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Abstract

Let Kn denote the number of types of a sample of size n taken from an exchangeable
coalescent process (�-coalescent) with mutation. A distributional recursion for the
sequence (Kn)n∈N is derived. If the coalescent does not have proper frequencies, i.e. if
the characterizing measure � on the infinite simplex � does not have mass at 0 and
satisfies

∫
� |x|�(dx)/(x, x) < ∞, where |x| := ∑∞

i=1 xi and (x, x) := ∑∞
i=1 x2

i for
x = (x1, x2, . . .) ∈ �, then Kn/n converges weakly as n → ∞ to a limiting variable K

that is characterized by an exponential integral of the subordinator associated with the
coalescent process. For so-called simple measures � satisfying

∫
� �(dx)/(x, x) < ∞,

we characterize the distribution of K via a fixed-point equation.
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collisions; fixed point; subordinator
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1. Introduction and main results

Exchangeable coalescents are Markovian processes with state space E , the set of equivalence
relations (partitions) on N := {1, 2, . . .} with a block-merging mechanism. The class of
exchangeable coalescents with multiple collisions has been independently introduced in [23]
and [24]. These processes can be characterized by a finite measure � on the unit interval [0, 1]
and are hence also called �-coalescents. The best known example is the Kingman coalescent,
for which � = δ0 is the Dirac measure at 0. This coalescent allows for only binary mergers of
ancestral lineages. Another well-studied coalescent is the Bolthausen–Sznitman coalescent [5],
for which � is uniformly distributed on [0, 1]. The full class of exchangeable coalescents
allowing for simultaneous multiple collisions of ancestral lineages was discovered by Möhle
and Sagitov [22] and Schweinsberg [26]. Schweinsberg [26] characterized exchangeable
coalescents via a finite measure � on the infinite simplex

� :=
{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi ≤ 1

}
.

In the following, for convenience, we decompose � = aδ0 +�0, where a := �({0}) ∈ [0, ∞)

and �0 does not have an atom at 0. Suppose that the coalescent is in a state with n blocks.
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Number of types for coalescents 1083

Then each (k1, . . . , kj )-collision (k1, . . . , kj ∈ N with k1 + · · · + kj = n, k1 ≥ · · · ≥ kj and
k1 ≥ 2) occurs at rate (see [26, Equation (11)])

φj (k1, . . . , kj ) = a 1{r=1, k1=2} +
∫

�

s∑
l=0

(
s

l

)
(1 − |x|)s−l

∑
i1,...,ir+l∈N

all distinct

x
k1
i1

· · · xkr+l

ir+l

�0(dx)

(x, x)
,

where s := |{1 ≤ i ≤ j : ki = 1}|, r := j − s, |x| := ∑∞
i=1 xi , and (x, x) := ∑∞

i=1 x2
i for

x = (x1, x2, . . .) ∈ �. Note that φ1(2) = �(�). For n ∈ N, let �n : E → En denote the
natural restriction to the set En of all equivalence relations on {1, . . . , n}. Let R = (Rt )t≥0 be
a coalescent process with simultaneous multiple collisions. The restricted coalescent process
(�nRt )t≥0 is usually interpreted as a genealogical tree of a sample of n individuals. In the
biological context it is natural to introduce mutations into this model as follows. Assume that
each individual has a certain type. Independently of the genealogical tree, mutations occur
along each branch of the tree according to a homogeneous Poisson process with rate r > 0.
The infinitely many alleles model is assumed, i.e. each mutation leads to a new type never
seen before in the sample. Recently, there has been much interest in the study of functionals
of the restricted coalescent process (�nRt )t≥0; for example, the number of collisions has been
studied in [10], [14], [15], and [17], the time back to the most recent common ancestor and
the lengths of external branches have been studied in [6], [8], and [12], the total branch length
has been studied in [9], and the number of segregating sites has been studied in [21]. Further
typical quantities of interest are Ki(n), the number of types which appear exactly i times in
a sample of size n, and the summary statistics Kn := ∑n

i=1 Ki(n), the total number of types
in the sample. The most celebrated result in this context is Ewens’ sampling formula [11]
for the distribution of the allele frequency spectrum (K1(n), . . . , Kn(n)) under the Kingman
coalescent. Recently, asymptotic results for the allele frequency spectrum have been obtained
by Berestycki et al. [2], [3] for beta(2 − α, α)-coalescents with parameter 1 < α < 2 and
by Basdevant and Goldschmidt [1] for the Bolthausen–Sznitman coalescent [5]. Here we are
interested in the total number, Kn, of types of a sample of size n ∈ N taken from a �-coalescent
with mutation rate r > 0. The motivation for our interest in Kn is manifold. It is an observable
quantity and, hence, important for biological and statistical applications. In combination with
the results of [20] on the allele frequency spectrum and of [21] on the number of segregating
sites, our study of Kn gives additional insight into the structure of exchangeable coalescent
trees. Our first result (Theorem 1.1, below) provides a distributional recursion for the sequence
(Kn)n∈N. In order to state the result, we need to introduce the rates

gnk := lim
t↘0

P(|�nRt | = k)

t
, n, k ∈ N, k < n, (1.1)

and the total rates

gn := lim
t↘0

P(|�nRt | < n)

t
=

n−1∑
k=1

gnk, n ∈ N.

The total rates gn, n ∈ N, can be expressed in terms of the measure � = aδ0 + �0 as (see [26,
p. 36, Equation (70)])

gn = a

(
n

2

)
+

∫
�

(
1 − (1 − |x|)n −

n∑
j=1

(
n

j

)
(1 − |x|)n−j

∑
i1,...,ij ∈N

all distinct

xi1 · · · xij

)
�0(dx)

(x, x)
. (1.2)
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A similar argument (see the remark after Lemma A.2 in Appendix A) shows that the rates (1.1)
are given as

gnk = a

(
n

2

)
1{k=n−1} +

∫
�

k∑
j=1

fnkj (x)
�0(dx)

(x, x)
, n, k ∈ N, k < n, (1.3)

with

fnkj (x) :=
∑

i1,...,ij ∈N

i1<···<ij

∑
n1,...,nj ∈N

n1+···+nj =n−k+j

n!
(k − j)! n1! · · · nj ! (1 − |x|)k−j x

n1
i1

· · · xnj

ij

for n, k ∈ N, k < n, and j ∈ {1, . . . , k}. The �-coalescent occurs if the measure � is
concentrated on the points x = (u, 0, 0, . . .) ∈ � with u ∈ [0, 1] and, hence, can be considered
as a measure � on the unit interval [0, 1]. In this case only the index j = 1 contributes to
the sum under the integral in (1.3) and, from fnk1(u, 0, 0, . . .) = (

n
k−1

)
(1 − u)k−1un−k+1, it

follows that (1.3) takes the form

gnk =
(

n

k − 1

) ∫
[0,1]

un−k−1(1 − u)k−1�(du), n, k ∈ N, k < n.

