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Abstract

Interpreting //-conversion as an expansion rule in the simply-typed A-calculus maintains the
confluence of reduction in a richer type structure. This use of expansions is supported by
categorical models of reduction, where ^-contraction, as the local counit, and ^-expansion, as
the local unit, are linked by local triangle laws. The latter form reduction loops, but strong
normalization (to the long /ty-normal forms) can be recovered by 'cutting' the loops.

Capsule Review

This paper presents a confluent strongly normalizing rewriting system for-the typed A-calculus
corresponding to cartesian closed categories with natural number object. The idea put to work
in this paper is that of using a rewriting system where extensional equalities (the (ri) rule,
Xx.Mx = M and surjective pairing, (piM,piM) = M) are turned into expansion rules, rather
than contractions, as is customary.

This idea is not new: Prawitz (in proof theory), Huet (for higher order unification) and
Mints (in category theory) all somehow suggested in the 1970s to explore this possibility. But
these suggestions really got lost until the 1990s (maybe due to the initial success obtained
by Pottinger and others in handling surjective pairing as a contraction), when Barry Jay
re-discovered this idea (with category-theoretic motivations) and fully exploited it. The work
was originally reported in a technical report in 1991. This fuller paper by Jay and Ghani is
well-written and a nice exposition of the issues related to eta-expansion.

1 Introduction

Extensional equality for terms of the simply-typed A-calculus requires ^-conversion,
whose interpretation as a reduction rule is usually a contraction

kx.fx=>f
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136 C. B. Jay and N. Ghani

If the type structure contains only arrow and product types, whose ^-reduction is

(TIC, n'c)=>c

then the resulting system, including the usual ^-reductions, has the properties of
being: a congruence; confluent and; strongly normalizing. Thus reduction provides
an effective procedure for deciding the equality of terms.

However, the additon of further datatypes typically causes one of these properties
to fail. Even the introduction of a unit type (necessary for defining types with given
constants, such as booleans and lists) is problematic. Specifically, if * : 1 is the given
constant of unit type, with //-rule

a=> * if a : 1

then confluence is lost because for any variable / : A-*\ the term Xx.fx has two
normal forms

Xx. * <= Xx.fx => f

(as noticed by Obtulowicz, and reported in Lambek and Scott, 1986).
Lambek and Scott handle this problem by suppressing all terms of unit type

other than *, while Curien and Di Cosmo (Curien et a/., 1991) recover confluence
by applying the Knuth-Bendix algorithm to obtain additional reduction rules, while
only preserving weak normalization.

However, confluence can be maintained without restrictions or the introduction
of new rules by interpreting >j-conversions as expansions

t =>
c =>
a =>

Xx.tx
(nc,n'c)
#

if t
ifc
if a

: A—*E
:AxB
: 1

Note that in each case the amount of type information which can be inferred from
a term is increased.

In addition to the recovery of confluence, the category-theoretic analysis of re-
duction provides a second argument in favour of interpreting r\ as an expansion.

In this analysis, types are interpreted by objects, terms by morphisms, and re-
ductions by 2-cells. For example, if (Xz.t)a is a term of type Y containing one free
variable of type X, then its ^-reduction is represented

(Xz.t)a
X Jl Y

t[a/z]

Labelling the 2-cells yields a 2-category (Seely, 1987; Rydeheard, 1987), while leaving
them unlabelled yields an ordered category (Jay, 1992). If the 2-cells are actually
equalities then the result is the (ordinary) category of denotations.

Just as in the denotational semantics of 2-terms, models of reduction should be
cartesian closed categories, where cartesian closure and, more generally, adjunctions
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The virtues of eta-expansion 137

are re-interpreted to accommodate 2-cells. Exactly how this should be done is
an area of active research (Gray, 1974; Kasangian et al, 1983; Jay, 1988, 1990,
1991a; Carboni et al, 1990; Hoare et al, 1989) but most developments share the
following properties. There is a local counit and a local unit which are linked by
local triangle laws. In our examples the local counit is /^-contraction, the local unit
is >;-expansion (as opposed to ^-contraction), while the local triangle laws assert
certain equations between 2-cells. For function types this means the following 2-cells
are both identities:

Xx.t => Xy.(Xx.t)y => Xy.t[y/x] = Xx.t .
ta => {lx.tx)a => ta

Such reduction sequences, from a term to itself, are called loops. The triangle laws
for the product type are

(a,b) => (n{a,b),n'(a,b)) => (a,b)
nc => n{nc,n'c) => nc (2)
n'c => n'(nc,n'c) => n'c

where the latter pair of loops are thought of as a single loop in the product category.
Those for the unit type are

• =>•=>• (3)
and the trivial loop in the terminal category.

