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Abstract

We show that, if b ∈ L1(0, T ; L1
loc(R)) has a spatial derivative in the John–Nirenberg space

BMO(R), then it generates a unique flow φ(t, ·) which has an A∞(R) density for each time
t ∈ [0, T ]. Our condition on the map b is not only optimal but also produces a sharp quantitative
estimate for the density. As a killer application we achieve the well-posedness for a Cauchy problem
of the transport equation in BMO(R).

2010 Mathematics Subject Classification: 42B37 (primary); 34A12 (secondary)

1. Description of the main results

Given an integer n > 1, a real T > t > 0 and an evolutionary self-map b(t, ·) of
Rn with

b ∈ L1(0, T ; L1
loc(R

n)),

consider the flow

φ(t, x) = x +
∫ t

0
b(r, φ(r, x)) dr.

We are motivated by the composition and transportation problems in BMO space
to answer the question:

What condition is needed on a vector field such that it generates a flow φ that
preserves BMO functions?
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Recall that

f ∈ BMO(Rn)⇔ ‖ f ‖BMO(Rn) = sup
cubes I⊂Rn

|I |−1
∫

I
| f (x)− f I | dx <∞,

where
f I = |I |−1

∫
I

f (x) dx

denotes the integral average of f over I whose Lebesgue measure is written as
|I |.

On Rn , n > 2, the question has a satisfactory solution by the seminal work of
Reimann [27] via the following (Q)-condition

sup
(x,y,z)∈Rn×Rn×Rn ,|y|=|z|>0

∣∣∣∣ 〈y, b(x + y)− b(x)〉
|y|2

−
〈z, b(x + z)− b(x)〉

|z|2

∣∣∣∣ <∞
(Q)

which is equivalent to the fact that the anticonformal part

SAb =
1
2
(Db + DbT )−

div b
n

In×n

is bounded; moreover (cf. [27]),

SAb ∈ L∞(Rn)⇒ Db ∈ BMO(Rn).

More precisely, [27] shows if b satisfies (Q) then it generates a unique flow φ,
which at each time t is a quasiconformal mapping; see also [5]. By using the
composition result on BMO by Reimann [26], one sees that the flow φ preserves
BMO; see [10] for an application of Reimann’s result to the transportation.

However, less known is the situation on R. According to Jones [21], a
homeomorphism φ : R→ R preserves BMO, if and only if, φ′ is an A∞ weight.
Recall that a nonnegative locally integrable function w is an A∞ weight, if

[w]A∞(Rn) = sup
cubes I⊂Rn

(
1
|I |

∫
I
w(x) dx

)
exp

(
−

1
|I |

∫
I
(logw(x)) dx

)
<∞.

Note that the Reimann’s (Q)-condition coincides with the Zygmund condition for
a constant C > 0:

|b(x + y)+ b(x − y)− 2b(x)| 6 C |y| ∀(x, y) ∈ R× R, (Z)

on the line. Reimann also [27] showed that for functions satisfying (Q) the
induced flows are quasisymmetric mappings. Unfortunately, quasisymmetric
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mappings are not necessarily absolutely continuous in R and a function satisfying
(Z) need not be absolutely continuous (cf. [3, 27] and [14]), in particular, this
implies that the induced flows do not have a density as A∞ weight.

In view of this, some more restrictions on b seem to be necessary for the
generated flow to have an A∞ density in order to preserve BMO functions.
Moreover, we note that Reimann’s approach [27] is rather intrinsic for the
quasiconformal/quasisymmetric mappings, and in Rn , n > 2, [27] also obtained
rather sharp estimate for the density (see also [5]), but in the line, it does not give
enough information on the density of the flow (as the flow may not be absolutely
continuous).

In this paper, we show that if b′ is of BMO(R) then b generates a (unique) flow
with A∞(R) density. Since all constant functions have zero BMO(Rn)-norm, and
any constant does effect the flow, we choose the BMO(Rn)-norm of f as

‖ f ‖∗ = ‖ f ‖BMO(Rn) +

∫
B(0,1)
| f (x)| dx,

where B(0, 1) is the unit ball of Rn . Obviously,

f ∈ BMO(Rn)⇔ ‖ f ‖∗ <∞;

however, ‖ f ‖∗ is not comparable to ‖ f ‖BMO(Rn). In what follows,

∂

∂x
b(t, x) ∈ L1(0, T ;BMO(R)) or

∂

∂x
b(t, x) ∈ L1(0, T ; L∞(R))

stands for∫ T

0

∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥
∗

dt <∞ or
∫ T

0

∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥
L∞(R)

dt <∞.

Our first main result reads as follows.

THEOREM 1.1. Let b(t, x) : [0, T ] × R→ R be in

L1(0, T ; L1
loc(R)) with

∂b(t, x)
∂x

∈ L1(0, T ;BMO(R)). (1)

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀(t, x) ∈ [0, T ] × R;

φ(0, x) = x ∀x ∈ R.
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Moreover, for each t ∈ [0, T ], ∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣
is an A∞(R) weight, and there exist constants C1, c > 0 such that

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 C1

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− c

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) . (2)

Some remarks are in order. First, from the well-known fact that the logarithm
of an A∞ weight is a BMO function (see Lemma 2.4) and the formula

log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣ = ∫ t

0

∂

∂x
b(s, φ(s, x)) ds,

we see that our condition (1) is critical, that is, for each t ,

x 7→
∂

∂x
b(t, x)

is necessarily a BMO(R)-function. Second, taking

b(x) = x log |x |

for example, indicates that b generates a flow φ and a constant C > 0 with

φ(t, x) = (signx) |x |e
t
;

∂

∂x
φ(t, x) = et

|x |e
t
−1 being an A∞(R) weight;∥∥∥∥ log

∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣∥∥∥∥
BMO(R)

6 (et
− 1)‖ log |x |‖BMO(R) 6 Ctet .

This implies that our estimate (2) is sharp.
For the proof, we shall first provide a version of the result in smooth setting,

namely,

b ∈ L1(0, T ;C1(R)) with
∂b(t, x)
∂x

∈ L1(0, T ;BMO(R)), (3)

and then use the compactness argument based on the development of nonsmooth
flows from [2, 9, 12, 13]. Since the Zygmund condition is satisfied for b, existence
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and uniqueness follow already from Reimann [27]. Accordingly, the key of the
proof is to establish (2), which even in the smooth setting seems nontrivial. By
the composition result of Jones [21], a homeomorphism φ preserves BMO(R) if
and only if φ′ is an A∞(R) weight. However, even we assume that b is smooth
on R, it seems mysteries to us whether one can prove the generated flow carries
A∞(R) density directly from (1).