Similarly, for the �-coalescent, the total rates (1.2) are given as

gn =
∫

[0,1]
1 − (1 − u)n − nu(1 − u)n−1

u2 �(du), n ∈ N.

Our first main result is the following distributional recursion for the number of types Kn.

Theorem 1.1. The sequence (Kn)n∈N satisfies the distributional recursion

K1 = 1 and Kn
d= Bn(Kn−1 + 1) + (1 − Bn)KIn, n ∈ {2, 3, . . .} (1.4)

(by ‘
d=’ we denote equality in distribution), where Bn is a Bernoulli variable independent of

(K2, . . . , Kn−1, In) with distribution

P(Bn = 1) = 1 − P(Bn = 0) = nr

gn + nr
, n ∈ N,

and In is a random variable independent of (K2, . . . , Kn−1) with distribution

rnk := P(In = k) = gnk

gn

, n, k ∈ N, k < n. (1.5)

Note that In is the number of equivalence classes (blocks) of the restricted coalescent
process (�nRt )t≥0 after its first jump. The proof of Theorem 1.1 given in Section 2 involves a
combination of what Kingman [18] called natural coupling and temporal coupling. The main
argument of the proof is the same as that used in [20] and [21] for deriving similar recursions
for the allele frequency spectrum and the number of segregating sites. The recursion for the
summary statistics Kn is simpler than that for the allele frequency spectrum presented in [20].
It is therefore more useful to compute the distribution and other related functionals of the
distribution of Kn for moderate values of n in reasonable time. Moreover, Theorem 1.1 is valid
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for any arbitrary �-coalescent. Our second result (Theorem 1.2, below) concerns measures �

satisfying

�({0}) = 0 and
∫

�\{0}
|x|

(x, x)
�(dx) < ∞. (1.6)

Recall that |x| := ∑∞
i=1 xi and that (x, x) := ∑∞

i=1 x2
i for x = (x1, x2, . . .) ∈ �. Note that

(1.6) prevents � from having too much mass near 0. Schweinsberg [26, Proposition 30] showed
that the �-coalescent does not have proper frequencies if and only if (1.6) holds. Not having
proper frequencies is equivalent to having a positive fraction of singleton blocks with positive
probability, which is particularly important for our convergence result presented in Theorem 1.2,
below. For the special class of coalescent processes with multiple collisions (�-coalescents),
(1.6) takes the form

�({0}) = 0 and
∫

(0,1]
u−1�(du) < ∞. (1.7)

Pitman [23, Theorem 8] showed that the �-coalescent does not have proper frequencies if
and only if (1.7) holds. Condition (1.7) excludes important examples such as the Kingman
coalescent and the Bolthausen–Sznitman coalescent [5]. However, it includes, for example, all
beta(a, b)-coalescents with parameters a > 1 and b > 0, which are studied in more detail in
Section 5. Note that Theorem 1.2 covers a substantial class of �-coalescents.

Theorem 1.2. Suppose that the characterizing measure � of the exchangeable coalescent
(Rt )t≥0 satisfies (1.6). Then Kn/n converges weakly as n → ∞ to K := r

∫ ∞
0 e−rte−Xt dt ,

where X = (Xt )t≥0 is a subordinator with Laplace exponent

�(η) =
∫

�\{0}
(1 − (1 − |x|)η)�(dx)

(x, x)
, η ≥ 0.

The limiting variable K has moments

E(Kj ) = rj j !
(r + �(1))(2r + �(2)) · · · (jr + �(j))

, j ∈ N. (1.8)

We will see that the subordinator X appearing in Theorem 1.2 is related to the frequency of
singletons, St , of Rt via Xt = −log St , t ≥ 0. Our proof of Theorem 1.2 is not based on the
recursion presented in Theorem 1.1. It is rather a consequence of the chain of inequalities

Mn ≤ Kn ≤ Nn + 1,

where Mn denotes the number of mutated external branches and Nn denotes the total number of
mutated branches of the restricted coalescent tree (�nRt )t≥0. Here we call a branch mutated if it
is affected by at least one mutation. In a first step we show in Section 3 that Theorem 1.2 is valid
with Kn replaced by the lower bound Mn. Then in Section 4 we verify that (Nn −Mn)/n → 0
in probability (even in L1), which completes the proof of Theorem 1.2 and, in addition, shows
that Theorem 1.2 remains valid with Kn replaced by Nn. Note that if K1(n) denotes the
number of types which appear exactly once in the sample of size n then Mn ≤ K1(n) ≤ Kn,
and, consequently, Theorem 1.2 also remains valid with Kn replaced by K1(n). Theorem 1.2
leaves open the question about the asymptotic behavior of Kn for the important class of
�-coalescents which do not satisfy condition (1.6). As mentioned before, some results for
particular �-coalescents are known (see [1]–[3], [11], [20]); however, the problem concerning
the asymptotic behavior of Kn for the full class of �-coalescents remains open.
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2. A recursion for the number of types

The proof of Theorem 1.1 is based on two fundamental properties of coalescent processes,
which Kingman [18] called natural coupling and temporal coupling. We define natural coupling
as follows. Suppose that the genealogy of a sample of size n ∈ N governed by a �-coalescent is
given. If a sub-sample of size m ∈ {1, . . . , n−1} of this sample is taken, i.e. if n−m individuals
are removed from the sample, then the genealogical tree of the remaining sample of size m

is governed by the same �-coalescent. This consistency relation between different sample
sizes is one of the fundamental properties of exchangeable coalescents. In fact, it is needed to
prove the existence of exchangeable coalescent processes with state space E via Kolmogoroff’s
extension theorem. We define temporal coupling as follows. Consider a restricted coalescent
process (R

(n)
t )t≥0 := (�nRt )t≥0, and let Tn := inf{t > 0 : R

(n)
t �= R

(n)
0 } denote the time of its

first jump. If after the first jump individuals belonging to the same equivalence class are
identified, then the process started at time Tn is distributed as a coalescent with sample size
|R(n)

Tn
|. Mathematically, this property essentially boils down to the strong Markov property. We

will now verify Theorem 1.1.

