be shown that if srf&is contained in any manual at 
all there will be a unique smallest manual containing it and the outcome 
set will remain the same as that of s$36. There are cases for which the 
tensor product of two manuals fails to exist, but some mild conditions on 
the states of the manuals will ensure that the tensor product does exist. 
For example, if the manuals admit a unital set of states, i.e., every outcome 
has a state which assigns it probability one, then the tensor product will 
exist. See [3] and [9] for a more detailed discussion of the existence 
question and the physical motivations for the definition of the tensor 
product. Some categorical properties, including a Universal Mapping 
Theorem, can be found in [7]. 

We are now in a position to quickly extend this definition to operational 
logics in the following straightforward manner. 

Definition 5. The tensor product of operational logics J^ andJ^ is defined 
to be 

Two questions are immediately suggested by this definition. How do we 
know that Jt(££) is the "right" manual to use in creating the tensor 
product? Since there may be many other manuals with logic J^ perhaps 
another representative would give a more suitable product. Secondly, how 
does one go through the entire procedure of finding the partition manuals, 
constructing their tensor product, and then obtaining its logic in any 
reasonable form? Theorem 1 will go a long way towards answering both 
questions, but let us first illustrate the second problem with an example. 

Let S£ be the Boolean algebra with m atoms, denoted 2m, and suppose 
we were to apply Definition 5 to find the tensor product of «£? with 
another operational logic. The finite partition of unity manual Jt(^) 
has 2m outcomes and an operation corresponding to every partition of 
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the atoms of ££. Constructing the tensor product of this manual with 
another finite partition of unity manual and then determining the logic of 
the result could be quite a formidable task, even in the simple case of 
Boolean logics. 

A more rational approach would be to pick a "nicer" manual to 
represent ££. For example, a classical manual stf which consists of a single 
operation with m outcomes would have TT{S^) ~ 2m. Constructing the 
tensor product with another manual && is trivial since se ® 9è = srf& 
whenever srf is classical. The logic of the tensor product would then be 
easier to study, but would it be the same as that obtained from Definition 
5? An example will show that it is possible to have 

77(J^) ~ 7r(stf2) and m(3i{) ^ m{3&ù 

but not 

However, in the following important result we show that a large class 
of manuals with logic ££ may be substituted for Jt(l£} in applying 
Definition 5. 

5. Uniqueness theorem. 

THEOREM 1. If stfx andstf2 are locally finite manuals with 

7r(j*i) ~ J^ and IT(S/2) ~ S£2 

then Sex ® JS£ = ir(s/x ® J / 2 ) . 

By a locally finite manual we mean a manual in which each operation 
has only a finite number of outcomes. In particular, note that a finite 
partition of unity manual Jt(££) is locally finite. Thus we may choose any 
convenient locally finite manual to represent the operational logics in 
constructing their tensor product. Before moving to the proof of this 
result, let us complete the discussion of the tensor product of finite 
Boolean algebras with the following. 

COROLLARY 1. If£f[ ~ 2m and££2 ~ 2n then £\®&,~2™*. 

Using Theorem 1 the proof of this result is quite easy. Simply use 
classical manuals se and <% to represent J^ and J^ respectively, and use the 
fact that se ® $è is again classical, containing a single operation with mn 
outcomes. This is actually a special case of the more general result on 
Boolean algebras discussed in Section 6. 

We use the following notation for the remainder of this section. Let se 
be a locally finite manual and se be the finite partition of unity manual for 
the logic TT(S/). Similarly, let <% be the finite partition of unity manual 
associated with a second locally finite manual <%. Denote the outcome sets 
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in each manual by X = Ustf, Y = U38, X = U j ^ a n d ? = U J . Denote 
the propositions in ir(s/), TI(38\ <n(stf® 38), and TT(SZ? ® 38) byp( ), q( ),/?( ), 
and p( ) respectively. It will be convenient to work with a single 
representative of the equivalence class making up a proposition. 
Therefore, for each/? e ir(s?) choose an event A e $(srf) with/7 = p(A) 
and denote this event by A = o(p). Similarly, select a o(q) e S(36) for 
each q e IT{38). 