In order to overcome the difficulties, we further consider the simpler case

b ∈ L1(0, T ;C1(R)) with
∂b(t, x)
∂x

∈ L1(0, T ; L∞(R)), (4)

where the generated flow carries A∞(R) density from the Cauchy–Lipschitz
theory. Then we observe that for a function v with small BMO(R)-norm, ev lies
in A∞(R) with its norm controlled by the BMO(R)-norm of v linearly. Then by
using the flow with A∞(R) density in the smooth setting, a quantitative estimate
for the norm of composition in BMO(R), and a bootstrap argument, we succeed
in showing (2) in the Lipschitz case (4). Finally a truncation argument involving
the Arzelá–Ascoli theorem allows us to pass to the case (3); see Section 3.

One may wonder if a quantitative estimate for the A∞(R)-norm of∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣
can be established. Although we do not know a positive answer, we doubt it
since a quantitative bound for an A∞(R) weight ev holds only for v with small
BMO(R)-norm; see Lemmas 2.3 and 2.4. However, there is a nice result regarding
the homeomorphisms preserving Ap(R) weights by [20].

We next apply the result on flow to study the transportation problem in BMO
space. Besides its own interest, this problem and its dual equation also arise
naturally from the study of conservation laws (see [6] for instance). In [10]
(somewhat related to [25]), a well-posedness of the Cauchy problem of the
transport equation in BMO(Rn) has been established for n > 2 and then pushed
to the case n = 1 in [29]. The main step over there is to use the hypothesis that

(t, x) 7→

SAb(t, x) ∀n > 2
∂

∂x
b(t, x) ∀n = 1

belongs to L1(0, T ; L∞(Rn)),

the quasiconformal flows of [27] and the composition results obtained in [23, 26]
for n > 2 (cf. [22, 28, 30]) and in [21] for n = 1. But nevertheless, as our second
main result we utilize Theorem 1.1 and [21, Theorem] to discover the following
stronger well-posedness of the transport equation in BMO(R).
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THEOREM 1.2. Let b(t, x) : [0, T ] ×R→ R be in L1(0, T ; L1
loc(R)) and satisfy

∂b(t, x)
∂x

∈ L1(0, T ;BMO(R)).

Then for u0 ∈ BMO(R) there exists a unique solution u ∈ L∞(0, T ;BMO(R)) to
the Cauchy problem of the transport equation

(
∂u
∂t
− b · ∇u

)
(t, x) = 0 ∀(t, x) ∈ (0, T )× R;

u(0, x) = u0(x) ∀x ∈ R.

Moreover, for each t ∈ [0, T ], it holds thatu(t, x) = u0(φ(t, x));
∂

∂t
φ(t, x) = b(t, φ(t, x)),

and there exist C2, c > 0 such that

‖u‖BMO(R) 6 C2‖u0‖BMO(R) exp
(

c
∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
BMO(R)

ds
)
. (5)

Based on the duality of Hardy space H 1 and BMO by Fefferman and Stein [16],
the above theorem provides the existence of a solution in Hardy space H 1 to the
continuity equation

(
∂u
∂t
−
∂

∂x
(bu)

)
(t, x) = 0 ∀(t, x) ∈ (0, T )× R;

u(0, x) = u0(x) ∀x ∈ R.

See [11] for a study of the equation in higher dimensions and a proof of
uniqueness (cf. [11, Theorem 3]).

Note that Mucha gives in [25] a well-posedness of the transport equation in
L∞(0, T ; L∞(Rn)) provided div b ∈ L1(0, T ;BMO) with compact support. The
condition on the vector fields b has been further relaxed in [8]. Nevertheless, let
us point out that, the well-posedness in L∞(0, T ; L∞(Rn)) requires much weaker
condition on b than one in L∞(0, T ;BMO). Indeed, given a map φ : Rn

→ Rn ,
then φ preserves L∞ functions as soon as for any set E with measure zero, the
preimage φ−1(E) has measure zero. From our previous discussions, the map φ
preserving BMO functions requires much finer regularity than this.
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The paper is organized as follows. In Section 2, we recall and establish some
results concerning Muckenhoupt weights, BMO(R), and continuity estimates. In
Section 3, we present the key a priori estimation for the flow, that is, the version
of Theorem 1.1 in the smooth setting. In Section 4, we verify the above main
results.

Notation. In the above and below, C,C1,C2, . . . and c, c1, c2, . . . stand for
positive constants.

2. Weights and bounded mean oscillation

For a locally integrable function f and an open interval I ⊂ R, we denote by
f I the integral average of f on I . We say that a locally integrable nonnegative
function w belongs to the Muckenhoupt class Ap(R) , 1 < p <∞, if

[w]Ap(R) = sup
intervals I⊂R

(
1
|I |

∫
I
w(x) dx

)(
1
|I |

∫
I
(w(x))

1
1−p dx

)p−1

<∞,

and that w ∈ A∞(R), if

[w]A∞(R) = sup
intervals I⊂R

(
1
|I |

∫
I
w(x) dx

)
exp

(
−

1
|I |

∫
I
(logw(x)) dx

)
<∞.

Note that, if w > 0 a.e., then [w]A∞(R) > 1 follows from the Jensen inequality:
indeed

[w]A∞(R) > wI exp([− logw]I ) > exp((logw)I ) exp([− logw]I ) = 1,

and similarly
[w]Ap(R) > [w]A∞(R) ∀p ∈ (1,∞).

We need the following quantitative version of the reverse Hölder inequality for
A∞(R) from [19]; see also [24].

LEMMA 2.1. Let w ∈ A∞(R) and I ⊂ R be an arbitrary interval. Then there
exist τ > 0, rw = 1+ (τ [w]A∞(R))

−1 and εw = (1+ τ [w]A∞(R))
−1 such that

(|I |−1
∫

I w
rw dx)1/rw 6 2|I |−1

∫
I w dx;

w(E)
w(I )

=

∫
E w(x) dx∫
I w(x) dx

6 2
(
|E |
|I |

)εw
∀measurable set E ⊆ I.

