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DEMICONTENTUITY OF NEMITSKY OPERATORS
ON ORLICZ-SOBOLEV SPACES

GRAHAME HARDY

We give an extension, to Orlicz-Sobolev spaces, of a theorem of Marcus and Mizel on the
demicontinuity of Nemitsky operators on Sobolev spaces.

1. INTRODUCTION

In our paper [3], we gave an extension to Orlicz—Sobolev spaces of a theorem of
Marcus and Mizel (see [6]) on the mapping of Sobolev spaces by Nemitsky operators
(defined in Section 4 of this paper.) However we gave no extension of their theorem
(Theorem 4.1 in [6]) on the demicontinuity (that is,"strong —* weak"continuity) of
Nemitsky operators. In this paper, we give a theorem of this type.

We shall find that, by replacing Lebesgue Lp spaces by suitable Orlicz spaces,
and using the appropriate Orlicz space analogues of theorems on Lebesgue and Sobolev
spaces (contained in references [1], [3], [4] and [5] and Section 3 of this paper), the
proof of Marcus and Mizel for Lebesgue spaces can be modified so as to apply to Orlicz
spaces.

2. PRELIMINARIES

ORLICZ SPACES

We shall use the definitions and properties of N -functions and Orlicz spaces as
given in Krasnosel'skii and Ruticktf [5]. For ease of reference, and because our notation
occasionally differs from that in [5], we shall quote a number of results.

Throughout this section, M denotes an N -function; that is, a real valued, con-
tinuous, convex, even function on R such that M(u)/u —* 0 or oo as u —> 0 or oo
respectively, and fi denotes a bounded domain in Rn.

(i) We say that M satisfies the A2 -condition if there exist constants K > 0, «o ^ 0
such that

(2.1) M(2u) ^ KM{u) for all u ^ u0.

We shall also need the equivalent criteria given in (ii).
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30 G. Hardy [2]

(ii) M satisfies the A2 -condition if and only if either

(*) there exists a constant u0 ^ 0 and a real valued function KM (which
may be taken to have the form KM{£) — CV1, where (7-^1 and /z > 1)
such that

(2.2) M(lu) ̂  KM(£)M(u) for I > 1 and u ̂  u0;

or

(**) there exist constants u0 ^ 0 and p > 1 such that

(2.3) uM'+(u)/M(u) <p for all u > u0

(M'+ denotes the right derivative of M).

(iii) Let M(v) = supu^0 [u\v\ — M(u)] so that M is the N - function complementary
to M; then the following inequalities hold:

(2.4) u^M~1(u)M-1(u)^2u, u > 0.

(iv) The Orlicz class L*M(SI) is the set of all functions u , measurable on SI, such that
Jn M o u < 00, and the Orlicz space LM(SI) is the set of all functions u, measurable
on $7 , such that either

* there exists k > 0 such that / M[ku(x)]dx < 00, or
./n

** for all v e -ktv(ft), I f uv\< 00.
./n

(v) The Luxemburg norm ||u||M,n = inf{A > 0: Jn M(u/X) < 1} is monotone in the

sense that if |ii(a;)| ^ |v(x)| for almost all x £ SI, then ||u||jif,n ^ ||vj|Af,n•

ORLICZ-SOBOLEV SPACES

We shall use the definitions and properties of Orlicz-Sobolev spaces as given in
Donaldson and Trudinger [1]. We shall only need to consider these spaces defined on
bounded domains SI C R" satisfying the cone condition.

(vi) Let Q be an N -function. Then the Sobolev conjugate N -function Q* of Q is

defined by

(2.5) {Q')~\s) =
Jo

where it is assumed that, if necessary, Q(t) is redefined for small values of t (obtaining
an equivalent N-function) so that

(2.6)
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[3] Orlicz-Sobolev spaces 31

Q* has the property that Q -< Q* , that is, that there exist constants uo and k such
that Q(u) < Q*{ku) for all u ^ uo. This implies that there exists a constant C such
that, for all u 6 LQ'(Q),

(2-7) NlQ.n<<7||ti||Q.,n.