Proof of Theorem 1.1. Recursion (1.4) is equivalent to P(K1 = 1) = 1 and

P(Kn = k) = nr

gn + nr
P(Kn−1 = k − 1) + gn

gn + nr

n−1∑
i=k

rni P(Ki = k) (2.1)

for n ∈ {2, 3, . . .} and k ∈ {1, . . . , n}. We verify (2.1) analogously to the proofs presented
in [20], by looking at the first event (either a coalescence or a mutation) that happens backward
in time. The time Wn back to the first mutation is exponentially distributed with parameter nr .
The time Tn back to the first coalescence is independent of Wn and exponentially distributed
with parameter gn. Thus, the first event backward in time is a mutation with probability
P(Wn < Tn) = nr/(gn + nr), and a coalescence with the complementary probability P(Tn <

Wn) = gn/(gn + nr). Note that these two probabilities appear on the right-hand side of (2.1).
Assume that the first event backward in time is a mutation. If we disregard the individual
which is affected by this mutation, the number of types decreases by 1. Moreover, from
the natural coupling property, it follows that the remaining tree is distributed as a coalescent
restricted to the set {1, . . . , n − 1}. This argument explains the appearance of the probability
P(Kn−1 = k − 1) on the right-hand side of (2.1). If the first event backward in time is
a coalescence then at the time of that coalescence event the coalescent process jumps to a
partition with i blocks, i ∈ {1, . . . , n − 1}, with probability rni = gni/gn. By the temporal
coupling property, the coalescent process stopped at that time is distributed as a coalescent
restricted to the set {1, . . . , i}. As the number of types is not affected by a coalescence, the
appearance of the sum on the right-hand side of (2.1) is explained. Note that it suffices to run
the sum from k to n − 1 as P(Ki = k) = 0 for i < k.

Remarks. 1. In terms of the generating function fn(s) := E(sKn), n ∈ N, s ∈ C, recursion
(1.4) (or (2.1)) is equivalent to f1(s) = s and

(gn + nr)fn(s) = nrsf n−1(s) +
n−1∑
k=1

gnkfk(s), n ∈ {2, 3, . . .}, s ∈ C, (2.2)

a formula which also follows (at least for coalescent processes with multiple collisions) by
taking s1 = · · · = sn =: s in Equation (4) of [19].
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2. Recursion (2.1) for the distribution of Kn is useful to compute the probabilities P(Kn = k)

successively for k = n, n − 1, . . . , 1. For example, for k = n, it follows that

(gn + nr) P(Kn = n) = nr P(Kn−1 = n − 1)

and, therefore,

P(Kn = n) =
n∏

i=2

ir

gi + ir
= rn−1n!∏n

i=2(gi + ir)
, n ∈ N.

Note that P(Kn = n) is the probability of having only singletons in a sample of size n.

Example. (Kingman coalescent.) For the Kingman coalescent (� = δ0), we have In ≡
n − 1, gn = gn,n−1 = n(n − 1)/2, and gni = 0 for i ∈ {1, . . . , n − 2}. Recursion
(1.4) reduces to Kn

d= Bn + Kn−1. Therefore, Kn
d= ∑n

i=1 Bi, n ∈ N, where B1, B2, . . . are
independent Bernoulli variables with P(Bn = 1) = nr/(gn +nr) = θ/(θ +n− 1), n ∈ N and
θ := 2r . It follows easily that P(Kn = k) = θks(n, k)/[θ ]n, where [θ ]n := θ(θ + 1) · · · (θ +
n − 1) and the s(n, k) denote the absolute Stirling numbers of the first kind. Moreover,
E(Kn) = θ

∑n−1
i=0 1/(θ + i) ∼ θ log n and var(Kn) = θ

∑n−1
i=1 i/(θ + i)2 ∼ θ log n. By the

Lindeberg–Feller central limit theorem, (Kn − θ log n)/
√

θ log n is asymptotically standard
normal distributed. All these results are of course well known and go at least back to the
seminal work of Ewens [11].

Example. (Star-shaped coalescent.) For the star-shaped coalescent (� = δ1), we have In ≡ 1,
gn1 = gn = 1, and gni = 0 for i ∈ {2, . . . , n − 1}. Therefore, (2.2) reduces to (1 +
nr)fn(s) = nrsf n−1(s) + s, n ∈ {2, 3, . . .}, s ∈ C. We refer the reader to [20, Section 4]
for more details. In particular, in [20] it was shown that Kn/n converges almost surely to a
limiting random variable K , beta distributed with parameter 1 and 1/r , that is, P(K > x) =
(1 − x)1/r , 0 < x < 1.

Remark. (Recursion for the factorial moments of Kn.) Taking the j th derivative with respect
to s in (2.2) and applying the Leibniz rule yields

(gn + nr)f
(j)
n (s) = nr(sf

(j)
n−1(s) + jf

(j−1)
n−1 (s)) +

n−1∑
k=1

gnkf
(j)
k (s)

for n ∈ {2, 3, . . .}, j ∈ N, and s ∈ C. For n ∈ N and j ∈ N0, let µ
(j)
n := E((Kn)j ) =

E(Kn(Kn − 1) · · · (Kn − j + 1)) denote the j th descending factorial moment of Kn. Taking
the limit s → 1, it follows that

(gn + nr)µ
(j)
n = nr(µ

(j)
n−1 + jµ

(j−1)
n−1 ) +

n−1∑
k=1

gnkµ
(j)
k , n ∈ {2, 3, . . .}, j ∈ N.

This recursion with initial condition µ
(j)
1 = δj1 (Kronecker symbol) is useful to compute the

factorial moments of Kn. For example, for j = n, we have (gn + nr)µ
(n)
n = n2rµ

(n−1)
n−1 and,

therefore,

µ(n)
n =

n∏
i=2

i2r

gi + ir
= rn−1(n!)2∏n

i=2(gi + ir)
, n ∈ N,
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a result which also follows from µ
(n)
n = n! P(Kn = n). In particular, the first moment

µn := µ
(1)
n = E(Kn) follows the recursion µ1 = 1 and

(gn + nr)µn = nr(µn−1 + 1) +
n−1∑
k=1

gnkµk, n ∈ {2, 3, . . .}.

It seems to be nontrivial to solve any of these recursions except for the Kingman coalescent
(� = δ0) and the star-shaped coalescent (� = δ1). We therefore focus on asymptotic results
for Kn as the sample size n tends to ∞.

3. The number of mutated external branches

We say that a branch of the restricted coalescent tree (�nRt )t≥0 is mutated if it is affected
by at least one mutation. In this section we study the asymptotics of the number, Mn, of
mutated external branches of (�nRt )t≥0 under the assumption that the measure � satisfies
condition (1.6).