By [21, Theorem], we know that an increasing homeomorphism ϕ of R
preserves BMO if and only if ϕ′ belongs to A∞(R). By using the previous lemma
we deduce the following quantitative version; see [1] for an explicit bound in
terms of the reverse Hölder index and [4, 15, 17] for the related results.
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LEMMA 2.2. Let ϕ be an increasing homeomorphism on R with ϕ′ ∈ A∞(R).
Then

∃ C3 > 0 such that ‖ f ◦ ϕ−1
‖BMO(R) 6 C3[ϕ

′
]A∞(R)‖ f ‖BMO(R).

Proof. Recall that for a BMO(R)-function f , the John–Nirenberg inequality
states that, for all I ⊂ R, there exists c1, c2 > 0 such that

|{x ∈ I : | f (x)− f I | > λ}| 6 c1|I | exp
(
−

c2λ

‖ f ‖BMO(R)

)
∀λ > 0;

see [18] for instance.
Suppose that ϕ is an increasing homeomorphism of R with ϕ′ ∈ A∞(R). By

[21, Theorem], we have
f ◦ ϕ−1

∈ BMO .

For every interval
I = (a, b) ⊂ R,

set
Eλ = {x ∈ I : | f ◦ ϕ−1(x)− fϕ−1(I )| > λ}.

Then
ϕ−1(Eλ) = {y ∈ ϕ−1(I ) : | f (y)− fϕ−1(I )| > λ},

and hence, by Lemma 2.1 and the John–Nirenberg inequality, we get

|Eλ|

|I |
6 2

(
|ϕ−1(Eλ)|

|ϕ−1(I )|

)εw
6 2c1 exp

(
−

c2εwλ

‖ f ‖BMO(R)

)
where εw = (1+ τ [ϕ′]A∞(R))

−1,

thereby getting via the layer cake representation

‖ f ◦ ϕ−1
‖BMO(R) 6 C(1+ τ [ϕ′]A∞(R))‖ f ‖BMO(R) 6 C3[ϕ

′
]A∞(R)‖ f ‖BMO(R),

where we have used the fact that ϕ is an increasing homeomorphism on R with

[ϕ′]A∞(R) > 1.

The following result is well known; see [7, 18] for instance.

LEMMA 2.3. There exists α < 1 < β such that for
f ∈ BMO(R);
s ∈ R;
|s| 6 α‖ f ‖−1

BMO(R),
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it holds that
es f
∈ A2(R) with [es f

]A2(R) 6 β2.

Here it is perhaps appropriate to mention that the requirement

|s| 6 α‖ f ‖−1
BMO(R)

is critical since
x 7→ f (x) = log |x |

is in BMO(R) but
x 7→ e− f (x)

= |x |−1

is not a Muckenhoupt weight.

LEMMA 2.4. If
0 6 w ∈ A∞(R)

then
‖ logw‖BMO(R) 6 2 log([w]A∞(R) + 1).

Conversely, if v ∈ BMO(R), then there exists a sufficiently small ε0 ∈ (0, 1] such
that

‖v‖BMO(R) < ε0 ⇒ ev ∈ A∞(R) with [ev]A∞(R) 6 1+ C4‖v‖BMO(R).

Proof. On the one hand, for any 0 6 w ∈ A∞(R) we have∫
I
| log(w(x))− (logw)I | dx

=

∫
I
[log(w(x))− (logw)I ]+ dx +

∫
I
[log(w(x))− (logw)I ]− dx

= 2
∫

I
[log(w(x))− (logw)I ]+ dx,

where [ f ]+ and [ f ]− denote the positive and negative parts of f , respectively. In
virtue of Jensen’s inequality we obtain

|I |−1
∫

I
| log(w(x))− (logw)I | dx = 2|I |−1

∫
I
[log(w(x))− (logw)I ]+ dx

6 2 log
(
|I |−1

∫
I

exp[log(w(x))− (logw)I ]+ dx
)

6 2 log
(
|I |−1

∫
I

exp[log(w(x))− (logw)I ] dx + 1
)

6 2 log([w]A∞(R) + 1),
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whence
‖ logw‖BMO(R) 6 2 log([w]A∞(R) + 1).

On the other hand, note that

[ev]A∞(R) = sup
I=(a,b)⊂R

(
|I |−1

∫
I

ev(x) dx
)

exp([−v]I )

= sup
I=(a,b)⊂R

|I |−1
∫

I
ev(x)−vI dx . (6)

So, if v ∈ BMO(R), then the John–Nirenberg inequality gives

|{x ∈ I : |v(x)− vI | > λ}| 6 c1|I | exp
(
−

c2λ

‖v‖BMO(R)

)
.

Inserting this into (6), we find that if

‖v‖BMO(R) < c2

then

|I |−1
∫

I
ev(x)−vI dx =

1
|I |

∫
x∈I : v(x)−vI<0

ev(x)−vI dx +
1
|I |

∫
x∈I : v(x)−vI >0

ev(x)−vI dx

6 1+ c1

∫
∞

0
exp

(
λ−

c2λ

‖v‖BMO(R)

)
dλ

6 1+
c1‖v‖BMO(R)

c2 − ‖v‖BMO(R)
.

Accordingly,

‖v‖BMO(R) < 2−1c2 ⇒ [ev]A∞(R) 6 1+ 2c1c−1
2 ‖v‖BMO(R).

Letting
ε0 = min{1, 2−1c2}

yields the assertion.

PROPOSITION 2.5. Suppose that b ∈ L1
loc(R) has its derivative b′ ∈ BMO(R).

Then b satisfies the Zygmund condition with

|b(x + y)+ b(x − y)− 2b(x)| 6 2|y|‖b′‖BMO(R) ∀(x, y) ∈ R× R.
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Proof. This follows from

|b(x + y)+ b(x − y)− 2b(x)|

=

∣∣∣∣ ∫ x+y

x
b′(z) dz −

∫ x

x−y
b′(z) dz

∣∣∣∣
6

∣∣∣∣ ∫ x+y

x
b′(z) dz −

1
2

∫ x+y

x−y
b′(z) dz

∣∣∣∣+ ∣∣∣∣12
∫ x+y

x−y
b′(z) dz −

∫ x

x−y
b′(z) dz

∣∣∣∣
6
∫ x+y

x
|b′(z)− b′

[x−y,x+y]| dz +
∫ x

x−y
|b′(z)− b′

[x−y,x+y]| dz

6
∫ x+y

x−y
|b′(z)− b′

[x−y,x+y]| dz

6 2|y|‖b′‖BMO(R).

