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STANDARD ELEMENTS IN A NEARLATTICE

WILLIAM H. CORNISH AND A.S.A. NOOR

Nearlattices, or lower semllattices in which any two elements

have a supremum whenever they are bounded above, provide an

interesting generalization of lattices. In this context, we

study standard, neutral, and central elements, as well as

standard ideals. A new perspective is obtained in the well

established case of lattices.

1. Introduction

Standard elements and ideals in lattices were first studied in depth

by Gratzer and Schmidt [£]. Since then little attention has been paid to

these notions. Some additional work has been done by Janowitz [ H ] , while

Fried and Schmidt [6] have recently extended the idea of a standard ideal

to a convex sublattice. As a good reference, we cite Chapter 3 of Gratzer

[7].

A lower semilattice is said to have the upper bound property if the

supremum of any two elements automatically exists when they share a common

upper bound. Here, we follow the terminology of Cornish [3, Section 3] and

Noor [7 3] by describing a lower semilattice with this property as a near-

latti.ce. Alternatively, a nearlattice can be thought of as a lower semi-

lattice (A; A) such that each initial segment (t] = {a € A : a 5 t} is

a lattice, or as a lower semilattice for which the new semilattice, that is

obtained by the adjunction of a largest element, is actually a lattice. A

nearlattice is distributive if each initial segment is a distributive

Received 18 March 1982.

185

https://doi.org/10.1017/S0004972700005700 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005700


186 William H. Cornish and A.S.A. Noor

lattice, or equivalently if the infimum distributes over existent finite

suprema.

A nearlattice-homomorphism is a semilattice-homomorphism between two

nearlattices which also preserves existent finite suprema. A nearlattice-

congruence $ on a nearlattice A is a congruence of the underlying lower

semilattice such that, whenever a = b , a~ = £>„($) and a v a_ ,

b. v b- exist, a, v ou = b v b ($) . For an alternative description,

see [3, Lemma 3-2]. Quite a lot of information on nearlattice-congruences

is contained in the third sections of both [5] and [3]. A subset S of a

nearlattice {A; A, s) is called a subnearlattice if (S; A) is a sub-

semilattice of {A; A) such that, whenever e = a V b of a, b, a £ B ,

a is also the supremum of a and b in A .

In the second section of [70], a fundamental contribution was made by

Hickman. He showed that the category of nearlattices (A; A, 5) and their

nearlattice-homomorphisms is isomorphic to a variety of ternary algebras

(A; j) and their homomorphisms, in such a way that isomorphism commutes

with the forgetful functors which ground these categories in the category

of sets. Moreover, the isomorphism takes subnearlattices to subalgebras

and nearlattice-congruences to congruences of the corresponding ternary

algebra. These ternary algebras were called join algebras by Hickman and

his ternary operation j is given by j{x, y, z) = (x A y) v (x A z) on

any nearlattice. Its existence is ensured by the upper bound property;

actually, Hickman preferred (x A y) v (y A z) for his ternary operation.

Hickman's work shows that nearlattices or join algebras can be

regarded as the subreducts of lattices (£; A, v) with respect to the

derived operation j(x, y, z) = (x A y) v (x A z) . For a simplification

in the case of distributive lattices and also the subreducts of lattices

with respect to the operation x A (y v z) , see Baker [J] and Cornish [4].

Most importantly, Hickman's work enables us to consider free near-

lattices. In particular, the free nearlattice FN(x, y, z) on three

generators x, y, s can be found inside the free lattice FL(x, y, z) as

the j-subalgebra generated by x, y, z . The lattice FL(x, y, z) is

extremely complex; it is pictured in [7, p. 283]. However, FN(x, y, z)

has only ten elements, namely x, y, z, j(x, y, z), j(y, x, z), j(z, x, y),

x A y, y A z, S A X , and x A y A z . Its diagram is given in Hickman
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[70, Figure 2, p. 1668]; it also occurs in a slightly different context in

Baker [J, p. lU3]. It should be observed that the nearlattice FN(x, y, z)

is distributive. Hence, any three-generated nearlattice is distributive!

The upshot of this last observation is that at least three arbitrary

elements must be involved in any first order descriptions which extend the

notions of standard and neutral elements from lattices to nearlattices.

For, the very conceptions of standard and neutral elements in a lattice are

concerned with the distributive behaviour of these special elements and two

other elements.

In Section 2, we extend the notions of standard element and standard

ideal to a nearlattice. The emphasis is on the behaviour of the

congruences associated with them. The congruence 0 , associated with a

s

standard element s of a nearlattice A , can be neatly described in terms

of the j-operation by:

x = y[Q) if and only if, for all t € A ,

(t A x) v (t A s) = (t A y) v (t A s) .

Section 3 is concerned with neutral and central elements. Section k

deals with characterizations of these special elements, x , in terms of

the properties of their traces, t A x , in initial segments, (t] . In

this way, we are led to the notion of a strongly distributive element.

Also, it turns out that an element n of a nearlattice, or lattice, is

neutral if and only if, for all t, x , and y ,

(t A n A x) v (t A n A y) v (t A X A y)

= [(t A n) v (t A x)) A f(t A n) v {t A y)) A ((£ A x) v (t A y)) .

Thus, in the process of generalizing the notions of standard element

et cetera, and their properties to nearlattices, we obtain new insights and

results about these notions in the case of lattices. In writing this

paper, the authors have in mind the application of the idea of a neutral

element to the study of isotopes of nearlattices; a summary of part of

that study can be found in Noor [73]. Also, nearlattices occur naturally

in the investigation of reducts of certain algebraic structures, see for

example [4] and [3, Section 3], and the notion of a standard ideal might

well prove useful there.
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2. Standard elements and ideals

Recall that an element s of latt ice is standard if

x A (y v s) = (x A y) v (x A s) , for a l l a; and y . There are important

equivalents of this definition. For ease of comparison, we summarize them

in the following proposition; for proofs, see Gratzer and Schmidt [£] and

Gratzer [7, Theorem 3, p. 139].

PROPOSITION 2.1. The following conditions upon an element s of a

lattice L are equivalent.

(i) s is standard.

(ii) The relation 0 , defined by x = y (O ) if and only ifs s'

x v y = (x A y) v s for some s < s , is a congruence relation.