(vii) The Orlicz-Sobolev space W ^ Z ^ n ) is defined as the set of all functions u in

LQ(Q,) whose distributional derivatives dX{u also belong to LQ(£1). A norm ||W||I,Q =

IWIU.Qtf* may be defined on W1
 LQ(SI) by

| |« | | l l Q = max{||«||Q; \\dXlu\\Q,..., ||a«Bii||Q}.

In the case that lim (Q*)~1(s) = oo, there exists a constant C such that
8—*OO

(2-8) N k \ n <C||«||1,Q,n.

(viii) Let Q i , . . . , Qm be N-functions. We shall denote the set of vector-valued func-
tions u = ( « i , . .. , u m ) , for which uj, 6 W1Lqk(Q,),k = 1 , . . . ,m , by W1

 L-Q{£1) , and
use the norm

on this space.

We shall also need the following chain rule (see [3]):

(ix) Let g:R —> R be a locally absolutely continuous function and let fj be a bounded

domain in Rn having the cone property. Suppose u 6 Witi(£l), and let v = g o u.

Then v £ W1LP(n) if and only if

(2.9) vi = [g ou] dXiu£LP{n), i = l,...,n,

the product being interpreted as zero wherever dXiu = 0. Moreover, if (2.9) holds,

Vi — dXiv almost everywhere in fi,i = 1 , . . . ,n.

3. MAPPINGS BETWEEN ORLICZ SPACES

We shall need an extension to Orlicz spaces of a theorem of Halmos (Theorem 1
in Halmos [2]) on the mapping of Lebesgue spaces by Borel measurable functions. For
convenience, we shall first quote the following lemma - essentially a particular case of
Lemma 3.2 in [4].
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32 G. Hardy [4]

LEMMA 3.1. Let P and Q be N -functions, and let il be a bounded domain in

R n . Then

(i) Q-1 oPou e LQ(SI) for all u £ LP(n) if and only if C?"1 o P satisfies

the A2 -condition,

(ii) in the case that Q~1oP satisfies the A2 -condition, there exists a constant

C such that

(3.1) WQ-1 o P o «||Qin < C [1 + ffQ-.0/>(||u||p1n)] ,

where Kq-\op denotes the function which occurs in the alternative cri-
terion 2 (ii*) for the A2 -condition.

NOTE: We do not assume that Q~l o P is an N-function, however the definition
of the A2-condition still makes sense in the present context.

Our version of Halmos' theorem is then:

THEOREM 3.2. Let f be a reai valued Borel measurable function on Rm , and ft
be a bounded domain in Rn . Let P\,...Pm and Q be N-functions.

(a) If / ( w j , . . . ,wm) G LQ(Q) for all uk £ L*Pk(Q,),k = 1 , . . . ,m , then there

exists a constant C such that, for all points (crj , . . . ,<Tm) in Rm , the

inequality

(3.2) \f(<T1,...,<rm)\<C

is satisfied.

(b) If f satisfies an inequality of the form (3.2) for all (cr\,... ,<rm) £ Rm ,
and if each function Q~^ 0 i \ , k = 1 , . . . , ro, satisfies the A2 -condition,
then f(ui,... ,um) £ LQ(£1) whenever Uk £ Lpk(il),k = 1 , . . . , m .

PROOF: (a) Suppose (3.2) is false. Then there exists a sequence {(y", • • • ,Vm)} °f
points in Rm such that, for v = 1,2,. . . ,

(3.3) _

n
Let flv, v = 1, 2 , . . . , be pairwise disjoint measurable subsets of ft such that

(3.4) |J EH/
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[5] Orlicz-Sobolev spaces 33

where | • | denotes Lebesgue n-dimensional measure.

We define functions it*., k = 1 , . . . , m , by

[ yi for t e nv,
Uk(t) = <

[̂  0 otherwise in fl.

Then, for fc = 1 , . . . ,ra , using (3.4), we have

so that each Uk € £ p (f2).

We define the function v by

f E ( i W Q " 1 o pfc(i + |yj;|) for * e n,,,
Tj(<) = { fc=l

(, 0 otherwise in il.

Using the convexity of Q and (3.4), we have

oo f m T. oo

Qov = YtQV£t(Vmjg-1 opfc(i + |yj;

m

^ o Q - 1 o pfc(i

f ] t ( l ) /2"<oo,
v=\ L f c = l

so that v 6 i^(fi).