Recall that for a BMO(R) function f we have

‖ f ‖∗ = ‖ f ‖BMO(R) +

∫
[−1,1]
| f (x)| dx <∞.

In what follows, for a positive constant C , denote

log+ C = max{1, log C}.

PROPOSITION 2.6. Suppose that b ∈ L1
loc(R) has its derivative b′ ∈ BMO(R).

Then b satisfies

|b(x)− b(0)| 6 C5‖b′‖∗|x |(1+ | log |x ||) ∀x ∈ R

and

|b(x + h)− b(x)| 6 C5‖b′‖∗(log+ |x |)(|h|(1+ | log |h||)) ∀(x, h) ∈ R× R.

Proof. From [27, Proposition 5] and Proposition 2.5 it follows that if

y 6= 0; z 6= 0; x ∈ R,

then ∣∣∣∣ (y, b(x + y)− b(x))
|y|2

−
(z, b(x + z)− b(x))

|z|2

∣∣∣∣
6 5‖b′‖BMO(R) +

‖b′‖BMO(R)

log 2

∣∣∣∣ log
|y|
|z|

∣∣∣∣. (7)
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Letting x = 0 and z = 1 in (7) gives the first inequality in Proposition 2.6 via

|b(y)− b(0)| 6 |y|
(
|b(1)− b(0)| + 5‖b′‖BMO(R) +

‖b′‖BMO(R)

log 2
| log |y||

)
6 C5‖b′‖∗|y|(1+ | log |y||).

Also, by using the structure of BMO(R) (cf. [18, Exercise 7.1.6]) we see that if
x ∈ R then

|b(x + 1)− b(x)| =
∣∣∣∣ ∫ x+1

x
b′(y) dy −

∫ 1

0
b′(y) dy

∣∣∣∣+ ∣∣∣∣ ∫ 1

0
b′(y) dy

∣∣∣∣
6 2(log+ |x |)‖b′‖BMO(R) +

∣∣∣∣ ∫ 1

0
b′(y) dy

∣∣∣∣
6 2(log+ |x |)‖b′‖∗.

This, along with (7), derives the second inequality in Proposition 2.6 via

|b(x + h)− b(x)|

6 |h|
(
|b(x + 1)− b(x)| + 5‖b′‖BMO(R) +

‖b′‖BMO(R)

log 2
| log |h||

)
6 C5‖b′‖∗(log+ |x |)|h|(1+ | log |h||).

3. Key a priori estimates for the flow

We say that φ is a forward flow associated to b if for each s ∈ [0, T ] and almost
every x ∈ Rn the map

t 7→ |b(t, φs(t, x))| belongs to L1(s, T )

and

φs(t, x) = x +
∫ t

s
b(r, φs(r, x)) dr.

If the flow starts at s = 0, then we simply denote φ0(t, x) by φ(t, x).
Meanwhile, we say that φ̃ is a backward flow associated to b(t, x) if for each

t ∈ [0, T ] and almost every x ∈ Rn the map

s 7→ |b(s, φ̃t(s, x))| belongs to L1(0, t)

and

φ̃t(s, x) = x −
∫ t

s
b(r, φ̃t(r, x)) dr.
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THEOREM 3.1. Let

b(t, x) : [0, T ] × R→ R be in L1(0, T ;C1(R))

with
∫ T

0

∥∥∥∥∂b(t, x)
∂x

∥∥∥∥
L∞(R)

dt <∞.

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀(t, x) ∈ [0, T ] × R;

φ0(x) = x ∀x ∈ R.

Moreover, for each t ∈ [0, T ], it holds that

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− C7

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) .

Proof. The argument is divided into four steps.
Step 1: initialing argument. Since

b(t, x) : [0, T ] × R→ R

satisfies

b ∈ L1(0, T ;C1(R)) with
∂b(t, x)
∂x

∈ L1(0, T ; L∞(R)),

the classical Cauchy–Lipschitz theory produces a unique flow φs(t, x) with
∂

∂t
φs(t, x) = b(t, φs(t, x)) ∀(t, x) ∈ [s, T ] × R;

φs(s, x) = x ∀x ∈ R.

Moreover, for each t ∈ [s, T ], φs(t, ·) is a bi-Lipschitz map on R. Differentiating
the equation with respect to the spatial direction, we have

∂

∂x

(
∂

∂t
φs(t, x)

)
=

(
∂

∂x
b(t, φs(t, x))

)
∂

∂x
φs(t, x);

∂

∂t
log

∣∣∣∣ ∂∂x
φs(t, x)

∣∣∣∣ = ∂

∂x
b(t, φs(t, x)).
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As φs(t, ·) is a bi-Lipschitz map on R for each t ∈ [s, T ], its x-derivative has
lower and upper bounds, that is,

e−
∫ t

s A(r) dr 6

∣∣∣∣ ∂∂x
φs(t, x)

∣∣∣∣ 6 e
∫ t

s A(r) dr ,

where

A(r) =
∥∥∥∥ ∂∂x

b(r, x)
∥∥∥∥

L∞(R)
.

In particular, this implies that for each t , the function∣∣∣∣ ∂∂x
φs(t, x)

∣∣∣∣
is an A∞(R) weight with[∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣]

A∞(R)
6 e2

∫ t
s A(r) dr .

Note that the same estimate holds for the backward flow φ̃t(s, x), which is the
inverse of φs(t, x).

Upon applying Lemma 2.2, we achieve∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
=

∥∥∥∥ ∫ t

s

∂

∂x
b(r, φs(r, x)) dr

∥∥∥∥
BMO(R)

6
∫ t

s

∥∥∥∥ ∂∂x
b(r, φs(r, x))

∥∥∥∥
BMO(R)

dr (8)

6
∫ t

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

[
∂

∂x
φ̃r (s, x)

]
A∞(R)

dr

6
∫ t

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

e2
∫ r

s A(z) dz dr.