(Hi) s is a distributive element, that is

s v (a: A y) = (s v x ) A (s v y ) for any x, y € L , and b = a whenever

s A b = s A a and s v b = s v c .

(iv) For each ideal K , (s] v K = {8± v k : s± 5 s, k € K} .

(v) (s] is a standard element of the ideal lattice of L .

An element s of a nea r l a t t i ce A i s cal led standard i f for a l l

x , y , t € A ,

t A ((x Ay) V (x A s ) ) = ( t A X A y) V ( t A X A 8) .

(Notice that both sides exist because of the upper bound property.)

Obviously, any element of a distributive nearlattice is standard. Now

suppose s is ojstandard element of a lattice L . Then, for all

x, y, t € L ,

t A ((x A y) V (x A s)) = t A X A (y V s) = {t A X A y) V (t A X A s) .

This and a part of the next proposition show that the two concepts coincide

in a lattice.

PROPOSITION 2.2. The following two conditions on an arbitrary

element s of a nearlattice A are equivalent.

(i) For any x, y € A , x A (y v s) = (x A y) v (s A x) whenever

y v s exists.
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(ii) (a) If x v s and y v s exists for any x, y € S , then

(x A y) v s exists and (x A y) v s = (x v s) A (3/ v s) ;

(W /or any x, ;/ € .4 , /or which x v s and y v s

exist, x A 8 > 2/ As and x \i s > y \i s imply x > y .

Moreover, both (i) and (ii) are necessary for s to be standard but

are not sufficient.

Proof. (i) =» r-ii^ - Suppose x, y € A are such that x V s and

y \l s exist. Then (x A y) v s exists because of the upper bound

property. Due to (i),

( x V s ) A ( y v s ) = [ ( x v 8 ) A t / ] v [ ( x v s ) A s ]

= ( x A y ) V ( s A y ) v s = ( x A y ) v s .

A l s o , i f X A S 2 J / A S a n d x V s > y v s , t h e n *

x = x A (x v s) > x A {y v s) = (x A y) v (x A s) (by Cij)

> (x A #) v (y A s) = y A (x v s) (by f£;)

> y A (# v s) = 1/ .

(£i>l =» Cij . Suppose x , y € .4 and y v s e x i s t s . Let

p = x A (2/ v s ) and < 7 = ( x A j / ) v ( x A s ) . Now

p A S = X A S 5 q = ( x A t / ) v ( x A s ) < X A ( l / V s ) = p .

Hence p A s S q A s < p A s , t h a t i s p A s = < ? A s . O b s e r v e t h a t a s

p, s < y V s , p V s e x i s t s a n d s i n c e p = p A (y v s ) ,

p v s = [p A (iy v s) ] v s

= (p v s) A (j/ v s) (by f i i j Taj)

= (p A zy) v s (by f i i ; (a))

= (x A j/) v s

= (x A y) v (x A s) V s

= q v s .

Then by (ii) (b), p = q , that i s , CiJ holds.

Now suppose s is standard in 4, x, t/ € A and y v s exists. Then

letting y \i s = r we obtain

x A (j/ v s) = x A [ ( r A y) v ( r A s ) ]

= (x A r A 2/) v (x A r A s) = (x A 2/) v (x A s) ,

as s is standard; thus (i) and (ii,) hold.
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Finally, consider the nearlattice S in Figure 1. Here, for a l l

x, y € A , the condition (i) holds; but

d A [(e A a) v (e A s)} > {d A O A a) v (d A a A s) .

FIGURE 1

The following lemma is useful when verifying that a binary relation is

a nearlattice-congruence; i t is an extension of a characterization of

lattice-congruences; of. Gratzer [7, Lemma 8, p. 20] and Gratzer and

Schmidt [«] .

LEMMA 2.3. A reflexive, symmetric binary relation 0 on a near-

lattice A is a nearlattiee-congruenoe if and only if, for- any

x, y, z, t Z A ,

(i) x = y(Q) if and only if x A y = x(0) and x A y = y(Q) ,

(ii) X S J / S 3 J x 5 1/(0) and y = z(Q) imply x = z(Q) ,

(Hi) x 5 y and x = y(Q) imply that x A t E y A t{Q) and

x v t = y v t{Q) , whenever x v t and y v t exist.

Proof. The only if part is t r iv ia l . So assume that a reflexive and

symmetric relation 0 satisfies conditions (i)-(iii).

To prove the t rans i t iv i ty of 0 , suppose x = z/(0) and y = 3(0) so

that x A y = x(Q) , x A y = y(Q) , y A S = y(Q) and y A z = 3(0) .

Then by CiviJ, xhyfiz=yA z{Q) . But y A z = s(0) and so by fi i j ,

x A i/ A s E z(0) . Also, X A Z / A 3 S X A 3 S 3 and so by (Hi) ,

x A 3 = s(0) . Similarly, x A z E x(0) . Then by i'ij , x = 3(0) ; 0 is

t ransi t ive and so an equivalence relation.

Suppose x E #(0) so that x A y = x(0) and x A y = i/(0) . By

(Hi) , x A y A i = x A t(Q) and x A y A t = y A t(Q) for any t € S .

Thus x A t = y A t(Q) by t ransi t ivi ty . I t follows that 0 has the

substitution property for A .

Suppose x =2/(0) and x V t , y v t both exist for some t € 5 .
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Clearly, (x A y) v t exists. Now x A y = x(0) and x A y = y(Q) .
Hence, by (iii) , (x A y) v t = x v i(0) and (x A y) v t = y V t(0) .
Consequently, x V i = y V t(0) . Finally, suppose a: = y(0) and
x = J/,(0) and x v x , y v w exist. Then x = x A y = y(Q) and so

x v xx E (x A y) v xx = (x A y) v j / x = y v ^ ( 0 ) .

Before proceeding to our f irs t main result , we recall the notion of a
nearlattice-ideal, or simply an ideal. An ideal K of a nearlattice /4
is a non-empty subset such that

(i) x € K i f x < k (. K , and

(i i ) /c v k. € X whenever k V fe exists for given

\ , k2 I K .

The ideals of a nea r l a t t i ce form a l a t t i c e . Se t - in te rsec t ion i s the

infimum. The supremum i s , in general , awkward to work with. I f J and K

are ideals of A , S = J u K , and

S ={x(.A: x^yvz; yVz ex is t s and y, z € 5 } for n = 1, 2 , . . . ,

then

oo

J v K = U 5 .
n=0 n

In effect, this is a case of Exercise 22 in Gratzer [7, p. U5]; i t has an
easy inductive proof. Of course, the in i t i a l segment (x] is the smallest
ideal containing x .