However, using (2.4), we have

/ f(ui,-.-,um)v
Jn

OO

^ ( 1 / "

^ ( l / n

= oo,

I"
171

£*?
.fc=i
oo

"J o

m

riv=\ fc=l

l )S21
using (3

2J
4)-

fk\)]

https://doi.org/10.1017/S0004972700004123 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004123


34 G. Hardy [6]

Therefore, using the criterion (**) from 2(iv), we see that / ( « i , . . . ,um) £ LQ(SI) .
This contradiction shows that the inequality (3.2) holds. The proof of (b) follows
immediately from Lemma 3.1.

REMARK: Halmos also considers the case in which the domain has infinite measure
- Theorem 2 in [2]. While this case is not needed for this paper, for completeness we
observe that Theorem 3.2 remains valid if we make the following changes:

(i) "Jl is a bounded domain in R" " is replaced by "fi is a domain in Rn with
|0 | = oo" and " A2-condition" is replaced by "global A2-condition",
that is, 2(i) with u0 = 0.

(ii) The inequality (3.2) is replaced by
m

(3.5) \f(trlt.. .,<rm)\ < C £ Q^o Pfc(<rfc).
*=i

We give the proof only in outline, as it is almost the same as that of Theorem 3.2.
Suppose (3.5) is false. Then there exists a sequence {(yj ' , . . . , y£,)} such that

(3.6) i / ( 2 / r , - . - , ^ ) i > 2 " f ; g - i o p f c ( 3 / n , ^ = 1 ,2 , . . . .

Because a function which is identically zero on il belongs to each Lp (fl), and
a constant function can belong to LQ(H) with |fi| = oo only if it is identically zero,
we must have / ( 0 , . . . , 0) = 0 , and then (3.6) implies that (yj",... , y!^) ^ ( 0 , . . . , 0).
Therefore we may choose a pairwest disjoint sequence {$!„} of measurable subsets of
fi such that

in I _ i ly

We define functions U\,..., um and v by

J y% for t £ fi,,,

I 0 otherwise in fi,

0 otherwise in fi,

and then, as before, we find that uk € L*Pk(Q), v £ L'JQ.), and Jn f(ui,. .., um)v = oo ,
that is, / ( « i , . . . ,um) fi LQ(J7) . This contradiction shows that the estimate (3.5) must
hold.

Since Lemma 3.1 remains valid if we make the changes (i) in its hypotheses (this
follows by routine modifications of the arguments used to prove Lemma 3.2 in [4]), the
modified version of (b) follows immediately.
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[7] Orlicz-Sobolev spaces 35

4. DEMICONTINUITY OF NEMITSKY O P E R A T O R S

DEFINITIONS AND NOTATION

Let A(ft) denote the class of real measurable functions u on O such that, for
almost every line r parallel to any co-ordinate axis, u is locally absolutely continuous on
Tl~lft. A'(ft) denotes the class of functions u such that u coincides almost everywhere
in ft with a function u in A(ft) . For u £ A'(Q), the symbol d'x.u denotes any member
of the equivalence class of functions measurable on ft which contains the classical partial
derivative du/dxj.

A function g: ft x Rm -> R is said to be a locally absolutely continuous C&ratheo-
dory function if

(i) there exists a null subset Ng of ft such that if x € ft — Ng ,
(a) g{x,-) is continuous in Rm ,
(b) for every line r parallel to one of the axes in Rm,

the function g(x,-) restricted to this line
is locally absolutely continuous;

(ii) for every fixed < e R m , w e have g{-, t) E A'(ft).

An operator G on vector valued functions u = ( u j , . . . , u m ) , measurable on ft,
defined by

Gu(x) = g(x,u(x))

is called a Nemitsky operator.
We can now give our theorem on demicontinuity, an extension to Orlicz-Sobolev

spaces of Marcus and Mizel's Theorem 4.1.

THEOREM 4.1. Let Q be a bounded domain in Rn having the cone property, and

let g be a locally absolutely continuous Caratheodory function on ft x Rm. Let P,

Qk , and Qk for k = 1,... ,m, be N -functions having the following properties:

(i) P, P , and Qk satisfy the A2 -condition;

(ii) P-iQk!