Thus, ^-expansions are supported by the categorical interpretation of reduc-
tion. Conversely, the confluence of reduction can be used to refine the ordered
category semantics, so that models are confluently cartesian closed categories (Jay,
1992).

The obvious problem with expansion rules is that the system is not normalizing.
In particular, the local triangle laws yield reduction loops which can be endlessly
repeated. Any attempt to recover strong normalisation must 'cut' these loops. As
/^-reduction is inviolate, the expansions appearing in (1,2) must be prevented. Thus,
terms of function type may be expanded provided they are neither A-abstractions
nor applied: terms of product type may be expanded if they are neither pairs nor
projected.

In fact, these restrictions alone are enough to recover strong normalization.
That is, it is precisely the loops created by the local triangle laws which prevent
normalization. Reduction is then confluent and strongly normalizing, but does not
form a congruence, since the restrictions on expansion depend on the context.

The normal forms of the restricted system are the expanded normal forms of
Prawitz' (1971), or the long fin-normal forms of Huet (1976). These forms appear, for
example, in the development of the LF logical framework (Harper et al, 1991) and
in the study of type classes (Hilken et al, 1991). Unlike the present system, Huet's
reduction proceeded in two stages; first do y?-reduction, then 77-expansion, subject
to restrictions that preserve ^-normality.

The long /ty-normal forms still satisfy a universal property in the unrestricted
system as they are essentially normal i.e. any reduction from such a term is reversible.
Thus every term is reducible to an essential normal form. The main conclusions
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138 C. B. Jay and N. Ghani

Table 1. The three rewrite relations

Rewrite Relation

^-contraction

^-expansion

restricted >;-exp'n

Congruence

yes

yes

no

Confluence

no

yes

yes

Strong Normalization

yes

no

yes

of this paper can be summarized in Table 1. The restricted ^-expansions were first
exploited by Mints (1979) for technical purposes, but omitted from his later writings;
his approach is being revived by Cubric (1992). The main results of this paper were
announced by the first author in 1989, and appeared in Jay (1991b), though the
first complete proof of the confluence of the restricted system was constructed
by Di Cosmo and Kesner (1993). They, and Akama (1993), have each proved the
confluence and strong normalization of the restricted system, but by methods distinct
from ours.

Recently Dougherty (1993) applied expansionary rewrites to the more difficult
issue of rewriting for coproducts, but in his approach confluence holds only for
terms of ground type. An alternative approach extends the ideas contained in this
paper by considering coproduct-introduction and coproduct-elimination as adjoint.
The associated unit and counit then form an n- and /^-rewrite rule, respectively,
and full confluence can be proved. This work forms the core of the second author's
forthcoming thesis.

The paper is structured as follows: section 2 introduces the reduction system;
section 3 establishes a general confluence theorem, which is used in section 4
to prove confluence of the expansion system; section 5 introduces the restricted
expansion system, and establishes confluence, while section 6 is devoted to its
strong normalization; section 7 proves essential normalization of the expansion
system.

2 Eta-expansion

The simply-typed 1-calculus over a set of base types has types freely generated by

T : = TxT | T-+T \N\l\C

where C denotes any base type. The atomic types are 1, AT and the base types. For
each type T, there are disjoint sets of variables Var(T), and constants Con(T) such
that * e Cow(l) and 0 e Con(N). The well-formed terms (with their associated types)
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are generated by the following inference system:

x € Var(A)
x :A * : 1 c :A

c e Con(A)

b :B
Xx.b :

x e Var(A)
f : A-+B a : A

app(/, a) : B

a:A b : B
(a,b) :AxB

c : AxB
nc : A

c :AxB
n'c :B

n :N a : A h : A—*A n : N
0:N Sn:N It{a,h,n)

The term app(/, a) may be written fa. A typical term may be denoted ^"(u,) where
9~ is the outer term constructor and the u, are its arguments and a variable x may be
expressed as x(). Basic familiarity with 2-calculus is assumed (e.g. Berendregt, 1984;
Lambek and Scott, 1986), and terms equivalent under a-conversion are identified.

The expansionary rewrite relation has the following set of basic reductions:

fo-0

(fx)

Oh)

where: (i) the >?-rules have implicit type restrictions, e.g. n—> is restricted to terms
of function type; (ii) n—> requires that x not be free in t, and; (iii) /5—». involves
implicit a-conversion whenever substitution threatens to capture free variables of
a. Closing basic reductions under the term constructors of the language yields the
1-step rewrite relation, whose reflexive, transitive closure is denoted =>.

Rewrites built solely from the various //-rules are called expansions. Conversely,
those built without expansions are contractions. The rewrite relation on terms
obtained by restricting the basic reductions to expansions (respectively, contractions)
is denoted —>̂  (respectively, —*p).