THEOREM 2.4. For an element s of a nearlattice A the following
conditions are equivalent.

(i) 8 is a standard element.

(ii) The binary relation 0 3 which is defined by x = y(Q) if and
only if x = (x A y) v (x A s) and y = (x A y) v (y A S) , is a near-
lattice-congruence .

(iii) The binary relation 4> , which is defined by x = y($) if and
only if (x A t) v (t A S) = (y A t) v (t A S) /or a l l t € 4 , is a near-
lattice-congruence .
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(iv) For each ideal K ,

is] v K = {a v k : s < s, k € K and s v k exists} .

(v) (s] is a standard element of the ideal lattice of A .

Moreover, 0 and $ of (ii) and (iii), respectively, represent the same
join-partial congruence, namely 9 , the smallest nearlattice-congruence

tS

of A having (s] as a congruence class.

Proof. (i) =» (ii). Let 0 be the binary relation such that

x 3 z/(0) if and only if x = (x A y) v (x A s) and

y = (x A y) v (y A s) . Clearly, 0 is reflexive and symmetric. Now

x 3 y(Q) implies

X = {X A y) V (X A S) = [x A (X A Z/)) V (X A S) .

Also,

x A y = [x A (x A y)] v [{x A y) A S) ,

and so x E x A iy(0) . Similarly, y = x A y(Q) . Conversely,

x A y 3 x(0) and x A y = j/(0) certainly imply x 3 y(0) . Suppose

x < y 2 2 and x 3 y(0) , y 3 3(0) . Then z = y V (2 A s) and

i/ = x v (jy A s) . So

s = x v {y A s) v (2 A s) = x v (2 A s)

and it follows that x 3 2(0) .

Now let x S z/ , x 3 y(0) and x V t , y V t exist for some

t € 4 . Then 2/ v * = f* v (j/ A s) ] v * = (x v *) v (# A s) ; t h a t i s

2/ v t = (x V t) v [(2/ V t) A s] , which implies x v t 3 y v t(0) . Also,

for any r € 4 ,

r A y = r A [(x A y) v (y A S ) ]

= (r A x A !/) v (r A 2/ A s) = (r A x) v (r A y A s) ,

and so r A y = r A x(0) . Due to Lemma 2.3, 0 is a nearlattice-

congruence.

(ii) =* (Hi). Suppose x 3 j/(0) . Since 0 is a join-partial

congruence, x A t 3 j / A t ( 0 ) for any t d A . Then

and
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y A t = ( x A y A t ) \ i { y A t A s ) ,

and hence

(x A t) V (t A s) = (x A y A t) V (t A s) = [y A t) V (t A s) ;

this implies that x = j/($) . Conversely, let x = j/($) . Then

(x A t) v (t A s) = (y A t) v (t A s) for all t (. A . By letting t = x

and t = y we obtain x = (x A y) v (x A s) and j/ = (x A y) v (y A s)

respectively. Hence x = £/($) . This implies that 0 and $ are the one

and the same nearlattice-congruence.

(iii) =* (iv) . The set

IT = \s V fe : s < S, fc € K and s V k exists}

is clearly closed under existent finite suprema. Suppose x 5 s v k with

s < s and k i. K . Clearly, s V fe = fe($) and so

x = x A (s v fe) = x A fe($) . Hence for all t (. A ,

(x A t) V (t A s) = (X A k A t) V (t A s) .

Choosing t = x we obtain X = ( X A ? C ) V ( X A S ) and so x Z T . Thus 2"

is the ideal of A and it is clearly the supremum of (s] and K .

(iv) =* fuj. Let J and X be two ideals of A and suppose

x € J ' n ( ( s ] v X ) . Then x Z J and re = s v k for some s < s and

k £ K . So x = (x A s ) V (x A fe) and thus x € (j r> (s]) V (j n K) .

Consequently, J n ((s] V K] = [j <"> (s]) V (t7 n X) , which implies that

(s] is standard in the ideal lattice of 5 .

(v) =* (i) is trivial.

The last part is quite clear in view of the proof of (ii) =* (iii) and

the definition of 0 .

We now turn to ideals. An ideal K in a nearlattice A is standard

if it is a standard element of the ideal-lattice J(A) . Of course,

Theorem 2.k says s is a standard element if and only if (s] is a

standard ideal.

THEOREM 2.5. Let K be an ideal in a nearlattice. Then the

following conditions are equivalent.
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(i) K is a standard ideal.

(ii) The binary relation Q{K) , defined by x = y[O(K)) if and only

if x = (x A y) v (x A a) , y = (x A y) v (y A b) for some a, b € K , is

a nearlattice-congruenee.

(Hi) The binary relation $ , defined by x = j/($) if and only if

for all t i S , (x A t) v (t A C) = {y A t) v (t A c) for some a € K ,

is a nearlattice-oongruenoe.

(iv) For each ideal H ,

K v H = {k v h : k v h exists and k i K and h € H] .

Moreover, (ii) and (Hi) represent the same nearlattioe-aongruenae, namely

Q(K) , the smallest join-partial congruence of A having K as a

congruence class.

Proof, (i) =* (ii). Due to condition (i) the relation J = H{QV)
A'

[j, E € J(A)) if and only if J = {J n H) v {J n K) and

H = (J <i H) V (H n K) is a congruence on J(A) . Then ®V\A (restriction

to A ) is a nearlattice-congruenee on A and x = y{®K\^) if and only if

(x] = (x A y] v ((x] n K) and (y] = (x A y] v f(j/] n x) . Thus to prove

(ii) , it is sufficient to prove that (x] = (x A y] v ((x] n /f) implies

x = ( x A j / ) v ( x A a ) for some a € K . Now

oo

(x A y] V ((*] n K) = U -4 ,

n=o

where /I = (x A y] u ((x] r> K] and

4 = | t ( 5 | t < p V<;; p v<; exis ts and p, q € 4 } for n = 1, 2, . . . :

and we show, by induct ion, t h a t

(x A y] v ((x] " x) = {t : t S (x A ̂ ) v (x A a) for some a € #} .