(iii) there exist complementary N -functions Rk and Rk , and constants a*, j3k
and jk for k = 1 , . . . ,m, such that the inequalities

Rk(u) < P-1 [Q

and

are satisfied for u ^ -fk i

(iv) (Ql)-1 O Qr for k,j = 1 , . . . , m, and P " 1 o Q) for j = 1 , . . . , m, satisfy

the A2 -condition;

(v) (<?;)-»-»«> as «-*«>.
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36 G. Hardy [8]

Suppose a, b, a* and bk,j are functions such that

I For every fixed ( € R m ,

|c^..<7(z,i)| ^ 1(2) + b(i) almost everywhere in fl,for i! = 1,. . . ,n .

II The inequality

m

\8g(x,t)/dtk\ < o i ( i )

holds at every point (x,t) £ (fi — JVs)xRm at which t ie derivative exists in the classical

sense.

Furthermore, a, b, o/t and bkj have the properties (vi) to (xiii) given below:

(vi) o^aE Lp(n);
(vii) b is non-negative and continuous in Rm ;

(viii) o < at € i _ t (fi), A; = 1,...,m, where a/t is everywhere finite;

(ix) o < 6fc,j is an everywhere finite Borel function on R, k,j = 1 , . . . ,m;
(x) frj.^ is continuous, fc = 1, . . . ,m;

(xi) 6 defines, by composition, a mapping from LQ»(Q) x . . . x Lg^(n) to

(x i i ) bkj defines, by composition, a mapping from LQ*(H) to L i(£l), for

k,j = l , . . . , m ;

(xiii) the mappings in (xi) and, for j = k, in (xii), are continuous.

Then G maps W1 L-^Q,) into W1Lp(H) and is demicontinuous and bounded.

Moreover G is continuous as a mapping from WlLQ(P,) to Lp(fl).

We follow the method of Marcus and Mizel; however, as the details are somewhat

different, we shall still briefly give the proof for the convenience of the reader.

PROOF: From (xi), (xii) and Theorem 3.2, for a E R and (cri,... ,<rm) £ Rm we
have

(4.1) |6fc,,-(<r)|< const. (Q*)-1 [Qmj{l + \<r\)] , for k,j = 1 , . . . ,m ,

and

(4.2) \b(<rlt...,<rm)\^ const. [P'1 o QJ(1 + fa |) + . . . + P~' o Q'Jl + \am\)} •

Further, (iii) implies that, for u £ LQ\ (fi) and v € LQk(£l), we have

(4.3) ll«w||p,n < const. ||u||Q,in||i;||Q4in> k = l,...,m.
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[9] Orlicz-Sobolev spaces 37

(See [5], p.223).

Let u" = « , . . . , < J for v > 1, converge to u° = (u*,... ,u°m) in W ^ L ^ f t ) .

Using (2.8), we find that uv
k —+ uj£ m •^Q*(^)i & — l , - - - , " i , and further using 2(ix)

and (xii), we have

(4.4) dXi(pkouv
k) = {bk,kouv

k)dXiu
v
k, for i/ = 0 , 1 , 2 , . . . ,

where /?fc(cr) denotes / bktk(p)dp.
Jo

From (4.3),

(4.5) || (bkyk o uv
k - bkik o ^ ) ^ " f c l | p , n

^ const. ||6fc,jfeow^ -bktk o uo
k\\Q^n\\dXiuk

J\\QktQ

—> 0, using (xiii); and

\\bk,k o u°k(dXiu
v
k - dXiuk)\\Pin

< const. \\bk,k°u°k\\Qin\\dx.uk'-dXiul\\Qkio -» 0,

and so, from (4.4),

(4.6) \\dXi{pkouv
k)-dXi(l3kOu0

k)\\ptn - > 0 , for fc = l , . . . , m

From the definition of /3k and (4.1), we have

| / M O - Ph(°')\ < const. [(Q^)-1 o QJ(1 + |cr"|) + (Qt j - i o g j ( 1 +

and then using (4.3), the triangle inequality (see [5], p.79), Lemma 3.1, (iv), and de-
noting {Q\)~l oQl by * , we obtain

(4.7)

const. ||(C?l)-1oQ^l + K|) + (Q*)-1oQJ(l + K|) | |

const, [l + K* (||1 + K | ||Q.in) + tf* (||l + K | | | Q . n '