(Xx.b)a
t

n(a,b)
n'(a,b)

c
a

It(a,h,0)
It(a,h,Sn)

=> b[a/x]
=> Xx.tx
=> a
=> b
=> (nc, n'c)
^> *
=> a

=> hlt(a,h,n)

3 An abstract confluence theorem

Confluence of the expansionary system and its restricted fragment will be proved
using the following variant of a theorem by Kahrs (1991).
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140 C. B. Jay and N. Ghani

Let R and S be relations on some set. Denote the reflexive closure of R by R~
and its reflexive transitive closure by R*. The composite of R and S is denoted R;S.
Assume that R is confluent and strongly normalizing for the rest of this section.

S is R-extendable if every divergence t\ «- t —* ti can be completed to

Note that this definition is slightly stronger than that of Kahrs (1991).

Lemma 3.1

If S is R-extendable then it is R'-extendable.

Proof

It suffices to prove that any divergence t\ «- t —* can be completed to

by induction on the R-rank of t. If the /^'-reduction of t is vacuous then the result
is trivial. Otherwise we have the following completion

R*;S

where the left cell exists by the .R-extendability of S, the top right cell by R-confluence
and the bottom right cell by the induction hypothesis. •
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S satisfies the diamond lemma relative to R if every divergence t\ *- t
completed to

S S

141

can be

R' R'
The usual diamond lemma arises when R is the identity relation.

Theorem 3.2
If S is R-extendable and satisfies the diamond lemma relative to R then RL) S is
confluent.

Proof
It suffices to show that R*;S=;R' satisfies the diamond lemma, which is done by
induction on the R-rank and repeated use of the premises and previous lemma.
Details are given for those cases in which S always appears; the others are simpler.

If both of the first R' -reductions are of length 0 then we can construct

R' S S R'

R';S

and the confluence of R yields the desired completion.
Otherwise the divergence is completed to

R* S R'

R';S

R' R' R' R'

R'

R'

R'

R';S

R';l

R'

R';S

•
R' R';S R'
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This theorem will be applied with R given by /J-reduction, which is confluent
and strongly normalizing (Girard et al., 1989). However, neither ^-expansion nor
its restricted form satisfy the premises for S, and so a broader notion of expansion
must be employed.

4 Confluence of the expansion system

Define n(t) to be the basic expansion of a term t of product, exponent or unit type.
A neutral term is one which is not a ^-abstraction, pair or *.

Lemma 4.1
The following statements hold:

(i) r,(t)V/x] =
(ii) lft is not neutral then n(t)-+p- t.

(iii) !/(»/(«))-»/,. ri(t)
(iv) Ift^-t' then IJ(«)-»/J. fj(f).

Proof
Trivial. Note that the number of /?-reductions may increase in (iv) as the //x-rule

duplicates its argument. •

Parallel expansion (denoted -») is the smallest relation on terms closed under

(i) Congruence: For each term constructor 2T

(ii) Expansion: For any term u of product, exponent or unit type

u -» u'

u -

(iii) Substitution:
u -» u1 v -» v'

A formal proof d of u -» u' is called a derivation and is denoted u -» «'. The height
of d is the length of its longest branch.

Lemma 4.2
Parallel expansion is a reflexive relation. Hence ift-^t1 then n(t) -» r]{t!).

Proof
The proof is by induction on term structure. If t is a variable x(), then the congruence
rule applies, while the inductive step is straightforward. Congruence is also sufficient
to establish the second result. •

Lemma 4.3
If there is a derivation t -» f7 whose only use of substitution is its last step then there
is one which does not use substitution at all.

https://doi.org/10.1017/S0956796800001301 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001301
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Proof
Let the final substitution be

u[v/z] -» u'[v'/z]

The proof is by induction on the height of the derivation u -» u'. Its last rule is
either a congruence or expansion. First, consider a congruence

u, -» uj

If z is not free in 9~(\ii) or ST{ui) = z then the result is trivial. Otherwise the
derivation can be replaced by

u,- -» u\ v -» v'

(taking care that 3~ does not bind any free variables of v and v').
Second, Lemma 4.1 allows us to replace an expansion

u -» n(u") v -*> v'

u[v/z] -» n(u")[v'/z]

by
u -» u" v -» v'

In each case the height of the left-hand derivation of the new substitutions is
reduced and so can be eliminated. •

Theorem 4.4 (Substitution Elimination)
If there is a derivation t -» t1, then there is one which doesn't involve substitution.

Proof
Use induction on the number of substitutions in the derivation and apply Lemma 4.3.

•
Corollary 4.5
Let 2T be a term constructor of arity n. If

u =

then there are derivations ut -» u\ and a number k such that

In particular, ifu is a variable or constant and u -» u', then u' = nk(u).