Lemma 3.1. Suppose that the characterizing measure � of the exchangeable coalescent pro-
cess R = (Rt )t≥0 satisfies (1.6). Then, Mn/n

d−→ M as n → ∞, where M is a random variable
uniquely determined by its moments

E(Mk) = E

( k∏
i=1

(1 − e−rLi )

)
, k ∈ N,

with Li := sup{t > 0 : {i} is a block of Rt }, i ∈ N. (By ‘
d−→’ we denote convergence in

distribution.)

Proof. For n ∈ N and i ∈ {1, . . . , n}, let

Ln,i := sup{t > 0 : {i} is a block of �nRt }

denote the length of the ith external branch of the restricted coalescent tree (�nRt )t≥0. Fix
k ∈ N and t1, . . . , tk ∈ [0, ∞). For n ≥ k, we have

P(Ln,1 > t1, . . . , Ln,k > tk)

= P({1} is a block of �nRt1 , . . . , {k} is a block of �nRtk )

→ P

(⋂
n∈N

{{1} is a block of �nRt1 , . . . , {k} is a block of �nRtk }
)

= P({1} is a block of Rt1 , . . . , {k} is a block of Rtk )

= P(L1 > t1, . . . , Lk > tk).

Thus, for all k ∈ N, (Ln,1, . . . , Ln,k)
d−→(L1, . . . , Lk) as n → ∞. For n ∈ N and i ∈ {1, . . . , n},

let En,i denote the event that the ith external branch of the restricted tree (�nRt )t≥0 is affected
by at least one mutation. Conditional on the lengths Ln,1, . . . , Ln,n of the external branches,
the mutation Poisson process with parameter r > 0 acts independently on all these branches.
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Thus, for fixed j ∈ N, we have

P(En,1 ∩ · · · ∩ En,j ) = E(P(En,1 ∩ · · · ∩ En,j | Ln,1, . . . , Ln,j ))

= E(P(En,1 | Ln,1) · · · P(En,j | Ln,j ))

= E((1 − e−rLn,1) · · · (1 − e−rLn,j ))

→E((1 − e−rL1) · · · (1 − e−rLj )).

From Mn = ∑n
i=1 1En,i

, it follows that

E(Mk
n) = E

(( n∑
i=1

1En,i

)k)
=

n∑
i1,...,ik=1

E(1En,i1
· · · 1En,ik

).

For each fixed n, the events En,i, i ∈ {1, . . . , n}, are exchangeable. Therefore,

E(Mk
n) =

k∑
j=1

S(k, j)(n)j P(En,1 ∩ · · · ∩ En,j ),

where S(k, j) denotes the Stirling number of the second kind, i.e. the number of ways to
partition a set with k elements into j nonempty subsets. Division by nk and taking the limit
n → ∞ yields, for all k ∈ N0,

lim
n→∞ E

((
Mn

n

)k)
=

k∑
j=1

S(k, j) lim
n→∞

(n)j

nk
P(En,1 ∩ · · · ∩ En,j )

= lim
n→∞ P(En,1 ∩ · · · ∩ En,k)

= E((1 − e−rL1) · · · (1 − e−rLk ))

=: µk.

For all m, k ∈ N0,

m∑
j=0

(
m

j

)
(−1)jµk+j = lim

n→∞ E

( m∑
j=0

(
m

j

)
(−1)j

(
Mn

n

)k+j)

= lim
n→∞ E

((
Mn

n

)k(
1 − Mn

n

)m)

≥ 0.

Thus (Hausdorff moment problem), the sequence (µk)k∈N0 is a moment sequence of some
random variable M taking values in the unit interval [0, 1]. The convergence of moments
implies the convergence Mn/n

d−→ M .

Remark. The interpretation of the distribution of the limiting external branch lengths Li, i ∈ N,
in terms of the frequency spectrum of the coalescent is as follows. Let St denote the frequency
of singletons of Rt . Conditional on St1 , . . . , Stk , the probability that i is still a singleton at time
ti , i ∈ {1, . . . , k}, is St1 · · · Stk . Therefore, for t1, . . . , tk ∈ [0, ∞),

P(L1 > t1, . . . , Lk > tk) = E(St1 · · · Stk ),
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or, equivalently (in agreement with the principle of inclusion and exclusion),

P(L1 ≤ t1, . . . , Lk ≤ tk) = E((1 − St1) · · · (1 − Stk )).

Thus, the distribution function of (L1, . . . , Lk) can be expressed in terms of the process S =
(St )t≥0.

Corollary 3.1, below, expresses the distribution of the limiting random variable M appearing
in Lemma 3.1 in terms of the process (St )t≥0. There is the following rough intuition for the
form of the integral in Corollary 3.1. A contribution to Mn occurs every time a lineage that has
not yet coalesced experiences its first mutation. The time of a first mutation is exponentially
distributed with parameter r , so at each time t the infinitesimal growth of Mn due to a not yet
coalesced lineage is re−rt . Since St is the fraction of singletons at time t , the infinitesimal
growth of Mn at time t is approximately re−rtnSt . In [21], in which the number of segregating
sites is the quantity of interest, any mutation contributes to the count rather than just the first
one, so we get r in Proposition 5.1 of [21] in place of the re−rt in Corollary 3.1.

Corollary 3.1. The limiting variable M appearing in Lemma 3.1 satisfies

M
d= r

∫ ∞

0
e−rtSt dt.

Proof. Fix k ∈ N, and define g : R
k → R via

g(t) := (−1)k exp(−r(t1 + · · · + tk)) for t = (t1, . . . , tk) ∈ R
k.

Note that

h(t) := ∂k

∂t1 · · · ∂tk
g(t) = rk exp(−r(t1 + · · · + tk)).

For x = (x1, . . . , xk) and y = (y1, . . . , yk) ∈ R
k with xi ≤ yi for all 1 ≤ i ≤ k, define

�
y
xg :=

∑
ε1,...,εk∈{0,1}

(−1)ε1+···+εkg(ε1x1 + (1 − ε1)y1, . . . , εkxk + (1 − εk)yk).

Define L := (L1, . . . , Lk), and let PL the distribution of L. Then we have

E(Mk) = E((1 − e−rL1) · · · (1 − e−rLk ))

= E(�L
0 g)

=
∫

R
k+

�
y
0g PL(dy)

=
∫

R
k+

∫
R

k+
1[0,y)(t)h(t)λk(dt) PL(dy).
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An application of Fubini’s theorem yields

E(Mk) =
∫

R
k+

h(t)

∫
R

k+
1(t,∞)(y) PL(dy)λk(dt)

=
∫

R
k+

h(t) P(L > t)λk(dt)

=
∫

R
k+

rk exp(−r(t1 + · · · + tk)) E(St1 · · · Stk )λ
k(dt1, . . . , dtk)

= E

((∫ ∞

0
re−rtSt dt

)k)
.