Step 2: starting from short time. By letting T0 > s > 0 be small enough with∫ T0

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

e2
∫ r

s A(z) dz dr < ε0,

where ε0 is as in Lemma 2.4, we utilize (8) to get

sup
s6t6T0

{∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
,

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(s, x)
∣∣∣∣∥∥∥∥

BMO(R)

}
< ε0.
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Hence, by applying Lemma 2.4, we see[∣∣∣∣ ∂∂x
φs(t, x)

∣∣∣∣]
A∞(R)

< 1+ C4

∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
.

Inserting this estimate into (8), we conclude∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6
∫ t

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

[∣∣∣∣ ∂∂x
φ̃t(s, x)

∣∣∣∣]
A∞(R)

dr

6
∫ t

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

(
1+ C4

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃r (s, x)
∣∣∣∣∥∥∥∥

BMO(R)

)
dr.

Set

Is(t) = sup
s6r6t

{∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(r, ·)
∣∣∣∣∥∥∥∥

BMO(R)
,

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃r (s, x)
∣∣∣∣∥∥∥∥

BMO(R)

}
.

The above estimates yield

Is(t) 6
∫ t

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

(1+ C4 Is(r)) dr ∀t ∈ [s, T0].

The Gronwall inequality then implies

Is(t) 6

∫ t
s C3

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr

exp
(
−
∫ t

s C3C4

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr
) ∀t ∈ [s, T0]. (9)

Step 3: removing the dependence of Lipschitz constant. Let T1 ∈ (s, T ] obey∫ T1

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

dr exp
(

C3C4

∫ T1

s

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

dr
)
6 2−1ε0.

(10)
We claim that (9) holds for all t ∈ (s, T1].

If T1 6 T0, then the claim follows from (9).
Suppose now T0 < T1. Assume that for some t0 ∈ [T0, T1), (9) holds for all

t ∈ (s, t0]. Then

Is(t0) 6

∫ t0
s C3

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr

exp
(
−
∫ t0

s C3C4

∥∥∥ ∂
∂x

b(r, x)
∥∥∥

BMO(R)
dr
) 6 2−1ε0.
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Since
∂b(t, x)
∂x

∈ L1(0, T ; L∞(R)),

we can choose t1 ∈ (t0, T1] such that∫ t1

t0

C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

e2
∫ r

t0
A(z) dz dr < ε0 (11)

and ∫ t1
t0

C3

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr

exp
(
−
∫ t1

t0
C3C4

∥∥∥ ∂
∂x

b(r, x)
∥∥∥

BMO(R)
dr
) < ε0

2C3(1+ C42−1ε0)
. (12)

The same argument as in proving (9) then implies

It0(t) 6

∫ t
t0

C3

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr

exp
(
−
∫ t

t0
C3C4

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr
)

<
ε0

2C3(1+ C42−1ε0)
∀t ∈ (t0, t1]. (13)

For any t ∈ (t0, t1], we have via the semigroup property of the flow that

φs(t, x) = φt0(t, φs(t0, x)).

By applying Lemma 2.2, Lemma 2.4 and (13), we find∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)

=

∥∥∥∥ log
∣∣∣∣ ∂∂x

φt0(t, φs(t0, x))
∣∣∣∣∥∥∥∥

BMO(R)

6

∥∥∥∥ log
∣∣∣∣ ∂∂z

φt0(t, z)|z=φs (t0,·)

∣∣∣∣∥∥∥∥
BMO(R)

+

∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t0, x)
∣∣∣∣∥∥∥∥

BMO(R)

6 C3

∥∥∥∥ log
∣∣∣∣ ∂∂x

φt0(t, x)
∣∣∣∣∥∥∥∥

BMO(R)

[
∂

∂x
φ̃t0(s, x)

]
A∞(R)
+

∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t0, x)
∣∣∣∣∥∥∥∥

BMO(R)

<
ε0C3(1+ C42−1ε0)

2C3(1+ C42−1ε0)
+
ε0

2
= ε0.

https://doi.org/10.1017/fms.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.41


Flow with A∞(R) density and transport equation in BMO(R) 17

This derives

sup
s6t6t1

{∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
,

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(s, x)
∣∣∣∣∥∥∥∥

BMO(R)

}
< ε0.

Using this estimate in Step 2, we further have the following estimate

sup
s6t6t1

{∥∥∥∥ log
∣∣∣∣ ∂∂x

φs(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
,

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(s, x)
∣∣∣∣∥∥∥∥

BMO(R)

}
6
∫ t1

s
C3

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
BMO(R)

exp
(

C3C4

∫ t1

s

∥∥∥∥ ∂∂x
b(z, x)

∥∥∥∥
BMO(R)

dz
)

dr < 2−1ε0,

which implies that (9) holds for all t ∈ (s, t1].
Since in (11) and (12) the extension of time only depends on b itself, we may

iterate this argument finite times and conclude that (9) holds for all t ∈ (s, T1].
Step 4: completing argument. Since b satisfies

∂b(t, x)
∂x

∈ L1(0, T ; L∞(R)),

we may choose a sequence of increasing numbers {Ti}i=1,...,k0 such that T1 = 0,
Tk0 = T and∫ Ti+1

Ti
C3

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
−
∫ Ti+1

Ti
C3C4

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) = 2−1ε0 ∀i ∈ {1, . . . , k0 − 2},

and ∫ Tk0
Tk0−1 C3

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
−
∫ Tk0

Tk0−1 C3C4

∥∥∥ ∂
∂x

b(s, x)
∥∥∥

BMO(R)
ds
) 6 2−1ε0.

If t ∈ (T1, T2], then Step 3 gives

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6
∫ t

0

C3

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)

exp
(
− C3C4

∫ t
0

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)
dr
) ds.

(14)
Suppose that t belongs to

some (Ti , Ti+1] with 2 6 i 6 k0 − 1.
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By using the semigroup property of the flow φ, we have

φ(t, x) = φTi (t, ·) ◦ φTi−1(Ti , ·) ◦ · · ·φT1(T2, x).