To prove the uniqueness theorem we establish maps, known as 
interpretation morphisms, between se® 38 and se ® 38 which can be lifted 

to maps on their logics. An interpretation se —> 38 is a map y\X —* <f(^) 
which is operation and _L -preserving. These interpretations are obtained 
here via the Universal Mapping Theorem [7] which states that a positive 

biinterpretation s/ X 38 —> # is naturally extended to an interpretation 
from se ® 38 to cê. By a positive biinterpretation we mean a map 
<p:AT —» < (̂C) which is operation and J_-preserving on s#3S and sends no 
outcome to the empty set in , 

LEMMA 1. Assume se ® 38 exists and define 

x^:XY -> £(stf® 38) 

by ip(pq) = o(p)o(q), then 

se X 38-^stf® 38 

is a positive biinterpretation. 

Proof. Let 

G = Upi UqA e JtfâS 

where 

Upi = Ë e s7 and \Jqtj = F} <E <% for each /. 

Since each operation is a finite partition of unity we have U ^ / J , - ) is an 
operation E ^ se and each Uo(%) = Fi ^ 38. Thus 

,)( y <*«*)) ^(G) = Ua(/> 

is an operation in srf& which is contained in stf ® 38. Similarly, 

G <= s&38 implies 

MG) <= sf&Q s^® 38. 

This verifies that \p is operation preserving on s$38. 
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Now, suppose Ax _L A2 in £{s/) and Bx, B2 e g(3S\ Say Ax = Up,-, 

^2 = u / ^ > ^1 = u<7/> ^2 = u # / a n d suppose that 

MAXBX) n ^(v4252) 

is nonempty. This implies that 

°(PM1J)
 n °(Pk)°(<li) 

is nonempty for some i,j, ky I. But Ax _L A2 implies each pi _L pk and 
thus 

<K/>/) -L o(pk). 

This is a contradiction, hence it must be that 

xP(AxB2) O \KA2B2) = 0 

and therefore \p is _L -preserving on s038. The symmetric argument proves 

this for s098 and completes the proof that \p is a biinterpretation. 

LEMMA 2. Assume s/ ® & exists and define 

a : A T - » <f(j? ® J ) 

&>> «(xy) = /?(x)<7(^), //*£« 

j ^ X ^ ^ i 0 l 

w a positive biinterpretation if and only if s^ and & are locally finite. 

Proof. Let 

G = ' U ^ F e ' j ^ l , 

SO 

«(G) = , u £ , ( o ( , u^ ( / ) ) . 

This will be an operation in s#<% if and only if U p(e) and U q(f) are 
e e £ / e Fe 

all operations in J?/ and 3d respectively. This requires that each of these 
unions be over finite index sets which will result if and only if both s/ and 
36 are locally finite. Otherwise, a(G) could have an infinite number of 
outcomes and couldn't possibly be an operation in s/ ® 36 which must be 
locally finite. Thus a is operation preserving if and only if both stf and 36 
are locally finite. The remainder of the proof is completed with an 
argument similar to that in Lemma 1. 

Assuming the conditions in Lemmas 1 and 2 hold, we may apply the 
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Universal Mapping Theorem to conclude that 

^\sl ®@-^stf® 38 and a\sé'0 38'-> si'0 J 

are positive interpretations. The following lemma describes how these may 
be lifted to maps between the logics. 

LEMMA 3. For any manuals seand 38 and a map <p\X —> SP(38), define 

y:7T(sJ) - * <n{38) 

by 

y(p(A)) = q(v(A)\ 

then <p is a well-defined map preserving _L, ', and 1 if and only if <p is a 
positive interpretation. 

Proof Assume <p is an interpretation. For any A in ^Çs/), <p(A) e $(38) 
and if p(A) = p(B) in TT(3S) we must have yl op B, hence 

<*>(/*) op cp(fi) and ^(<P(^1) ) = q(q{B) ) in w(J'). 