I f * € A then t € (x A y] or t € (x] rt K . In the f i r s t ins tance ,

* 5 x A i / < ( x A j / ) v ( x A f e ) for any fe € X and in the second ins tance,

t = £ A x < (x A y) v (x A t) and t (. K . Thus the r e su l t holds for

n = 0 . Suppose the r e s u l t holds for n - 1 for some n > 1 . Let

t € 4M . Then £ < p v q with p , <j ( /i . So p 5 (x A i/) v (x A k )
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and q 2 (x A y) v [x A k ) for some k and k i K . Then

t < ( i A j ) v (x A fc ) v (x A k ) = (x A y) v (x A k) for some fc € X

(since (x A k } v (x A k ) 5 x and i s in K , i t i s of the form x A k

for some k S. K ) . Thus we have

(x A y] V ((x] " k] = {t : t 5 (x A y) V (x A k) for some k € X> ;

in ef fec t , x 2 (x A y) v (x A a) for some a € K and so

x = (x A y) v (x A a) , as required.

(ii) =* (Hi). Let x = y(O(JO) . Since 0(X) i s a congruence,

x A t H y A t(0(X)) for any t € 4 , and so

xr^t=(xf\yi\t) v ( x A t A a )

and

# A £ = ( X A t / A t ) v (y A t A i>)

f o r some a , i> € X . Then

( x A t ) v [t A [ ( t A a ) v (t A 2?)]] = ( x A t ) v (£ A a ) v ( t A Z>)

= ( x A y A t) v ( t A a ) v ( t A b) = (y A t ) v ( t A a ) v ( t A 2>)

= (y A t ) v [t A [ ( t A a ) v ( t A fc)]) .

Observe that ( t A a ) v ( t A f e ) € X . Thus x = J/(*) .

Conversely, if x = i/(*) then for any t i. A ,

(x A t) v (£ A e) = (j/ A t) V (t A c) for some c € K .

Choosing t = x and t = y , we have x = (x A t/) V (x A a) and

j/ = (xAi/) v (y h b) respectively, for some a, b S. K . Thus

x = 2/(©(K)) and $ is the nearlattice-congruence 0(K) .

f££i; •* CiuJ . Let

T = ik v h : k \l h exists and k d K, h (. H} .

Suppose x ^ f c v f r , fc € K , h € H . Clearly k v h = h[6(K)) and so

x=xA(fcvfr) = x A h{Q(K)) . Hence, for all t € S ,

(x A t) v (t A e) = (x A h A t) v (t A c) for some c Z K .

Choosing t = x , we obtain x = (x A h) v (x A b) and so x € T • But I1

is closed under existent finite suprema. I t follows that T is closed

under existent finite suprema. I t follows that T is an ideal of S and
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T = K v H .

(iv) =» (i) . Let x t J r> (K v H) . Then x € •/ and x d K v H . So

x = k V h for su i t ab le fc € X and h i H . Then x = (x A k) v (x A ft)

and so x € ( J r> K) V (J ri H) . The reverse inclusion i s obvious. Thus

J r> (K V K) = (J r> K) V (J r> H) ; K i s a standard i dea l .

The final assertion is clear in view of the proof of (ii) =» (Hi) .

The next result looks at the collection of all standard elements.

THEOREM 2.6. The standard elements of a nearlattiee A form a
distributive subnearlattice of A . Moreover, the map s *-* Q is a near-

s

lattice embedding of this subnearlattice into the distributive lattice of

all nearlattioe-oongruenoes on A .
Proof. Let s and t be standard elements.

Suppose x = y (0 n 0 ) . Then x A s = x A j / A s [Q.) and by Theorem

2.U, x A s = ( x A z / A s ) v ( x A s A t ) . But x = (x A y) y (x A s) and

so x = (x A y) v (x A s A t) . Similarly, y = (x A y) v (y A s A t) .

Conversely, these l a s t two equa l i t i es c lear ly imply x = y (0 n G ) . i t

follows from Theorem 2.U tha t s A t i s standard and what i s more

0 = 0 n 0 . Here our method of proving s A t i s standard i s the
S At S t

same as that of Gratzer and Schmidt [8] or Gratzer [7, Theorem 9, p. 1U3],

but we believe our details are essentially simpler.

Suppose s v t exists in A . For x, y, z (: A ,

Z A [(x A y) V (x A (s V £ ) ) ]

= s A [(x A y ) v (x A s) V (x A t)] (by Proposition 2.2)

= Z A [(x A ((x *j) V (x A s))) V (x A t)~]

= (s A X A ((x A y) V (x A s))) V (x A 3 A t)

= (z A X A y) V (3 A X A s) V (3 A X A t)

= (z A X A y) V (t A X A (s V t)) ,

by a second application of Proposition 2.2. Hence s v t is standard. It

is now clear that the set of all standard elements form a distributive

subnearlattice of A .

It remains to show that 0 v 6. = 0 , , when s V t exists. Now
s v svt
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0g v Qt c e g v t . Hence, suppose x = y[Qsvt) • Then

. x = (x A y) v [x A (s V t)) = (x A y) v (re A s) V (x A t ) .

Also (x A 2/) v (x A s) v (x A t) B (x A y) v (x A t ) ( 0 ) and

(x A y) v (x A t) = x A y(G,) . Hence x E x A y(© v 0.) . Similar ly ,

z/ E x A !/ (0 v 0.) . Then x = y [Q V 0.) , as required.
© t S u

From Theorem 2.6 we can obtain the expected result about standard

ideals. Indeed, the proof of Theorem 2.5 shows that for any standard ideal

K of a nearlattice A , Q(K) = QV\A , the restriction of the congruence
K

Qv on the ideal-lattice J(A) to its subnearlattice of principal ideals.

A

For any standard ideals , H and K i t is clear that

(QH\A)
 n [QK\A} = QHnK\A . Of course, H v K i s standard, and i f

x = y[Q(J v K)) then x = (x A y) v (x A (h V Zc)) for some 7i € ff and

fe € K , due to fiu>l of Theorem 2.5. As ft v k = fe(0(fl)) , we see that

0 M I ^ E (6ffM) v (G^M) . Hence {QH\A) V (0^^) = 0ffy^|A , also.

Combining this with Theorem 2.6, we obtain

COROLLARY 2.7. The standard ideals of a nearlattice A form a

distributive sublattioe of the ideal-lattice J(A) and the map K 1—• Q{K)

is a lattice-embedding of this svblattice into the distributive lattice of

all nearlattice-congruences on A .