Following Marcus and Mizel, we denote Gu" by vv for v = 0 ,1 ,2 , . . . , V" bkj(tj)

m

by c j ^ t ) , and V bkJ(tj) by c(
fc

2)(t) for k = 1 , . . . ,m .

https://doi.org/10.1017/S0004972700004123 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004123


38 G. Hardy [10]

Then (see [3]) their arguments can be modified (by replacing a number of results
for Lp spaces by their analogues for Orlicz spaces) to show that the following analogue
of their inequality (4.7) holds:

(4.8) K - i > 0 | | p , n < f ; const. \\\ak + c[1} o u" + c{2) o «°|| , Ju"k - u°k\\QkJ
k=i L *' -1k=i

Using (xii) and (4.7), (4.8) shows that \\vv - v°||p,n - • 0.

Similarly, we have the following analogue of (4.8) in [6]:

(4.9)

||^w"||p,n <||o||p,n + ||&°«"||p,n

const.

Jfe=i

where ck(t) = ck (i) + ck (t) .

(It appears to the author that, in [6], $7 should be substituted for 17' in (4.8), and

the words "by Lemma 1.6" in the following paragraph should be deleted.)

Using Lemma 3.1 with the estimates (4.1) and (4.2), together with (4.6) and the

convergence of each sequence u£ in ZQ« (SI), we can show that the right-hand side

of (4.9) is uniformly bounded in i/, and so, for each i, i = l , . . . , n , the functions

dXiv
v form a bounded set in Lp(Sl). From this, together with the facts that Lp(Sl)

is reflexive (because we assume that both P and P satisfy the A2 -condition) and

that v" —> v° in Lp(Sl), we can show that dXiv
v —> dXiv° weakly in Lp(Sl). Thus

v" —> v° weakly in W1Lp(Sl), and so G is demicontinuous as a map from W1L-Q(SI)

to W1LP(U). I

NOTES ON THE HYPOTHESES

Note 1. We can slightly simplify the hypotheses (at the expense of the generality)
of Theorem 4.1 if we assume that each function C?£ ,k = 1, . . . ,m, satisfies the A2-
condition. Then if K is the constant in the definition 2(i) (for Q*k ), on using the
concavity of P~x and the fact that necessarily K > 2, we find that, for large enough
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[11] Orlicz-Sobolev spaces 39

and so, for large enough u,

P - 1 [Ql(2u)} < P-1 [KQ'k(u)} ^ KP-1 [Ql(u)\

and P " 1 oQ|J satisfies the A2 -condition. Since the same comment applies to (Qj.)"1 O
Q*J , the hypothesis (iv) may be replaced by

(iv1) Q1 for fc = 1 , . . . ,m satisfies the A2 -condition.

It is evident that, in this case, to apply the theorem, we shall need to identify
classes of N -functions Qk such that both Qk aid Q% satisfy the A2-condition, and
(QJ)~1(v) —* 00 as v —> 00. A simple means of doing this is provided in Proposition
4.2.

PROPOSITION 4.2. Let Q be an N -function, and let Q* be defined (in terms of

the positive integer n) as in (2.5). Suppose that there exist constants U and p, where

U ^ 0 and 1 < p < n, such thai

(4.10) uQ'+{u)/Q(u) < p, u > U.

Then

(i) Q satisfies the A2 -condition;

(ii) Q* satisfies the A2 -condition;

(iii) (Q*)~1(i)) —» 00 as D —> 00.

PROOF: (i) follows immediately from (4.10) and (2.3).

From (4.10) there exist constants C > 0 and T > 0 such that

(4.11) Q

and (see [5], p.25)

(4.12) Q-\t)

for all f ^ T. Because of (2.6), we shall assume that T > 1. Then, for v > T, we
have, using (4.11) and then integrating by parts,

'tO-r1"1/"* ^P [V{Q-1)'+(t).t-1/ndt
JT
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40 G. Hardy [12]

that is (using (2.5))

(4.13) [(<?T» - ( Q T W ] [1 - (p/n)} < PQ-\v).v-l'n - pQ-l(T).T-^.

Let p* = {np)l(n - p). Since v [(Q*)'1}'(v) = Q-^v)^-1'", we may write (4.13) in
the form

(QT1 W/" [(QT1]'(v) <P*+P' [(Q*r\T) - Q-\T).T-'in] v^/Q-Hv).