This shows that cp is well-defined if and only if qp is just a morphism. The 
preservation of _J_, ', and 1 follow immediately from the fact that positive 
interpretations preserve _L, operational complements, and operations. 

One technical point remains before proceeding to the proof of Theorem 
1. Recall that the map \p in Lemma 1 depends on the rather arbitrary 
choice of the event o(p) to represent the proposition/? e <n{sé). However, 
when \p is lifted to a map on the logics it will be independent of a. 

LEMMA 4. Let \p be the interpretation of Lemma 1 and \p be defined as in 
Lemma 3. If 

UpiAJqiBj) G ^ ® | ) , 

then 

ï[p[ upiAMBi))) = p( V ^ A ) -

Proof Suppose that for some finite index set / we have events 
Ai9 Cl e ê(stf) and Bi9 Dt e <$(38) such that Al op Ct and Bt op D( for each 
/ e /. If U A:B: is an event in se ® 38, we must have 

/ € = / l l 

UClDl e ê(sé® 38) 

and in fact 

U AIBl op U C D , 
z e / l l ^ i(-j i i 
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This can be verified with a finite number of applications of the manual 
condition on se 0 3d. Therefore, for any choice of a, 

y ^ o p uoipiAMqW))' 

provided the union is over a finite index set and either is an event in 
s/ ® $8. Thus we have 

ï(p( UpiAjMB,))) = p[t[ KJpiAMB,))) 

= p( UoipiA,) )o{q(B,) ) ) = p[ LM,1?,). 

To complete the proof of Theorem 1 we now show that 

>ïï(sé® 3d) ~ 7 T ( J ? 0 J ) 

by verifying that \p o à = identity on 7T(S/ 0 3d) and â o \p = identity on 
<ir(s? 0 J ) . Let p(C) G <n(srf® 38) where 

C = Uxlyl e S(sé® 38). 

By Lemma 4, 

Wà(p(C))) = Ûp(a(C)) = ÛKVpixMyd) 

= p(Uxiyi) = p(C). 

Let 

p(C) G 77(J?0 J ) 

where 

C = UpiAJqiBj) e ^ ® l ) . 

â«<?(C) ) ) = â ( ^ ( U ^ ^ 7 ) ) = piaiVAfr) ) 

= ? ( U a ( i ; 5 ( ) ) = p(Up(AMBi) ) = ?(C). 

The last equality follows by again applying the manual condition a finite 
number of times to show 

U U p(x)q(y) opp(A)q(B) ins?® J . 

This completes the proof that 

misé® 3d) ~ <n(sJ ® @) 

for locally finite s/ and 3d. 

What if se and ^ are not locally finite? The previous argument breaks 
down since we are not able to apply Lemma 2 to obtain a map from 
7r(s/ 0 38) to 7T(S/ ® 3d). However, by using Lemma 1 and following the 
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proof of Theorem 1 one may show the following. 

COROLLARY 2. Let seand 38 be arbitrary manuals with 7T(S/) ~ J£\ and 
m(36) ~ J^ and assume sZ 0 38 exists, then l£x®£?2 exists and is isomorphic 
to a sublogic of TT(S/ 0 38). 

The following example demonstrates that it is possible for J^ 0 S£2 to be 
a proper sublogic of <n(srf 0 38), hence the logic of the tensor product 
depends on more than just the logics of its factors when the local finiteness 
condition is dropped. 

Example. Let srfx be a classical manual consisting of a single operation 
with a countably infinite set of outcomes X = {ah a2, . . . }• Let s/2 be the 
manual of finite partitions of X into nonempty subsets. In both cases 
J^ = 7r(s/x) = 7T(J4) is the Boolean algebra of all subsets of X. For 38 we 
use a semiclassical manual consisting of an infinite number of dichoto­
mies, i.e., 

a={{bl,cx),{b2,c2},...}. 