By using Lemma 2.2, Lemma 2.4 and Step 3, we conclude∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)

=

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT2(t, φT1(T2, x))
∣∣∣∣∥∥∥∥

BMO(R)

6

∥∥∥∥ log
∣∣∣∣ ∂∂z

φT2(t, z)|z=φT1 (T2,x)

∣∣∣∣∥∥∥∥
BMO(R)

+

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT1(T2, x)
∣∣∣∣∥∥∥∥

BMO(R)

6 C3

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT2(t, x)
∣∣∣∣∥∥∥∥

BMO(R)

[∣∣∣∣ ∂∂x
φ̃T2(T1, x)

∣∣∣∣]
A∞(R)

+

∥∥∥∥ log
∂

∂x
φT1(T2, x)

∥∥∥∥
BMO(R)

6 C3(1+ C42−1ε0)

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT2(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
+ 2−1ε0

6 C3(1+ C4)

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT2(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
+ 1

6 (C3(1+ C4))
2

∥∥∥∥ log
∣∣∣∣ ∂∂x

φT3(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
+ C3(1+ C4)+ 1

6 · · ·

6 (C3(1+ C4))
i−1

∥∥∥∥ log
∣∣∣∣ ∂∂x

φTi (t, x)
∣∣∣∣∥∥∥∥

BMO(R)
+

i−2∑
j=0

(C3(1+ C4))
j

6 (C3(1+ C4)+ 1)i .

Let δ0 > 0 obey
C3δ0eC3C4δ0 = 2−1ε0.

As 
ε0 6 1;
δ0 < 1;
t ∈ (Ti , Ti+1],

by our choice of {Ti} we find

(i − 1)δ0 <

∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
BMO(R)

ds 6 iδ0,
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whence∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

1
δ0

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− C

∫ t
0

∥∥∥ ∂
∂x

b(s, x)
∥∥∥

BMO(R)
ds
) .

This, together with (14), implies

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0

C3
δ0

∥∥∥ ∂

∂x b(r, x)
∥∥∥

BMO(R)

exp
(
− C

∫ t
0

∥∥∥ ∂

∂x b(r, x)
∥∥∥∥

BMO(R)
dr
)

ds
,

as desired.

Rather surprisingly, the hypothesis∫ T

0

∥∥∥∥∂b(t, x)
∂x

∥∥∥∥
L∞(R)

dt <∞

in Theorem 3.1 can be replaced by a weaker one∫ T

0

∥∥∥∥∂b(t, x)
∂x

∥∥∥∥
∗

dt <∞

in the following assertion.

THEOREM 3.2. Let

b(t, x) : [0, T ] × R→ R be in L1(0, T ;C1(R)) with
∫ T

0

∥∥∥∥∂b(t, x)
∂x

∥∥∥∥
∗

dt <∞.

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀(t, x) ∈ [0, T ] × R;

φ0(x) = x ∀x ∈ R.

Moreover

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 2C6

∥∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
0

∥∥∥ ∂
∂x

b(s, x)
∥∥∥

BMO(R)
ds
) ∀t ∈ [0, T ].
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Proof. The existence and uniqueness have essentially been established in [27]. So
it remains to verify the last BMO(R)-size estimate.

For each (k, t) ∈ N× [0, T ] set
vk(t, x) = min

{
max

{
− k,

∂

∂x
b(t, x)

}
, k
}
;

bk(t, x) = b(t, 0)+
∫ x

0
vk(t, y) dy.

Then 
∂

∂x
bk(t, x) ∈ L1(0, T ; L∞(R));

‖vk(t, ·)‖BMO(R) 6 2‖∂x b(t, ·)‖BMO(R);

‖vk(t, ·)‖∗ 6 2‖∂x b(t, ·)‖∗.

(15)

In accordance with Propositions 2.5–2.6, we see that {bk} and b satisfy the
Zygmund condition with a uniform constant.

Let {φk, φ} be the unique flow pair generated by {bk(t, x), b(t, x)}. Then by
[27, Proposition 4], we see that φ(t, ·) and φk(t, ·) are locally Hölder continuous
on R for each t ∈ [0, T ]. Moreover for each compact set K ⊂ R, both φ(t, ·) and
φk(t, ·) are Hölder continuous on K for each t ∈ [0, T ] with the Hölder exponent
and constant depending only on∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
∗

ds.

On the other hand, by the construction of bk and Proposition 2.6 we have

|bk(t, x)− b(t, 0)| 6 C5‖vk(t, ·)‖∗|x |(1+ | log |x ||)
6 2C5‖∂x b(t, ·)‖∗|x |(1+ | log |x ||),

thereby getting that

{|φk(t, x)| : (t, x) ∈ [0, T ] × K }

is uniformly bounded. Denote

C8(K ) := sup{|φk(t, x)| + |φ(t, x)| : (t, x, k) ∈ [0, T ] × K × N}.
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Then it holds for each x ∈ K and all 0 6 s < t 6 T that

|φk(t, x)− φk(s, x)| 6
∫ t

s
|bk(r, φk(r, x))| dr

6
∫ t

s

(
|b(r, 0)| + 2C5

∥∥∥∥ ∂∂x
b(r, x)

∥∥∥∥
∗

C8(K )(1+ | log |C8(K )||)) dr.

This, together with the previous discussion on the Hölder continuity in the spatial
direction, implies that {φk}k are equicontinuous on [0, T ] × K . Applying the
Arzelá–Ascoli theorem, we conclude that there is a subsequence of {φk}k , denoted
by {φK ,k}k , such that φK ,k converges uniformly on [0, T ] × K .

By construction we have

bk(t, x)→ b(t, x) as k →∞,

thereby concluding that if (t, x) ∈ [0, T ] × K then

lim
k→∞

φK ,k(t, x) = x + lim
k→∞

∫ t

0
bK ,k(s, φK ,k(s, x)) ds

= x + lim
k→∞

∫ t

0

∫ φK ,k (s,x)

0

[
vK ,k(s, y)−

∂

∂x
b(s, y)

]
dy ds

+ lim
k→∞

∫ t

0
b(s, φK ,k(s, x)) ds.

Since
|φk(s, x)| 6 C8(K ),

one has∣∣∣∣ ∫ t

0

∫ φK ,k (s,x)

0
[vK ,k(s, y)−∂x b(s, y)] dy ds

∣∣∣∣6 ∫ T

0

∫ C8(K )

−C8(K )

∣∣∣∣ ∂∂x
b(s, x)

∣∣∣∣ dx ds <∞,

and hence the dominated convergence theorem and continuity of b(t, ·) guarantee

lim
k→∞

φK ,k(t, x) = x +
∫ t

0
b(s, lim

k→∞
φK ,k(s, x)) ds.