Thus, the moments of the random variables M and
∫ ∞

0 re−rtSt dt coincide. As both random
variables almost surely take values in the unit interval [0, 1], they are equal in distribution.

The moments of M can be expressed in terms of the measure � as follows.

Remark. Assume that the measure � of the exchangeable coalescent (Rt )t≥0 satisfies (1.6).
From the Poisson construction of the �-coalescent (see [26]), it follows that the process X =
(Xt )t≥0, defined via Xt := −log St for t ≥ 0, is a drift-free subordinator with Laplace exponent

�(η) =
∫

�\{0}
1 − (1 − |x|)η

(x, x)
�(dx), η ≥ 0.

Note that, for η ∈ N, e−t�(η) = E(e−ηXt ) = E(S
η
t ) is the probability that {1}, . . . , {η} are

(singleton) blocks of Rt . The Lévy measure � on (0, ∞] of the subordinator X is hence the
image of the measure ν(dx) := �(dx)/(x, x) via the transformation T (x) := −log(1 − |x|),
i.e. �(A) = ∫

T −1(A)
(x, x)−1�(dx) for all Borel subsets A of (0, ∞]. This result is in agreement

with Proposition 26 of [23] for the special situation when the coalescent allows for only multiple
collisions (�-coalescent). From

∫
�\{0}

|x|
(x, x)

�(dx) =
∫

�\{0}
|x|ν(dx) =

∫
(0,∞]

(1 − e−y)�(dy)

and (1 − e−1) min(y, 1) ≤ 1 − e−y ≤ min(y, 1), y ≥ 0, it follows that (1.6) is equivalent to

�({0}) = 0 and
∫

(0,∞]
min(y, 1)�(dy) < ∞.

Note that the finiteness of the last integral is the typical condition for a measure � to be a Lévy
measure of some subordinator. From Proposition 3.1 of [7], it follows that M

d= r
∫ ∞

0 e−rt−Xt dt

has moments

E(Mk) = rkk!
(r + �(1))(2r + �(2)) · · · (kr + �(k))

, k ∈ N. (3.1)
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In particular,

var(M) = E(M2) − (E(M))2

= 2r2

(r + �(1))(2r + �(2))
− r2

(r + �(1))2

= 2r2(r + �(1)) − r2(2r + �(2))

(r + �(1))2(2r + �(2))

= r2

(r + �(1))2(2r + �(2))

∫
�\{0}

|x|2
(x, x)

�(dx), (3.2)

as 2�(1) − �(2) = ∫
�\{0} |x|2/(x, x)�(dx).

In the final remark of this section a distributional fixed-point equation for M is derived for
�-coalescents satisfying

�({0}) = 0 and
∫

�\{0}
�(dx)

(x, x)
< ∞. (3.3)

In the spirit of Bertoin and Le Gall [4] we call measures � satisfying (3.3) simple measures.
Note that (3.3) implies (1.6).

Remark. If (3.3) holds then the Lévy measure � of the subordinator X = (Xt )t≥0 is finite
(m0 := �((0, ∞]) = ν(� \ {0}) < ∞), which means that X is a compound Poisson process
Xt = ∑Nt

i=1 ηi , where N := (Nt )t≥0 is a homogeneous Poisson process with parameter m0
and the ηi, i ∈ N, are random variables, independent of each other and of N , with common
distribution function y → P(ηi ≤ y) = m−1

0 �((0, y]). Let T1 < T2 < T3 < · · · denote the
jump times of the Poisson process N . Note that Ti+1 − Ti is exponentially distributed with
parameter m0. We have

M
d=

∫ ∞

0
re−rtSt dt

=
∞∑
i=0

∫ Ti+1

Ti

re−rtSt dt

=
∫ T1

0
re−rt dt + e−η1

∫ T2

T1

re−rt dt + e−η1−η2

∫ T3

T2

re−rt dt + · · ·

= (1 − e−rT1) + e−η1(e−rT1 − e−rT2) + e−η1−η2(e−rT2 − e−rT3) + · · ·
= (1 − e−rT1) + e−η1 e−rT1((1 − e−r(T2−T1)) + e−η2(e−r(T2−T1) − e−r(T3−T1)) + · · · )
= B + A(1 − B)M1,

with A := e−η1 , B := 1− e−rT1 , and M1
d= M . Thus, M satisfies the distributional fixed-point

equation
M

d= B + A(1 − B)M, (3.4)

where A and B are independent (and independent of M), B is beta distributed with parameters
1 and m0/r , i.e. P(B > x) = (1 − x)m0/r , x ∈ (0, 1), and the distribution of 1 − A is the
image of the measure ν0 := ν/m0 under the transformation | · | : � \ {0} → (0, 1], x → |x|.
Using an argument similar to that of Vervaat [27], it can be shown that the distribution of
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M is uniquely determined by the fixed-point equation (3.4). The distribution of M coincides
with the stationary distribution of the process (Yn)n∈N0 recursively defined by Y0 := 0 and
Yn+1 := An(1 − Bn)Yn + Bn, where ((An, Bn))n∈N0 is a sequence of independent, identically
distributed random variables with (An, Bn)

d= (A, B). Note that

Yn =
n−1∑
i=0

Bn−i−1

n−1∏
j=n−i

Aj (1 − Bj )
d=

n−1∑
i=0

Bi

i−1∏
j=0

Aj(1 − Bj ), n ∈ N0,

and, hence, that M
d= ∑∞

i=0 Bi

∏i−1
j=0 Aj(1 − Bj ).

4. The total number of mutated branches

In order to analyze the total number, Nn, of mutated branches, we need to study Cn, the
number of collision events that take place in the restricted coalescent process (�nRt )t≥0 until
there is just a single block. Note that, in general, Cn ≥ Xn, the number of jumps. For
�-coalescents, we have Cn = Xn.

Lemma 4.1. Let R be a �-coalescent. If (1.6) holds then Cn/n → 0 in L1.