Of course, results like the above corollary generalize corresponding

ones about latt ices. However, they cannot be directly inferred from the

case of lat t ices. Indeed, the ideal-lattice of a nearlattice need not be

isomorphic to the ideal-lattice of any lat t ice. This is because Hickman

[70, pp. 1676-1677] has produced a nearlattice in which the intersection of

two finitely generated ideals is not finitely generated.

The next result might well be important in future applications; i t

generalizes both a part of [5, Theorem 3.6] and [7, Theorem 10, p. IU9].

It is a modification of Gratzer's proof, [7], via (ii) of Theorem 2.5.

THEOREM 2.8. Let A be a nearlattice with a smallest element 0 in

which each initial segment is a complemented lattice. Then the map

K •—»• Q(K) is a lattice-isomorphism of the lattice of standard ideals of A

onto the lattice of nearlattice-congruences of A .
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Proof. Let $ be a nearlatt ice-congruence of A and

J = {x € A : x = 0($)} . Of course, J i s an idea l . Suppose a =

and l e t c and d be respect ive complements of a A b in (a] and

(&] . Then c = c A a = e A a A 2 > = o($) and d = d A fc = 0($) . Also

a = (a A i>) v (a A a) and 2? = (a A £>) v (b A d) with e , d € J .

Conversely, these l a s t r e l a t i ons imply a = b(9) . Hence, by Theorem 2 .5 ,

J i s a standard idea l and $ = Q(J) . The remainder follows from

Corollary 2.7.

The s i t ua t ion i s more complex when i t comes to permutabil i ty. We

close t h i s section with some resu l t s in t h i s d i rec t ion .

A lower semi la t t ice {A; A) i s cal led medial i f the supremum

(a; A y) v (y A z) v (z A x ) exis ts for a l l x, y, z € A . This i s

equivalent to saying tha t the supremum of any three elements ex i s t s when

the suprema of each pa i r e x i s t . Thus, a medial lower semila t t ice i s a

n e a r l a t t i c e and so w i l l be referred to as a medial nearlattice.

THEOREM 2.9. Let s and t be standard elements of a medial

nearlattiae A . Then 0 and 0. are permutable if and only if s v t

exists.

Proof. Let 0 and 0, be permutable. Since s = s A t[0 ) and

8 A t = *(©+) » there exists x € A such that 8 = (s A x) V (s A t) ,

x = (s A x) v (x A t) and t = (x A t) v (t A s) . Let

r = (s A t ) v ( t A x) V (x A s) . Then 8, t < r> and so s v t e x i s t s .

Conversely, suppose 8 v t exis ts and suppose x = y[Q ) and

y 5 3(0^) , so tha t x = (x A j/) v (x A s) , 3/ = (x A y) v (j/ A S ) ,

2/ = (1/ A z) v (j/ A t ) and z = (1/ A 2) v (z A i) . Let

p = (x A y A 2) V (x A e) V (3 A t) ; p ex is ts as each pa i r formed from

X A Z / A S , X A S and z A t has a supremum, due to the existence of

s V t . But z A i E x A z / A t (0 . ) and t/ = z(0.) . Hence

p = (x A y) V (X A 8) V (x A y A t) = (X A J/) V (X A 8) = x(0.) .

Also x = y(0 ) and x A 8 = i / A 3 A 8 ( 0 ) imply tha t

p E (ty A z) V (ly A 3 A 8) V (3 A t ) = (1/ A 3) V (3 A t ) = 3 (0g) .
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It now follows that 0 and 0. permute.
s v

COROLLARY 2.10. The following conditions on a distributive medial

nearlattice A are equivalent.

(i) A is a distributive lattice.

(ii) For any two ideals J and K , Q{J) and Q(K) are

permutable.

(iii) For any s, t (. S , 0 and 0, are permutable.
S T-

Proof. When A is distributive, all of its ideals and elements are

standard. Hence the corollary follows from Theorem 2.9 and the well known

fact that suprema of mutually permuting congruences also permute. See also

[7, Theorem 9, p. IU9].

Finally, we would like to point out that the medial property is

essential for Theorem 2.9- For example, consider the distributive near-

lattice N which is obtained by omitting the largest element from the

8-element Boolean lattice with maximal elements a, b , and c . Let its

smallest element be 0 and its minimal elements be e = b A c ,

f = a A b , and g = a A a . Actually, N is the smallest nearlattice

which is not medial. However, 0 has as its partition

{{0, /, g, a), {b, e, c}} and 0, has as its partition

{{0, e, f, b), {g, a, c}} , so that it is not hard to check that the

product 0 o 0, is the largest congruence of N . Thus 0 and 0, are

permutable and yet a V J does not exist.

3. Neutral and central elements

LEMMA 3.1. The following conditions on an element d of a near-

lattice A are equivalent.

(i) For all t, x, y € A ,

d A {(t A x) V (t A y)) = {d A t A x) V (d A t A y) .

(ii) For all x, y € A for which x v y exists,

d A (x v y) = (d A x) v (d A y) .

(iii) For all ideals J and K of A ,

https://doi.org/10.1017/S0004972700005700 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005700


2 0 0 W i l l i a m H. C o r n i s h and A . S . A . Noor

(d] n (J v K) = [(d] " j) v [(d] n ft) .

(iv) The binary relation ¥ , , defined by x = y (V ,) •£/ and only i

xhd = yi\d> is a nearlattice-congruence.

Proof. (£,) ** (ii) . When a; v y exists, put t = x V y in (i) to

obtain

(ii) =» (iii). Let a; € ( d ] n ( J V X) . Then x 5 d and x € S for
m

some m = 0 , 1 , 2 , . . . , where S = J v K and

S = f t U : t 5 a v i ) ; a v i e x i s t s ; a, b (. S } ,

when m > 1 . Suppose x € S . Then x € ( d ] " < 7 o r x € ( d ] r > Z , and

so x € ( ( d ] " ej) V {{d] rt K] . Now we w i l l proceed by i n d u c t i o n . Suppose

y € S and y S d i m p l i e s t h a t y € ((d] r, j) y [(d] r> K) . S ince
x € 5 , x 2 a v b for su i tab le a, b £ S . Then

x 5 d A (a v b) = (d A a) v (d A b) .