From (4.12) and the assumption that 1/n < 1/p, we find that v1/n/Q~1(v) —> 0 as
v —>oo, and so

(4.14) Jim^sup [(QT1] (v)/t, [ W T ' j ' W ^ ' .

As (4.14) is equivalent ot 2(ii)(**), this proves (ii).

(iii) follows because, from (4.12),

(t).t~ ~ 'n dt ^ C I t 'p~ ~ 'n dt —» oo as v —> oo.
JT

Note 2. We can construct families of N-functions satisfying the conditions (i),
(ii), and (iii) of Theorem 4.1, from (suitable) known N -functions, such as can be found
in [5], using the following proposition:

PROPOSITION 4.3. Let P and R be N -functions satisfying the A2 -condition, and

let Q — P o R, Qi = R o R. Then Q and Q^ are N -functions having the properties:

(i) Q satisfies the A2 -condition;

(ii) P<Q;
(iii) R = P~1 oQ and R = P~1oQ^.

PROOF: By their definition (see [5], p.10) Q and (?• are TV-functions. For I > 1,
and large enough u, using the notation in 2(ii*), we have

Q(lu) = P o R(lu) ^ P [KR(l)R(u)} < KP \KR(l)) R(u)

which proves (i).

Because R is an AT-function, R(v)/v ->oo as t i - t o o , from which we obtain, for
any K > 0

u < R(KU)

https://doi.org/10.1017/S0004972700004123 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004123


[13] Orlicz-Sobolev spaces 41

and further
P(u) < P o R(KU) = Q{KU)

for large enough u. This proves (ii).

(iii) is immediate. I

We shall give two concrete examples. The first shows that our Theorem 4.1 contains
Marcus and Mizel's Theorem 4.1 (for p < qi < n only) as a particular case, and the
second shows that our theorem 4.1 contains results not included in Marcus and Mizel's
Theorem 4.1.

EXAMPLE 4.4: Let n be a positive integer ^ 2, and let 1 < p < qk < n, (1/gJ.) +
( I / f t ) = 1/p, and ql = nqk/(n - qk). Let P(u) = |u|* and Rk{u) = /

that

Then P and P satisfy the A2 -condition,

and

It is evident that conditions (i), (ii), and (iii) of Theorem 4.1 are satisfied. Moreover,

since Q*k(u) = const. |u|** , it follows (either directly, or using Proposition 4.2 and the

fact that lim [uQ'k(u)/Qk(u)] = qk < n ) that conditions (iv) and (v) of Theorem 4.1
u—>oo

are also satisfied.

EXAMPLE 4.5: Let P be as in Example 4.4; now let Rk(u) = (1 + |u|)fn(l + \u\)

— \u\. Then (see [5]) Rk satisfies the A2-condition, and Rk = e'°l — |w| — 1. Using
Proposition 4.3, it is immediate that P, P, Qk = P o Rk and Qk = P o Rk satisfy
conditions (i), (ii) and (iii) of Theorem 4.1. Since lim [uQ'Ju)/Qk(u)] — p < n,

u—»oo

Proposition 4.2 shows that conditions (iv) and (v) are also satisfied.

Note 3. Marcus and Mizel do not assume the continuity of the composition
operators associated with b and bktk (our hypothesis (xiii)) because in the case of
Lebesgue spaces, this is an immediate consequence of the Lebesgue - space analogues of
our hypotheses (xi) and (xii), that is, conditions (4.1) of Section 4 of [6]. For references
to the proof of this, see [6]. In our case, continuity does not follow from our hypotheses.
We remark that the required continuity would follow if, say, we assume that, in addition
to the hypotheses of our Theorem 4.1, (except for (xiii)) that

(a) Each function Ql for k — 1 , . . . ,m , satisfies the A2 -condition;

(/?) Each function Qk for k = 1 , . . . ,TO, satisfies the A2-condition.
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(a) and (/?), together with the assumption already made, that P satisfies the A2-

condition, would then give the required continuity, so that the hypothesis (xiii) could be

dispensed with. This follows from suitable modifications of Theorem 17.3 in [5], using

the fact that EM{Q) = LM{^) = L*M(Q.) if M satisfies the A2-condition.
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