Proof. For n ∈ N, define an := E(Cn) for convenience. Note that the sequence (an)n∈N sat-
isfies the recursiona1 = 0 andan = vn + ∑n−1

k=1 rnkak forn ∈ {2, 3, . . .}with rnk := P(In = k),
n, k ∈ N, k < n, and vn := E(Vn), where Vn denotes the number of collision events of the
restricted coalescent process (�nRt )t≥0 that take place at the time of the first jump of (�nRt )t≥0.
Note that Vn ≡ 1 for coalescents with only multiple (no simultaneous multiple) collisions. We
verify the convergence Cn/n → 0 in L1 by contradiction, in analogy to Gnedin’s proof of
Proposition 3 of [13]. Note that a similar argument is used on p. 219 of [16]. Assume that there
exists ε > 0 such that an > nε for infinitely many values of n. Selecting ε smaller, for any
fixed c, we can obtain the inequality an > εn + c for infinitely many values of n. Let nc be the
minimum such n. Then nc → ∞ as c → ∞. For k < nc, we have ak ≤ εk + c, which implies
that

εnc + c < anc

= vnc +
nc−1∑
k=1

rnc,kak

≤ vnc + c + ε

nc−1∑
k=1

krnc,k

= vnc + c + ε E(Inc ).

The constant c cancels and it follows that ε E(nc − Inc ) < vnc . For c → ∞, we obtain the
promised contradiction, since E(n− In)/vn → ∞ as n → ∞ by Corollary A.2 in Appendix A.
Thus, for all ε > 0, there exists n0 = n0(ε) ∈ N such that an/n ≤ ε for all n ≥ n0. In other
words, an/n → 0 as n → ∞.

We are now able to show that if (1.6) holds then the total number, Nn, of mutated branches
and the number, Kn, of types both have the same asymptotic behavior as Mn as n → ∞.

Corollary 4.1. Let (Rt )t≥0 be a �-coalescent with mutation rate r > 0 satisfying (1.6). Then,

Nn/n
d−→ M , and Kn/n

d−→ M as well, where M is the random variable defined in Corollary 3.1
with moments (3.1).
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Proof. We have Mn ≤ Kn ≤ Nn + 1. Thus, by Lemma 3.1, it suffices to verify that
(Nn + 1 − Mn)/n → 0 in probability. We even show that (Nn + 1 − Mn)/n → 0 in L1.
We have

0 ≤ Kn − Mn

≤ Nn + 1 − Mn

= number of nonexternal mutated branches + 1

≤ number of nonexternal branches + 1

= Cn.

It remains to note that Cn/n → 0 in L1 by Lemma 4.1.

Note that Corollary 4.1 in particular completes the proof of Theorem 1.2.

5. Examples

In this section we apply Theorem 1.2 to some concrete examples.

Example 5.1. (Dirac coalescents.) Fix a point c ∈ � \ {0}, and suppose that � = δc is the
Dirac measure in c. Then, condition (1.6) holds, as

∫
�\{0}(|x|/(x, x))�(dx) = |c|/(c, c) < ∞.

By Theorem 1.2, all three random variables, Mn/n, Kn/n, and Nn/n, converge in distribution to
M := r

∫ ∞
0 e−rt−Xt dt , where X = (Xt )t≥0 is a subordinator with Laplace exponent �(η) =

(1 − (1 − |c|)η)/(c, c), η ≥ 0. The Lévy measure � = (1/(c, c))δ−log(1−|c|) is hence the
Dirac measure in −log(1 − |c|) scaled by the factor 1/(c, c). We have �(1) = |c|/(c, c) and
�(2) = |c|(2 − |c|)/(c, c), and, therefore, by (3.1) and (3.2),

E(M) = r

r + |c|/(c, c)
and

var(M) = r2|c|2/(c, c)
(r + |c|/(c, c))2(2r + |c|(2 − |c|)/(c, c)) .

Note that m0 := ∫
�\{0}(1/(x, x))�(dx) = 1/(c, c) < ∞, i.e. (3.3) holds as well. Thus, by

(3.4), M satisfies the distributional fixed-point equation M
d= B + (1 − |c|)(1 − B)M , where

B is a random variable independent of M and beta distributed with parameters 1 and m0/r =
1/((c, c)r). Even for this quite simple situation of Dirac coalescents, it does not seem to be
straightforward to find simpler characterizations for the distribution of M .

Example 5.2. (Beta coalescents.) Let � be beta distributed with parameters a > 1 and b > 0,
i.e. � has density u → (B(a, b))−1ua−1(1 − u)b−1, u ∈ (0, 1), with respect to the Lebesgue
measure on (0, 1), where B(·, ·) denotes the beta function. In this situation we have

∫
[0,1]

u−1�(du) = B(a − 1, b)

B(a, b)
= a + b − 1

a − 1
< ∞.

Thus, Theorem 1.2 is applicable and all three random variables, Mn/n, Kn/n, and Nn/n,
converge in distribution to M := r

∫ ∞
0 e−rt−Xt dt as n → ∞, where X = (Xt )t≥0 is a

subordinator with Laplace exponent

�(η) = 1

B(a, b)

∫ 1

0

1 − (1 − u)η

u2 ua−1(1 − u)b−1 du, η ≥ 0.
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The expansion 1 − (1 − u)η = ∑∞
i=1

(
η
i

)
(−1)i+1ui yields

�(η) = 1

B(a, b)

∞∑
i=1

(
η

i

)
(−1)i+1B(a + i − 2, b)

= a + b − 1

a − 1

∞∑
i=1

(
η

i

)
(−1)i+1

i−1∏
j=1

a − 2 + j

a + b − 2 + j
, η ≥ 0.

Note that �(1) = (a + b − 1)/(a − 1) and �(2) = (a + 2b − 1)/(a − 1). The mean and the
variance of M can be easily deduced from (3.1) and (3.2). From �((0, y]) = ν((0, 1− e−y]) =∫
(0,1−e−y ] u

−2�(du), it follows that the Lévy measure � of the subordinator X has density
y → (B(a, b))−1(1 − e−y)a−3(e−y)b, y ∈ (0, ∞), with respect to the Lebesgue measure on
(0, ∞). If a > 2 then

m0 :=
∫

[0,1]
u−2�(du) = (a + b − 1)(a + b − 2)

(a − 1)(a − 2)
< ∞.

In this case, by (3.4), M satisfies the distributional fixed-point equation M
d= B + A(1 − B)M ,

whereA andB are independent (and independent ofM), 1−A is beta distributed with parameters
a−2 and b, and B is beta distributed with parameters 1 and m0/r . For special parameter values
of a and b, the Laplace exponent � can be further simplified. For example, for the β(2−α, α)-
coalescent with 0 < α < 1,

�(η) = 1

1 − α

∞∑
i=1

(
η

i

)(
α − 1

i − 1

)
= η�(η + α)

(1 − α)�(α + 1)�(η + 1)
, η ≥ 0.

Note that if the conjecture on p. 495 of [1] is correct then we have identified (in the notation
of [1]) the distribution of the random variable C1, namely C1

d= M .