Ĵ 2 = TT(38) is a logic consisting of just the elements 0, 1, and atoms 
corresponding to each bt and c.-. Since sé2 and ^ a r e locally finite, Theorem 
1 implies 

TT(S^2®38) = ^\®^2. 

We will show that this logic is an incomplete lattice, while the logic of 
s/x 0 38 is complete. 

Since stfx is a classical manual, we have 

s4x® 38 = s^8. 

The atoms in the logic <n(srfx 0 38) are all of the fo rm/^ -z ) where a{ e X 
and z G \J38. Distinct propositions correspond to events of the form 
UlÇ£lalBl where / is an arbitrary index set in {1, 2, . . . } and each Bi may 
be either a {&•}, {ck}9 or {bx, cx}. Note that for all / and7, 

p{atbp atCj) = p{atbv afcx) and 

P(flibj) V p(atck) = p{axbx, axcx). 

Also for j ^ k, 

P(<*ibj)Vpiafa) = p(apx, afx). 

Using these and similar relations one can check that TT(S/X 0 38) is a 
complete atomistic orthomodular lattice. 

The computation of stf2 0 38 is a less trivial task. One may show that a 
general operation in sé2 0 38 is obtained as follows. Start with a finite 
index set / c {1, 2, . . . }. To each / e / assign a pair of nonempty events 
Bi and C, in ^(j^) such that 
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(i) B, op C, 
(ii) For / ¥= j , Bi ± B} (and hence B, _L C,). 

(iii) UBi = U C, = X. 

The set 

G = UfiBfr U C/C,) 

will be an operation in s/2 ® «^ 
A crucial point is that the index set / must be finite, if one considers 

CO 

a set of atoms {/?,- = p{aibi)\i = 1, 2, . . . } it may be shown that V /?z 

fails to exist in 7T(S/2 ® 88). The obvious candidate would be the 
proposition corresponding to {axbx, a2b2,. . . } but this set of outcomes is 
not an event in s/2 ® 88. It is interesting to note that this same set of atoms 
occurs in <n(séx ® 88) but in that case {axbx, a2b2,. . . } is an event in 
J ^ ® 88. As indicated in Corollary 2, the logic 7T(S/2 ® 88) may be 
embedded as a sublogic in TT(J^ ® 88) and in this case TT(S^X ® 88) may 
be viewed as a completion of TT(S^2 ® 88). 

6. Tensor product of Boolean algebras. In this section we further 
examine the implications of Definition 5 in the classical case of Boolean 
algebras. A natural product for two arbitrary Boolean algebras is 
produced by considering the associated Stone spaces. The product 
topology on the Cartesian product of these spaces yields another totally 
disconnected, compact Hausdorff space. Thus the clopen sets in the 
product, when ordered by inclusion, give a new Boolean algebra which 
may be regarded as the product of the original Boolean algebras [5]. We 
will show that this product is isomorphic to the logic obtained by 
Definition 5. 

To select a convenient locally finite manual to represent an arbitrary 
Boolean logic we introduce the general notion of a finite partition manual. 
Given a set X and collection Jt of subsets of X, let &(X, Jf) denote the 
collection of all partitions of X into a finite number of disjoint ^#~sets. 
Provided at least one such partition exists, one can show that 3P(X,J() satisfies 
the manual condition. We will give necessary and sufficient conditions on Jt 
for the logic of ̂ (X, Ji) to be a Boolean algebra, and show how such manuals 
can be generated from arbitrary Boolean algebras. An advantage to this 
approach is that the tensor product of two such finite partition manuals can 
often be found explicitly in a convenient form. 