By choosing a sequence of increasing compacts K j such that R = ∪ j K j and
passing to further subsequences, we see that there is a subsequence of {φk}, still
denoted by {φK ,k}, such that φK ,k(t, x) converges on [0, T ]×R, and uniformly on
any compact subset [0, T ] × K̃ , and consequently,

lim
k→∞

φK ,k(t, x) = x +
∫ t

0
b(s, lim

k→∞
φK ,k(s, x)) ds ∀(t, x) ∈ [0, T ] × R.
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By the uniqueness, we see that

φ(t, x) = lim
k→∞

φK ,k(t, x), ∀(t, x) ∈ [0, T ] × R,

and the convergence is uniform on any compact set.
Since

b(t, x) ∈ L1(0, T ;C1(R)),

and so is any bk(t, x). Accordingly, the proof of Theorem 3.1 yields that if
(t, x) ∈ [0, T ] × R then

log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣ = ∫ t

0

∂

∂x
b(s, φ(s, x)) ds

=

∫ t

0
lim

k→∞
vk(s, φk(s, x)) ds

= lim
k→∞

log
∣∣∣∣ ∂∂x

φk(t, x)
∣∣∣∣.

By (15) and Theorem 3.1, we see that for each k ∈ N,

∥∥∥∥ log
∣∣∣∣ ∂∂x

φk(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) .

By this, the weak-∗ compactness in BMO(R), and the pointwise convergence of

∂

∂x
φk(t, x),

we conclude that the last estimation holds also for

log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣,

thereby completing the proof.

4. Verification of the main results

Proof of Theorem 1.1. The argument consists of three steps.

Step 1: an Orlicz space estimate. Let µ denote the Gaussian measure on R, that
is,

µ(x) =
1
√

2π
exp

(
−
|x |2

2

)
,
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and divµb denotes the distributional divergence of b with respect to µ. We say
that a measurable function

f ∈ Expµ

(
L

log L

)
provided

‖ f ‖Expµ(L/ log L) = inf
{
λ > 0 :

∫
R

[
exp

(
| f (x)|/λ

1+ log+(| f (x)|/λ)

)
− 1

]
dµ 6 1

}
.

Let b(t, x) obey (1). Then
b(t, x)

1+ |x | log+ |x |
∈ L1(0, T ; L∞(R));

divµb(t, x) ∈ L1

(
0, T ;Expµ

(
L

log L

))
.

(16)

As a matter of fact, the first estimate of (16) follows from Proposition 2.6 as

|b(t, x)|
1+ |x | log+ |x |

6
|b(t, x)− b(t, 0)+ b(t, 0)|

1+ |x | log+ |x |
6 |b(t, 0)| + C

∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥
∗

.

To verify the second relation in (16), set

β(t) = |b(t, 0)| + C
∥∥∥∥ ∂∂x

b(t, x)
∥∥∥∥

BMO(R)
.

Noting that∫
R

exp
(

c|xb(t, x)|
1+ log+(c|xb(t, x)|)

)
dµ(x)

6
∫
R

exp
(

c|x |(1+ |x | log+ |x |)β(t)
1+ log+(c|x |(1+ |x | log+ |x |)β(t))

)
dµ(x),

we obtain
‖xb(t, x)‖Expµ(L/ log L) 6 Cβ(t).

On the other hand, for a BMO(R)-function f , we utilize the John–Nirenberg
inequality:

|{x ∈ I : | f (x)− f I | > λ}| 6 c1|I | exp
(
−

c2λ

‖ f ‖BMO(R)

)
, ∀ interval I ⊂ R
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to obtain that if 

I = [x − r, x + 1];

(x, r) ∈ R× [1,∞);

γ (t) =
∥∥∥∥ ∂∂x

b(t, x)
∥∥∥∥
∗

;

α = c2(2γ (t))−1,

then
| f I | 6 | f I − f[−1,1]| + | f[−1,1]| 6 C(1+ log+ |x |)‖ f ‖∗,

and hence ∫
R

exp
(
α

∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣) dµ(x)

6
∫ 1

−1
exp

(
α

∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣) dµ(x)

+

∞∑
k=1

(∫ 2k

2k−1
+

∫
−2k−1

−2k

)
exp

(
α

∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣) dµ(x)

6 e2αγ (t)
∞∑

k=0

α2ke−22k−1
+ck

(
αγ (t)

c2 − αγ (t)

)
6 C.

Consequently we achieve the desired inequality∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥
Expµ(L/ log L)

6

∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥
Expµ(L)

6 C
∥∥∥∥ ∂∂x

b(t, x)
∥∥∥∥
∗

.

Step 2: existence–uniqueness–size of flow. Under (1) we conclude via
Proposition 2.5 for a.e. t , that b is in the Zygmund class, which implies that
the flow exists and is unique; see [27] for instance.

Moreover, from Step 1 above it follows that b satisfies requirements from
[9, Main Theorem] and so that φ(t, x) is absolutely continuous and differentiable.
Indeed, by using [9, Theorem 1.2] and that b(t, ·) is in the Zygmund class, one
can deduce that ∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣(1+ log+

∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣)q

∈ L1
loc(R)

for any q ∈ [1,∞). As ∂x b(t, x) ∈ BMO(R) is locally exponentially integrable,
we deduce that

∂

∂t

(
∂

∂x
φ(t, x)

)
=

(
∂

∂z
b(t, z)|z=φ(s,x)

)
∂

∂x
φ(t, x)
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and

log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣ = ∫ t

0

∂

∂x
b(s, φ(s, x)) ds. (17)

For ε > 0 and x ∈ R set 

0 6 ρ ∈ C∞c (R);
supp ρ ⊂ (−1, 1);∫
R
ρ(x) dx = 1;

ρε(x) =
1
ε
ρ

(
x
ε

)
;

bε(t, x) = b(t, ·) ∗ ρε(x).

Note that

∂

∂x
b(t, x) ∈ L1(0, T ;BMO(R))

⇒
∂

∂x
bε(t, x) ∈ L1(0, T ;BMO(R)) ∩ L1(0, T ;C∞(R)).