Example 5.3. Suppose that the measure � is concentrated on the subset �∗ of all points x ∈ �

satisfying |x| = 1 and that m0 := ∫
�\{0}(1/(x, x))�(dx) < ∞. Concrete examples are the

star-shaped coalescent, where � is the Dirac measure in (1, 0, 0, . . .), or the Poisson–Dirichlet
coalescent with parameter θ > 0, where � is assumed to have density x → (x, x) with respect
to the Poisson–Dirichlet distribution with parameter θ > 0. Then, (1.6) and (3.3) coincide
and are both satisfied. Thus, Theorem 1.2 is applicable, i.e. all three random variables, Mn/n,
Kn/n, and Nn/n, converge in distribution to a limiting variable K with moments (1.8). As the
measure � is concentrated on �∗, the Laplace exponent �(η) ≡ m0 is constant. Therefore,
K has moments E(Kj ) = rj j !/((r + m0) · · · (jr + m0)), j ∈ N. It follows that K is beta
distributed with parameters 1 and m0/r .

Appendix A

In this appendix basic results for �-coalescents R = (Rt )t≥0 are derived. We first restrict
our attention to coalescents with (only) multiple collisions, as the proofs are in this case less
technical. We then extend the results to �-coalescents. Our first result (Lemma A.1) concerns
the number of blocks In of the restricted coalescent process (�nRt )t≥0 after its first jump. Note
that In has distribution (1.5) and that we define I1 := 0 for convenience. Lemma A.1 is well
known from the literature (see, for example, [25, Lemma 3]); however, we provide a proof
which can be extended to the full class of coalescents with simultaneous multiple collisions
(see Lemma A.2, below).
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Lemma A.1. Let R be a �-coalescent. Then, for all n ∈ N,

gn E(n − In) =
∫

[0,1]
(1 − u)n − 1 + nu

u2 �(du)

with continuous extension of the function below the integral for u ↘ 0.

Proof. We have

gn E(In) =
n−1∑
k=1

kgnk =
n−1∑
k=1

k

∫
[0,1]

(
n

k − 1

)
un−k−1(1 − u)k−1�(du).

Substituting i = k − 1 and interchanging the summation with the integral yields

gn E(In) =
∫

[0,1]

n−2∑
i=0

(i + 1)

(
n

i

)
un−i (1 − u)i

�(du)

u2

=
∫

[0,1]
n(1 − u) + 1 − n2u(1 − u)n−1 − (n + 1)(1 − u)n

u2 �(du)

=
∫

[0,1]
n + 1 − nu − n2u(1 − u)n−1 − (n + 1)(1 − u)n

u2 �(du).

Now subtract this expression from

ngn =
∫

[0,1]
n − n(1 − u)n − n2u(1 − u)n−1

u2 �(du).

Corollary A.1. If (1.7) holds then E(n − In) ∼ (n/gn)
∫
[0,1] u

−1�(du) → ∞ as n → ∞.

Proof. For n ∈ N, define the auxiliary function H(n) := ∫
[0,1](1 − (1 − u)n)u−2�(du).

Note that 1−(1−u)n ≤ nu for n ∈ N and u ∈ [0, 1], and, therefore, H(n) ≤ n
∫
[0,1]�(du)/u =

nH(1) < ∞ for all n ∈ N. By Lemma A.1, gn E(n − In) = nH(1) − H(n). If we can show
that gn/n → 0 and that H(n)/n → 0 as n → ∞, then

E(n − In) = n

gn

(
H(1) − H(n)

n

)
∼ n

gn

H(1) → ∞,

and we are done. Since

gn =
∫

[0,1]
1 − (1 − u)n − nu(1 − u)n−1

u2 �(du)

≤
∫

[0,1]
1 − (1 − u)n

u2 �(du)

= H(n),

it remains to verify that H(n)/n → 0 as n → ∞. By assumption, the measure µ(du) :=
�(du)/u is finite and has no mass at 0. We have

H(n)

n
=

∫
[0,1]

1 − (1 − u)n

nu

�(du)

u
=

∫
[0,1]

fn(u)µ(du),

where fn(u) := (1 − (1 − u)n)/(nu) for n ∈ N and u ∈ [0, 1]. Obviously, 0 ≤ fn ≤ 1 for all
n ∈ N and fn converges pointwise to 0 on (0, 1] as n → ∞. Thus, H(n)/n → 0 as n → ∞
by dominated convergence.
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In the following, Lemma A.1 is extended to �-coalescents.

Lemma A.2. Let � = aδ0 + �0 be a finite measure on the infinite simplex �, and let (Rt )t≥0
be a �-coalescent. For n ∈ N, let In be the number of equivalence classes (blocks) of the
restricted coalescent process (�nRt )t≥0 after its first jump (I1 := 0). Then, for all n ∈ N,

gn E(n − In) = a

(
n

2

)
+

∫
�

(
n|x| −

∞∑
i=1

(1 − (1 − xi)
n)

)
�0(dx)

(x, x)
. (A.1)

Proof. Fix n ∈ N. The first summand on the right-hand side of (A.1) is obvious, because,
with probability a = �({0}), the coalescent behaves as the Kingman coalescent, in which
case we have In = n − 1 and gn = (

n
2

)
. Thus, without loss of generality, we can and

do assume that a = 0. In the following we exploit Schweinsberg’s [26] Poisson process
construction of exchangeable coalescents. Note that this construction is essentially equivalent
to Kingman’s [18] paintbox construction and closely related to the Bernoulli sieve [13]. For
given x ∈ �, partition [0, 1) into intervals J0, J1, J2, . . . of lengths x0 := 1 − |x|, x1, x2, . . . ,

i.e. J0 := [0, x0), J1 := [x0, x0 +x1), J2 := [x0 +x1, x0 +x1 +x2), and so on. Let U1, . . . , Un

be independent random variables uniformly distributed on [0, 1). For i ∈ N0, let

Xi := Xi(n) :=
n∑

j=1

1Ji
(Uj )

denote the number of U1, . . . , Un which fall into the interval Ji . Note that Xi is binomially
distributed with parameters n and xi , and that

∑∞
i=0 Xi = n. Therefore,

P

(⋂
i∈N

{Xi ≤ 1}
)

= P(X0 = n) +
n∑

l=1

∑
i1,...,il∈N

i1<···<il

P(X0 = n − l, Xi1 = 1, . . . , Xil = 1)

= xn
0 +

n∑
l=1

(
n

l

)
xn−l

0

∑
i1,...,il∈N

all distinct

xi1 · · · xil .