But d A a , i A 1 5 d and both belong to 5 . Hence

x 6 ((d] <"> j) v f(d] n x) . The reverse inclusion is always true.

(iii) =» fi/* is trivial.

Also, the equivalence of (ii) and (iv) is easy to see.

With respect to this lemma and Proposition 2.2 and its associated

Figure 1, we note that the element n of the nearlattice S of Figure 2,

below, satisfies the equivalent conditions of Lemma 3.1, as well as the

condition that x A (y v n) = (x A y) v (x A n) whenever y V n exists,

and yet it is not standard. Indeed, from Figure 2, we see that

b A ((c A a) v (c A n)) = £ > > 0 = ( b A e A a ) v ( 2 > A e A n ) .

If A , in Lemma 3-1, is actually a lattice, then an element d ,

satisfying the equivalent conditions of this lemma, would normally be

referred to as being dually distributive, of. Gratzer [7, p. 138]. But, in

the context of nearlattices, there does not appear to be a satisfactory

notion of a distributive element; see Section h, herein, and especially

our idea of a strongly distributive element. Thus, we propose to call an

element d of a nearlattice distribuant if it satisfies the equivalents of
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Lemma 3 • 1 •

FIGURE 2

LEMMA 3.2. An element n of nearlattice A is both standard and

distribuant if and only if there is a nearlattice-embedding (which can be

taken to be subdirect) into a direct product B * C nearlattices, where B

has a largest element 1 (and so is a lattice) and C has a smallest

element 0 , such that n is mapped to (1 , 0) .

Proof. When n is standard and distribuant, we can take the

embedding as the subdirect decomposition A •*• A/V x A/Q , by virtue of

Theorem 2.U and Lemma 3-1- The converse has an easy, but enjoyable,

computational proof. However, we omit the details.

Let us call an element n of a nearlattice neutral if i t satisfies

the equivalent conditions of Lemma 3-2. This must be a controversial

choice! However, as a first defence, we have

THEOREM 3.3. An element n of a nearlattice A is neutral if and

only if [n] is neutral in the ideal-lattice J(A) , even when J(A) is

considered as a lattice and neutral is interpreted in its usual lattice-

theoretic sense.

Proof. This is because of Propositions 2 .1 , 2.2, Theorem 2.U, Lemma

3.1, and Gratzer's Theorem 3, Theorem k [7, pp. 139-1^0].

S t i l l , how should we define a neutral element? The classical notion

in Lattice Theory is of an element such that i t and any other two elements

generate a distributive sublattice, see Birkhoff [2, p. 69]. This is of no

use in Nearlattice Theory due to our remarks in Section 1! More recently,

Gratzer [7, p. 138] has proposed that an element n of lat t ice L be

defined to be neutral when
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(n A x) v (n A y) v (x A y) = (n v x) A (n v y) A (x v y)

for any x, y € L ; this is because of an elegant result proved

independently by Gratzer, Iqbalunissa, and also Hashimoto and Kinugawa;

see the remark at the bottom of p. lUO in [7] for references. Of course,

this is not directly helpful to us, but we do give a supplement to it in

Section U. The only other helpful possibilities that are supplied to us by

Lattice Theory are the lattice-versions of Lemma 3.2 and Theorem 3-3- Of

course, our nearlattice-definition takes these into account. This is our

third defence, if we allude to our remarks about Gratzer's definition as

our second defence. The lattice-version of Lemma 2.2 occurs in Birkhoff

[2, p. 69] and it is skilfully exploited by Hajek in [9], which

incidentally is not referred to in the exhaustive bibliography to [7].

Fourthly, we should also require a central element to be neutral. We

shall presently see that this is the case. Finally, our concept of

neutrality should have applications; this is so, due to [73].

Having finished this discussion, we can proceed to state the following

easy consequence of Theorem 2.6 and a painless computation.

THEOREM 3.4. The neutral elements of a nearlattice form a

distributive subnearlattice.

We now turn to central elements. It is customary to define the centre

of a poset only when it has bounds; of. Birkhoff [2, pp. 66-67]. However,

Kol ibiar [12] seems to be the first to have ridded us of the fear of

bounds, at least in the case of lattices. Therefore, we define an element

z of a poset A to be central if there is an order-isomorphism of A

onto the direct product B x C of posets S , with a largest element 1 ,

and C , with a smallest element 0 , such that z is carried to the

element (l, 0) . With this notation, it is routinely verifiable that an

element z of a nearlattice A is central if and only if there is a near-

lattice-isomorphism of A onto the direct product B x C of a lattice

B , with a largest element 1 , and a nearlattice C with a smallest 0 ,

such that 3 is mapped to (1, 0) . This provides our definition of a

central element, and the subset Z(A) of all central-elements in A is

called the centre of A .

Before stating the next result, we define an element u of a near-

lattice A to be upper if u v x always exists for any x € A .
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THEOREM 3.5. The following conditions on an element z of a near-
lattice A coincide.

(i) z is central.

(ii) z is neutral and upper, and complemented in each interval,

which contains it.

(Hi) z is standard and upper, and complemented in each interval,

which contains it.

Proof. (i) =* (ii). Suppose (i) holds. Due to Lemma 3-2, z is

neutral: and the remainder is not hard to obtain.

(ii) =* (i). As z is upper, standard and distribuant, Proposition

2.2 and Lemma 3.1 imply that the map <j) : A •* [z] x [3) , where [z) is

the subnearlattice {t € A : t > 2} , is a nearlattice homomorphism. Also

<J> is one-to-one. But <j> is onto as (a, b) € (s] x [z) says that

a 5 z < b , and so (a, £>) = <j>(e) , where e is the relative complement of

z in the interval [a, b] . Thus <f> is an isomorphism and it does the

required thing for z . Hence z is central.

(i) => (iii) is obvious.

(Hi) =» (ii). Suppose (iii)'holA.s and x, y, t 6 A . Consider the

interval [(x A y A z) v (t A X A Z), z v (a; A y) v (x A t)] , which

certainly contains z . Let r be the complement of z in this interval.

From Proposition 2.2, we infer that

x A y = (x A y) v [z v (x A y) v (x A t)]

= (x A y) v (r v z) = (x A y A r) v (x A y A Z) .