Definition 6. A collection of subsets of X will be called a prefield if 
(i) A, B G Jt implies there exists a finite partition of A n B into 

c^-sets. 
(ii) A e Jt implies there exists a finite partition of X\A into ^-sets. 

https://doi.org/10.4153/CJM-1986-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-052-3


1076 ROBIN H. LOCK 

Note that any field of subsets is a prefield. An example of a nontrivial 
prefield of interest here is found by considering sets X and Y with fields of 
subsets Jtx and Jt2 respectively. The collection of rectangles, 

Mx X Jt2 = {A X B.A e Jtx, B e Jt2), 

is a prefield for X X Y but generally not a field. 
If Jt is any collection of subsets of X, we let {Jt) denote the collection 

obtained by forming all finite unions of disjoint ^-se ts . One may then 
prove that Jt is a prefield if and only if {Jt) is a field. This is particularly 
useful with partition manuals when one notes that ^(X, {Jt) ) is a 
coarsening of JF(X, Jt), i.e., events in the latter become outcomes in the 
former. Therefore, 

ir(&(X9 Jt) ~ 77(J (̂X, {Jt))). 

We are now in a position to state conditions for a finite partition manual 
to be Boolean. 

THEOREM 2. Let X be a set with Jt a nontrivial collection of subsets of X, 
then Jt is a prefield if and only if 'TTÇF(X, Jt) ) is a Boolean algebra and 

U&(X, Jt) = Jt. 

The condition that U(Jr(Ar, Jt) ) = Jt is fairly minor. It only ensures 
that each set in Jt can indeed be included in some finite partition of X. 
The proof of this theorem is a straightforward application of the following 
result from [7]. • 

LEMMA 5. An operational logic has the structure of a Boolean algebra if 
and only if the following two conditions hold: 

(i) If p _L q, q _L r, andp _L r, then (p © q) _L r. 
(ii) For any p, q e J% there exist px, qx, r G 3? such that px _L r, 

qx _L r, px _L qx, p = px ® r, and q = qx © r. 

One direction is made even easier by using the comment that 

TT(W(X, Jt) ) ~ <n(&{X, {Jt))) 

to allow one to assume th&iJt is a field when showing that m(^{X, Jt) ) is 
Boolean. 

If X and Y are sets with fields of subsets Jtx and Jt2 respectively, it has 
been shown [9] that the tensor product of the finite partition manuals can 
be constructed in the natural manner; 

&(X, Jtx) 0 &(Y, jf£ = &(x X Y9JK} X Jt2). 

Since we have shown that Jtx X Jt2 is a prefield when Jtx and Jt2 are 
fields, we may combine these results to conclude the following. 

LEMMA 6. Let X and Y be sets with fields of subsets Jtx and Jt2 

respectively, then ir(W(X, Jt{)® JF(7, Jt^) ) is Boolean. 
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Returning to the case of arbitrary Boolean algebras, we now use the 
Stone space construction to prove the following. 

THEOREM 3. Let <£x and££2 be Boolean algebras, then ££x 0 J^ (as found 
with Definition 5) is a Boolean algebra. 

Proof. By the uniqueness theorem we may choose any locally finite 
manuals with log ics^ a n d i ^ in constructing the tensor p r o d u c t ^ ®£p

2. 
Let Sx and S2 be the respective Stone spaces for the Boolean algebras and 
Jix and J(2 be the collections of clopen sets in each. One may easily show 
that TT{SX, Jt^) and ir(S2, ^ 2 ) a r e locally finite manuals and have the 
appropriate Boolean logics. Since the clopen sets in a Stone space form a 
field we may apply Lemma 6 to conclude that 

n(^(Sx, Jtx) 0 &(S29 J?2) ) = TT(^(SX X 52, Jtx X J!2) ) 

is a Boolean algebra. To see that it is the right Boolean algebra, note that 
the co l lec t ion^ X Jt2 forms a base for the product topology on Sx X S2. 
Including all finite disjoint unions we have the field of clopen sets 
{Jix X Jt2) which is a base for the compact Hausdorff space Sx X S2. 
This implies that {Jfx X Jf2) is a Boolean algebra (under set inclusion) 
and is exactly all of the clopen sets in Sx X S2. Thus the logic 

TT(W(SX X 52 , {Jtx X Jt2) ) ) 

is isomorphic to the Boolean algebra of clopen sets in Sx X S2. This 
finishes the proof since 

Sex 0 ^ ^ TT(^(SX, Jtx) 0 ^ ( S 2 , J!2) ) 

~ TT(^(SX X S29 Jix X Jtù ) 

~ m{<F(Sx X S2, {Mx X Jt2) ) ). 