We have

gn E(In) =
n−1∑
k=1

kgnk

=
n−1∑
k=1

k

∫
�

P

(
X0 +

∞∑
i=1

1{Xi≥1} = k

)
�0(dx)

(x, x)

=
∫

�

n−1∑
k=1

k P

(
X0 +

∞∑
i=1

1{Xi≥1} = k

)
�0(dx)

(x, x)

=
∫

�

(
E(X0) +

∞∑
i=1

P(Xi ≥ 1) − n P

( ∞⋂
i=1

{Xi ≤ 1}
))

�0(dx)

(x, x)
. (A.2)
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Now subtract this expression from (see [26, p. 36, Equation (70)])

ngn = n

∫
�

(
1 − xn

0 −
n∑

l=1

(
n

l

)
xn−l

0

∑
i1,...,il∈N

all distinct

xi1 · · · xil

)
�0(dx)

(x, x)

=
∫

�

(
n − n P

( ∞⋂
i=1

{Xi ≤ 1}
))

�0(dx)

(x, x)
,

and note that E(X0) = n(1 − |x|) and P(Xi ≥ 1) = 1 − (1 − xi)
n.

Remark. The Poisson process construction used in the previous proof is particularly helpful
in deriving (1.3) for the rates gnk, n, k ∈ N with k < n, defined in (1.1). Note that, with the
notation used in the previous proof, for n, k ∈ N with k < n,

gnk = a

(
n

2

)
1{k=n−1} +

∫
�

P

(
X0 +

∞∑
i=1

1{Xi≥1} = k

)
�0(dx)

(x, x)

with

P

(
X0 +

∞∑
i=1

1{Xi≥1} = k

)

=
k∑

j=1

P

(
X0 = k − j,

∞∑
i=1

1{Xi≥1} = j

)

=
k∑

j=1

∑
i1,...,ij ∈N

i1<···<ij

P(X0 = k − j, Xi1 ≥ 1, . . . , Xij ≥ 1, Xi = 0 for all i ∈ N \ {i1, . . . , ij })

=
k∑

j=1

∑
i1,...,ij ∈N

i1<···<ij

∑
n1,...,nj ∈N

n1+···+nj =n−(k−j)

n!
(k − j)! n1! · · · nj ! (1 − |x|)k−j x

n1
i1

· · · xnj

ij
,

which proves (1.3).

For n ∈ N \ {1}, we now study the number, Vn, of internal branches of the restricted
coalescent process which start after the time Tn of the first jump of the restricted coalescent
process (�nRt )t≥0. Note that Vn = In − Sn, where Sn denotes the number of singleton blocks
of the restricted coalescent process (�nRt )t≥0 after its first jump.

Lemma A.3. For all n ∈ N \ {1},

gn E(Vn) = a

(
n

2

)
+

∫
�

∞∑
i=1

(
1 − (1 − xi)

n − nxi(1 − xi)
n−1

)
�0(dx)

(x, x)
. (A.3)
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Proof. Fix n ∈ N \ {1}. Again, without loss of generality, we can and do assume that a = 0.
Using the notation of the previous proof, it follows that

gn E(Sn) =
n−1∑
s=0

s

∫
�

P

(
X0 +

∞∑
i=1

1{Xi=1} = s

)
�0(dx)

(x, x)

=
∫

�

n−1∑
s=0

s P

(
X0 +

∞∑
i=1

1{Xi=1} = s

)
�0(dx)

(x, x)

=
∫

�

(
E(X0) +

∞∑
i=1

P(Xi = 1) − n P

( ∞⋂
i=1

{Xi ≤ 1}
))

�0(dx)

(x, x)
.

If we subtract this quantity from the expression already derived for gn E(In), (A.2), we arrive at

gn E(Vn) =
∫

�

∞∑
i=1

P(Xi ≥ 2)
�0(dx)

(x, x)
,

and the lemma follows from P(Xi ≥ 2) = 1 − (1 − xi)
n − nxi(1 − xi)

n−1.

Remark. Fix n ∈ N \ {1}. For �-coalescents, (A.3) reduces to

gn E(Vn) =
∫

[0,1]
(1 − (1 − x)n − nx(1 − x)n−1)

�(dx)

x2 = gn.

Thus, E(Vn) = 1, which is clear, as Vn ≡ 1 for coalescents with only multiple (no simultaneous
multiple) collisions.

Corollary A.2. If (1.6) holds then limn→∞ E(n − In)/ E(Vn) = ∞.

Proof. Define the auxiliary function H : N → R via

H(n) :=
∫

�\{0}

∞∑
i=1

(1 − (1 − xi)
n)

�(dx)

(x, x)
, n ∈ N.

Note that 1 − (1 − xi)
n ≤ nxi for n ∈ N and xi ∈ [0, 1], and, therefore,

0 < H(n) ≤ n

∫
�\{0}

|x|�(dx)

(x, x)
= nH(1) < ∞.

We rewrite (A.1) in terms of the auxiliary function H as gn E(n − In) = nH(1) − H(n).
Moreover, from (A.3), it follows that gn E(Vn) ≤ H(n). Thus,

E(n − In)

E(Vn)
≥ nH(1) − H(n)

H(n)
= nH(1)

H(n)
− 1.

It remains to verify that limn→∞ H(n)/n = 0. By assumption, the measure µ(dx) :=
(|x|/(x, x))�(dx) is finite and has no mass at 0. We have

H(n) =
∫

�\{0}
fn(x)µ(dx),

where fn(x) := ∑∞
i=1(1 − (1 − xi)

n)/(n|x|) for n ∈ N and x ∈ �\{0}. From 1− (1−xi)
n ≤

nxi for xi ∈ [0, 1], it follows that 0 ≤ fn ≤ 1 for all n ∈ N. It is shown below that fn converges
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pointwise to 0 on � \ {0} as n → ∞. Therefore, H(n)/n → 0 as n → ∞ by dominated
convergence and the corollary is established. In order to verify the pointwise convergence of
fn to 0, fix x ∈ � \ {0} and let δN denote the counting measure on N. We have

|x|fn(x) =
∞∑
i=1

1 − (1 − xi)
n

n
=

∫
gn dδN

with gn : N → R defined via gn(i) := (1 − (1 − xi)
n)/n. Obviously, gn → 0 pointwise as

n → ∞, as 0 ≤ gn ≤ 1/n for all n ∈ N. Moreover, gn(i) ≤ xi =: g(i) for all n ∈ N.
The function g is integrable with respect to the counting measure εN (

∫
g dδN = ∑∞

i=1 xi ≤ 1).
Thus, fn(x) → 0 as n → ∞ by dominated convergence.
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