Similarly,

Thus

(x A y) v (x A t) = (x A y A r) v (x A t A r) v (x A y A r) v (x A t A S )

= (x A J/ A r ) v (x A t A r ) v ( r A z) 5 r ,

and so

3 A [ ( X A y ) V ( x A t ) ] < Z ' A 3 = ( x A t / A 3 ) v ( t A X A 3 ) .

Therefore
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3 A [ ( x A y) V (x A t)] = ( z A X A y) V ( 3 A X A t ) ,

which says that z is also distribuant and, therefore, neutral.

From the above theorem, it is clear that a nearlattice is a relatively

complemented distributive lattice if and only if each of its elements is

central. Another immediate consequence of Theorem 3.5 is

COROLLARY 3.6. In a lattice, any element which is standard and

complemented in each interval containing it is actually neutral, and so

central.

This corollary is an improvement upon Gratzer and Schmidt [S,

Corollary 3, p. U5], namely, in a relatively complemented lattice, each

standard element is neutral; cf. the combined effect of [7, Corollary 9,

p. 13^] and [7, Corollary 8, p. 1^3]. We know of no reference to Corollary

3.6.

THEOREM 3.7. The centre Z{A) of a nearlattice A is a relatively

complemented distributive lattice and a subnearlattice of A .

Proof. Let s , z € Z U ) . Due to Theorem 3-5, 3 v z^ exists:

and it is clear that z A 3_ and z v 3. are neutral. Also, as each of

3 and 3 is upper, both 3 A z and z v z are upper. If [a, b ]

is an interval which contains either z A s or 3 v z , then the

interval J = \a A z A z~, b v z v s j contains all of a, b, z , z ,

3, A z~ a n d s, A 3p . Moreover, J is a bounded lattice and z , z

are central elements of this lattice. Hence, their complements in J are

central and the infimum and supremum of these complements can be suitably

compressed to produce the desired complements of 3 A z or s v z in

[a, b] , as the case may be. It only remains to show that Z(A) is

relatively complemented. We now give the details.

Suppose 3, s , 3 € Z(A) are such that 3 < z < z,, . Let z' be

the element of A such that z A s ' = 2 and s v z' = z . Since z'

is beneath the upper element 3. , the upper bound property ensures that

3' is an upper element.
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As z, z z are neutral,

t A ( ( x Ay) v (a: A 3 ' ) ) A 3 = t A ( ( x A y A a) v ( x A s A Z ' ) )

= t A ((a; A y A 3) v (x A s ) )

= ( t A a: A z/ A s) v ( i A x A 3 )

= ( t A a; A y A z) v ( t A x A s ' A z)
= ( ( £ A X A y) V ( t A X A 3 ' ) ) A 3 .

Similarly,

( t A ( ( x A y ) V { x A Z 1 ) ) V s ) = ( ( £ A X A y ) V ( t A X A Z 1 ) ) V 3 .

Because of Proposition 2.2,

t A ((x Ay) V (x A 3')) = (t A X A y) V (t A X A Z1) .

In other words, z' is standard. In a similar way, we can show that z'

is distribuant. Thus s' is neutral.

Finally, suppose a 5 z' 5 b . Then a A z 5 3 s < 2> v z and

there exist p, q £ A such that a A s = p A s = q A z and

2? v s = p v s = q v s . Let r = (((p A S ) VIJ) A 2J) v a . Then

r A z' = (((p A z A z') v (q A z')) A (b A z')) v (a A z ')

= ([[p A z±) v (q A s')) AS') v a

= (((a A s ) v (g A S ' ) ) A S') v a

= {q A z') v a .

But ^ A 3 ' 5 t ? A 3 = a A 3 S a . Thus r A Z ' = a . Similarly, we show

that v v s' = b . That is, z' is complemented in [a, b] , and so is

central. The proof is complete.

4. Traces

We first introduce a new type of element and then, in our attempts to

understand it, we are led to new characterizations of our previous elements

via the notion of trace.

PROPOSITION 4.1. Let A be a nearlattice and s € A . Then the

following two conditions are equivalent.

(i) For any x, y, t € A ,
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( t A x A y ) v (t A s ) = ( ( £ A x ) v ( t A s ) ) A ( ( t A y ) v ( t A s ) ) .

(ii) For any x, y, t € A ,

[t A ( ( x A t / ) v (x A s ) ) ) v ( x A s ) = ( t A x A y ) v ( x A s) .

Proof. f£j =» (ii) . Suppose (i) holds. Let p = (x A y) v (x A s) .

Then p A x = p and so

[t A ((a; A y) v (x A s))) v (x A s)

= (t A p) V (X A s)

= (x A t A p) V (x A s)

= ((X A t) V (X A s)) A ((x A p) V (X A s))

(by (i) ; here x, t and p play the roles of t, x and y ,

respectively)

= ((X A t) V (X A 8)) A ((x Ay) V (x A s))

= (x A t A y) V (x A s) , by a second application of f£J,

where x, t and y play the respective roles of t, x , and y .

(ii) =» fiJ . Suppose (i£>> holds. Then

((* A x) V {t A 8)) A ((£ Ay) V (t A s)]

= (((t Ax) V (t A s)} A (t A y) A (t A s))) V (t A s)

= (((t Ax) V (t A 8)) A (t A y)) V (t A s)

(by (ii) , where (t A at) V (t A a) , t and y play the roles of t, x

and y , respectively). Hence

[(t A x ) V {t A s)) A ((t Ay) V (t A s))

= (((t A x ) V (t A 6)) A (t A y)) V (t A s) = (y A t A x) V (t A 8) ,

by a second application of (ii), where y, t and x play the roles of t,

x and y , respectively.

Now suppose A of the above proposition is actually a lattice and

s € A satisfies the equivalent conditions. Let a, b € A and put

a v 2 ? v s = t to obtain

(a A b) v s = (t A a A b) v (t A s)

= ((t A a) v (t A a)) A ((t A b) v (t A s))

= (a v s) A (b v s) ,

so that s is what is customarily called a distributive element of the

lattice A .
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Thus we shall call an element of a nearlattice strongly distributive

if it satisfies the equivalent conditions of Proposition k.l. It is clear

that a standard element is strongly distributive. Now let us look at the

lattice of Figure 3, below; this lattice has been used by Gratzer [7,

p. ikW] to show that the infimum a A b is not distributive even though

both a and b are distributive. In Figure 3, b is distributive and a

is strongly distributive. However

(a A t A h) v (<z A b) < ((a A t) v (a A b)) A ((a A h) v (a A b)) ,

so b is not strongly distributive. In addition,

b A (a v c) > (b A a) v (b A a)

and so a is not standard.