7. A tensor product of orthomodular lattices. Although the previous 
section has demonstrated that Definition 5 gives the expected results in 
the essentially classical setting of Boolean algebras, some surprising 
developments occur when the definition is applied to other common 
logical systems. In this section we show by example that the tensor 
product of two orthomodular lattices need not be a lattice or even an 
orthomodular poset. 

The logic used will be that of a pentagon manual 

stf = { {a,f, b), {b, g, c}, {c, h, d}, {d, i, e}, {e,j, a} }. 

Figure 1 gives the Greechie diagram for this manual where the five sides of 
the pentagon denote each of the operations in the manual. One can easily 
check that the logic 7T(S/) is a complete, atomistic, orthomodular lattice 
which is obtained by coupling five copies of the Boolean algebra 2 (one 
for each operation) into a loop. For the other logic we use that of another 
pentagon manual 
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@ = { {q, v, r}, {r, w, s}, {s, x, t}, {t, y, u}, {u, z, q} }. 

© © © © © © 
© © © © 

© * © © * © 
© © © © 

© 0 
Figure 1 Pentagon Manuals J / and ^ 

The tensor product of si and â? can be computed explicitly (see [9] ) and 
will contain 625 operations each with nine product outcomes. In 
particular, the following sets are operations in si ® ai. 

E = {aq, bt, byjq, cr, av, qr,fv, bu} 

F = {aq, bt, by,fq, du, az, hu,fz, cu} 

G = {cr, du, cq, cv, dq, dz, hq, hv, hr}. 

Define the events: 

C = {aq, bu by,fq} B = {cr, du} A = E\C D = F\C. 

Note that A op D and so p(A) = p(D) in ir(si ® âS). We first show 
thatp(A) A p(B) fails to exist in the product logic. Since {cr} e A and 
{du} G D we have 

p(\cr})<p(A) and p({du) ) < p(D) = p(A). 

Obviously p( {cr} ) and p( {du} ) are both dominated by /?(2?) so if 
p(A) A p(B) were to exist it must also dominate both. But this would 
imply that 

p({cr})Vp({du})^p(A) Ap(B) 

which in turn implies 

p(B) ^ p(A) A p(B) 

and thus p(B) ^ p(A). By the definition of the partial order in an 
operational logic we must then have B _L C in si ® <%. However there is 
no operation in si® & which contains all the outcomes in both B and C so 
we have a contradiction and conclude that m(si ® $8) is not a lattice. 

A convenient condition for an operational logic to be an orthomodular 
poset is if and only if every finite pairwise orthogonal set is also jointly 
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orthogonal [7]. Using the reasoning of the previous argument one may 
show that this fails to hold in IT(S/ ® 38) for the set p( {cr} ), p( {du} ), 
p(C). Thus the logic of the tensor product of two pentagon manuals is not 
even an orthomodular partially ordered set. This conclusion is not so 
surprising when one considers a result of Randall and Foulis who showed 
that the following three conditions for a tensor product of orthomodular 
posets are not consistent. 

(i) px _L p2 in o£| or qx JL q2 in J^ implies px ® qx _L p2 ® q2 in 
sex ®se2. 

(ii) If a is a state on J^ and /? is a state on «5̂  then aft defined by 

aftp ®q) = a(p)$(q) 
is a state on ^ ® jg£. 

(iii) J ^ ® c ^ i s a n orthomodular poset. 
This result was one of our strong motivations for considering the tensor 

product of a class of logics which was broader than just orthomodular 
posets. Conditions (i) and (ii) have a certain physically intuitive appeal 
while (iii) seems to be more a matter of mathematical convenience. It can 
be shown that Definition 5 will easily satisfy both (i) and (ii) but, as the 
previous example demonstrates, not (iii). 
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