Thus we have∫ t

0

∥∥∥∥ ∂∂x
bε(s, x)

∥∥∥∥
BMO(R)

ds 6
∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
BMO(R)

ds, ∀t ∈ (0, T ]

and so for any ε ∈ (0, 1)∥∥∥∥ ∂∂x
bε(t, x)

∥∥∥∥
∗

6 2
∥∥∥∥ ∂∂x

b(t, x)
∥∥∥∥
∗

for a.e. t ∈ (0, T ].

Let φε(t, x) be the flow generated by bε , that is,

∂

∂t
φε(t, x) = bε(t, φε(t, x)).

Then Theorem 3.2 is utilized to imply

∥∥∥∥ log
∣∣∣∣ ∂∂x

φε(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 2C6

∥∥∥ ∂

∂x bε(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
0

∥∥∥ ∂

∂x bε(s, x)
∥∥∥

BMO(R)
ds
)

6

∫ t
0 2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) , ∀ε > 0.
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The proof of [9, Main Theorem] infers that, up to a subsequence {εk}k∈N,

lim
k→∞

φεk (t, x) = φ(t, x), ∀t ∈ (0, T ].

From this, (17) and the weak-∗ compactness in BMO(R), we conclude that
(∂/∂x)φ(t, x) is the weak-∗ limit of (∂/∂x)φεk (t, x) for each t ∈ (0, T ]. This
implies

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
0 2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) ,

namely, the size estimate (2) holds.

Step 3: A∞(R) density of flow. It remains to show that for each t ∈ [0, T ],∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣
is an A∞(R) weight. But, from Theorem 1.2 (to be proved later on), we see that

u0 ∈ BMO(R)⇒ u0 ◦ φ(t, ·) ∈ BMO(R) ∀t ∈ (0, T ].

Then we apply [21, Theorem] to conclude that for each t ∈ [0, T ],∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣
is an A∞(R) weight.

Proof of Theorem 1.2. The argument consists of three steps.

Step 1: existence of solution. Let φ be the flow generated by b, that is,
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀(t, x) ∈ (0, T ] × R;

φ0(x) = x ∀x ∈ R.

Then the same proof of [10, Theorem 1] derives that u0 ◦ φ is a solution to the
transport equation.

Step 2: size of solution. Let ε0 be the same as in Lemma 2.4, and

δ0 > 0 & 2C6δ0e2C7δ0 = 2−1ε0.
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We choose a sequence of increasing numbers

0 = T0 < T1 < · · · < Tk0 = T

such that∫ Ti

Ti−1
2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
−
∫ Ti

Ti−1
2C7

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) = 2−1ε0 ∀i ∈ {1, . . . , k0 − 1},

and ∫ Tk0
Tk0−1 2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
−
∫ Tk0

Tk0−1 2C7

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) 6 2−1ε0.

Suppose that t belongs to

some interval (Ti , Ti+1] where i = 0, . . . , k0 − 1.

If i = 0, then by Lemma 2.2 and Lemma 2.4, we obtain∥∥∥∥u(t, x)
∥∥∥∥

BMO(R)
6 C3‖u0‖BMO(R)

(
1+ C4

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(0, x)
∣∣∣∣∥∥∥∥

BMO(R)

)

6 C3‖u0‖BMO(R)

(
1+

2C4C6
∫ t

0

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
−
∫ t

0 2C7

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
))

6 C3‖u0‖BMO(R) exp
(∫ t

0
C
∥∥∥∥ ∂∂x

b(s, x)
∥∥∥∥

BMO(R)
ds
)
. (18)

Suppose next i > 1. By the semigroup property of the flow, we may write

u(t, x) = u0 ◦ φTi (t, ·) ◦ · · · ◦ φT0(T1, x).

By Theorem 1.1, for all t ∈ (Ti , Ti+1] we have

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(Ti , x)
∣∣∣∣∥∥∥∥

BMO(R)
6

∫ t
Ti

2C6

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds

exp
(
− 2C7

∫ t
Ti

∥∥∥ ∂

∂x b(s, x)
∥∥∥

BMO(R)
ds
) 6 2−1ε0.

(19)
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A combination of (19) and Lemma 2.4 derives
∣∣∣∣ ∂∂x

φ̃t(Ti , x)
∣∣∣∣ ∈ A∞(R);[∣∣∣∣ ∂∂x

φ̃t(Ti , x)
∣∣∣∣]

A∞(R)
6 1+ C4

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃t(Ti , x)
∣∣∣∣∥∥∥∥

BMO(R)
.

Then Lemma 2.2 implies for all v ∈ BMO(R) that

‖v ◦ φTi (t, x)‖BMO(R) 6 C3‖v‖BMO(R)

(
1+ C4

∥∥∥∥ log
∣∣∣∣ ∂∂x

φ̃Ti (t, x)
∣∣∣∣∥∥∥∥

BMO(R)

)
.

Upon repeating this argument for i times more, we obtain∥∥∥∥u(t, x)
∥∥∥∥

BMO(R)
=

∥∥∥∥u0 ◦ φTi (t, x) ◦ · · · ◦ φT0(T1, x)
∥∥∥∥

BMO(R)

6 C i+1
3 ‖u0‖BMO(R)

∏i
j=1

(
1+ C4

∥∥∥ log
∣∣∣ ∂
∂x φ̃T j (T j−1, x)

∣∣∣∥∥∥
BMO(R)

)
(

1+ C4

∥∥∥ log
∣∣∣ ∂
∂x φ̃Ti (t, x)

∣∣∣∣∥∥∥∥
BMO(R)

)−1

6 C i+1
3 (1+ C42−1ε0)

i+1
‖u0‖BMO(R)

6 ‖u0‖BMO(R) exp
(

C
∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
BMO(R)

ds
)
,

where in the last inequality we have used

iδ0 <

∫ t

0

∥∥∥∥ ∂∂x
b(s, x)

∥∥∥∥
BMO(R)

ds 6 (i + 1)δ0.

This, together with (18), gives the desired size estimate.

Step 3: uniqueness of solution. This follows easily as an application of the
renormalized property of solutions established by DiPerna–Lions [13] and the
well-posedness of solutions in L∞(0, T ; L∞(R)) established in [8]; see the proof
of [10, Theorem 1] for instance.
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