FIGURE 3

It is not hard to show that any distributive atom of a lattice with a

smallest element is actually strongly distributive. Thus the atom of the

pentagon, which is covered by the largest element, is strongly distributive

but is not standard.

Thus, even for lattices, the notion of a strongly distributive element

is strictly between the concepts of distributive and standard element. How

is it possible to form a better understanding of this notion?

Let 8 be an element of a nearlattice A . If t is any given

element of A , then by the trace of s in (t] or more simply, the trace

of s , when the element t is understood, we mean the element t A s of

(t] . Perhaps it should be emphasized that the trace of an element is a

member of a lattice and so lattice-theoretic ideas and results can be

applied to it.

https://doi.org/10.1017/S0004972700005700 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005700


208 William H. Cornish and A.S.A. Noor

In this direction, part (i) of Proposition k.1 says an element is

strongly distributive if and only if its traces are always distributive.

This observation is useful when checking whether an element is strongly

distributive. In view of the example associated with Figure 3, it is also

fair enough to say that, for lattices, the notion of a distributive element

is not trace-invariant! What can be said about the trace-invariance of the

other notions of this paper? They are all trace-invariant provided that we

only deal with an upper element when considering a central element.

THEOREM 4.2. Let s be an element of a nearlattiae A . Then

(i) s is distribuant if and only if all of its traces are

distribuant,

(ii) s is standard if and only if all of its traces are

standard,

(Hi) s is neutral if and only if all of its traces are neutral,

(iv) s is strongly distributive if and only if all of its

traces are strongly distributive,

(v) provided that s is an upper element, s is central if

and only if all of its traces are central.

Proof. (i) This is an immediate consequence of part (i) of Lemma

3.1.

(ii) Suppose s is standard and a, b (. (t] . Then

ah [b v (t A s)) = a A {(t A b) v (t A S))

= (a A b A t) v [a A (t A s)) = (a A b) v (a A (t A s)) ,

and so t A s is a standard element of the lattice (t] .

Conversely, suppose each trace is standard. As x A s is standard in

(x] , t A {{x Ay) v (x A s)] = (t A x) A ((x Ay) v (x A s)) must equal

( ( t A x ) A (x A y)) V ( (£ A x) A (x A s ) ] = (t A X A y) V (t A X A s ) .

Thus s i s s t a n d a r d .

(Hi) This follows from (i) and (ii) .

(iv) If s is strongly distributive, then using part (i) of

Proposition U.I, it is easily checked that t i\ s satisfies the same

condition in (t] . Hence, each trace is strongly distributive.
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Conversely, if each trace t A s is strongly distributive, then it is

also distributive in the lattice (*] . Hence s is strongly

distributive.

(v) Suppose s is central. By (Hi), t A s is neutral in (t] .

Now suppose p S t A s S q S i . As s is.an upper element q v s

exists, and p 5 s 5 q V s . Let r be the complement of s in

[p, <7 v s] . Then it is not hard to show that t A r is the complement of

t A s in [p, q] . Thus each trace of s is central.

The converse is trivial, provided that we assume that s is upper.

This is because of (iii) . The assumption that s is upper is necessary

otherwise every element in a nearlattice, with a smallest element and the

property that each initial segment is a Boolean lattice, would be central.

This theorem appears to be trivial, yet it does have an interesting

consequence.

COROLLARY 4.3. An element n of a nearlattice A is neutral if and

only if, for all t, x, y € A ,

(t A n A x) v (t A n A y) v (t A x A y)

= [{t An) v (t A re)) A [(t An) v (t A y)) A ((t Ax) v (t A y)) .

Proof. When n is neutral, its trace t A n is neutral in the

lattice (t] and so the equality holds as t A n , t A x and t A n

then generated a distributive sublattice of (t] . Conversely, the

equality says that t A n is neutral in the lattice (£] , due to [7,

Theorem k, p. lUo]. Then Theorem It.2 does the rest.

We conclude this paper with two observations about strongly

distributive elements.

THEOREM 4.4. Let L be a lattice and s € L . Then the following

conditions are equivalent.

(i) s is strongly distributive in L .

(ii) (s] is strongly distributive in the ideal-lattice J(L) of

L .

But (i) does not necessarily imply (ii) when L is merely a near-

lattice .

Proof. Suppose s is strongly distributive. Let J, J and K be
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ideals of L . Suppose

X € [(J « J) v (j n (8])] n [(J n £) V (j n (s))] .

and

x 2 ± 2 Clearly v € I and

< r A a . Hence

Then x £ p V q p V q for some p € I n J , p € I "

, <72 € J " (s ] . Let r = v q± V

x 5 Q^ v (r v s)] A \p2 v (r A s)]

= [(P-L A r) v (r A s)J A [(p2 A r) v (r A s)J

= [px A p2 A r) A (r A s) = (p1 A p2) v (r A s) .

Thus x € (I " j n x) v (j n (e]) . As the reverse inclusion always holds,

(ii) is established. The converse, (H) °* d) , is trivial.

As to our final assertion, consider the nearlattice L of Figure k.

There s is strongly distributive as its traces are always distributive.

Observe that J(L) is as given in Figure 5- Nevertheless,

(J n J n K) V (j n (s]) < [(J n J) V (l n (s])] n [(J n X) V (l " (s])]

in the notation of Figure 5- Consequently (s] is not strongly

distributive in J(L) .

FIGURE 4

Lastly, we observe that strongly distributive elements are not well

behaved even in a finite lattice. Indeed, consider Figures 6 and 7-

Observe that in Figure 6 both s and Sg are strongly distributive. But

(t A a A b) v [t A (s A s ))

< [(£ A a) v (t A (s1 v s2))] A [(* A b) v (t A (Sl v s2))] ,
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FIGURE 5

FIGURE 6 .

FIGURE 7
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which shows that s1 v 8p is not strongly distributive. In Figure 7, both

S, and 82 are strongly distributive. However,

( t A a A b) v [t A 8 A s )

< Qfc A a) V f t A S A 8 ) ] A [ ( t A J) V (t A S A Sg)] ,

showing that s, A 8_ is not strongly distributive.
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