Proof
Induction on the height of the derivation. •
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Corollary 4.6

There are inclusions —*n cz -» cz —y which are strict.

Proof

The strictness of the first inclusion is easily proved. For instance if t is any term of
type 1 then the rewrite

(t,t) -»<•>•>

is clearly not in —>n. The second inclusion follows from Corollary 4.5, which also
implies strictness, since, for any term / of type N x N—*N, there is an expansion

f->n-Ax.f(nx,7t'x)

whose reduct is not of the form nk(f). •

Proposition 4.7

Parallel expansion satisfies the diamond lemma and so is confluent. Thus —», is also
confluent.

Proof

The proof is by induction on term structure. Consider a pair of rewrites of &~(u,)
to f7J(^"(uJ)) and nk(3~{u")) where ut -» u't and u, -» u". By induction, each u\ and
u'( have a common expansion u, and so t]J+k(&~(vj)) is the desired completion. Now
Corollary 4.6 shows —*n is confluent. •

Lemma 4.8

Parallel expansion is /?-extendable.

Proof

Consider a divergence t\ « - t-*p ti. The proof is by induction on the height of
the derivation of its parallel expansion, which we assume does not use substitution.
Thus there are two cases to consider.

First, if the parallel expansion is an application of the expansion rule to t -» t!v

then by induction there is a completion

r
Setting t4 = t](t!A) implies that t\-*p U by Lemma 4.1 and t3 -» t4 by expansion.

Second, if the last rule of the parallel expansion is a congruence then perform
a case analysis on the /^-reduction. If it is (/bc.<£)(i/;) —>̂  <}>[y>/x] then the parallel
expansion must be of the form (Xx.(p)(xp) -» <TIVH where Ax.cp -» a\ and xp -» xpi.
Hence, by Corollary 4.5, there is a term (j>i such that (p -» 4>i

(7i = nk(Xx.(j)i)
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and so o\-+p- Xx.(j>i by Lemma 4.1. Thus the divergence can be completed to

Other basic ^-reductions are handled similarly.
If the jS-reduction of t = ~̂(w,-) is of a proper subterm then the divergence is of

the form

where u; -» u\ and M, —*p= u" by assumption. The induction hypothesis is applied
to each of these divergences to obtain terms Vi and w,- such that u"-*p u, - » wt and
uj—•£• vv; and so t\k{$~{wi)) provides the desired completion. •

Theorem 4.9

The expansionary system is confluent.

Proof

It has the same reflexive, transitive closure as ->/j U -» which is confluent by
Theorem 3.2. •

5 Confluence of the restricted system

A rewrite t=>t> is reversible if t!=>t. Among these are the triangular expansions, i.e.
the expansions appearing in the triangle laws (1,2,3). The 1-step restricted reduction
system consists of those 1-step rewrites of the expansionary relation which are not
triangular expansions.

The proof of confluence for the restricted system is obtained by imposing restric-
tions on parallel expansion which reflect those on expansions generally. Expansions
are triangular if they are either of non-neutral terms, or of terms which are pro-
jected or applied, etc. The first restriction is directly incorporated into the definition
below. The second, context-sensitive, restriction appears indirectly, via the notion of
principal subterm, which we now define.

The principal subterm of an application tu is t; that of the projections nt and n't
is t. Other terms do not have a principal subterm.

Restricted parallel expansion (denoted -»r) is the smallest relation on terms closed
under

(i) Expansion: If u' is neutral and of product, exponent or unit type then

u -» r u'
u -» r n{u')
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(ii) Congruence: For each term constructor &~

provided that if w, is the principal sub term of ^~(u,) then there is a derivation
of M, -»r u't whose last step is not an expansion.

Lemma 5.1
Restricted parallel expansions lie in the reflexive transitive closure of restricted expan-
sion.

Proof
An inductive proof will establish the stronger claim that if u -»r v then there is a
restricted expansion sequence u—•,,• v such that if the former derivation does not
end in an expansion then the latter does not contain a basic expansion. If the last
step of the derivation of u -»> v is an expansion then the result is immediate. If the
last step yields ^~(w,) -»r ^~(u,) by congruence then the existence of the reduction
follows by induction (and the restrictions on principal sub-terms) and the resulting
reduction contains no basic expansions since all reductions act on the u,'s. •

Lemma 5.2
Ifti-»t2 then there is a P-reduction t2—*p- h such that t\ -»r tj.

t\ t2

Proof
The proof is by induction on the height of the derivation t\ -» t2. If the last step is
of the form

h -» f2

h -» i(f2)

then the induction hypothesis gives a term t'3 such that 4 ~ T 3̂ an(^ fi ~*r 3̂-
If f'j is neutral, then t^ = n^) is as required. Otherwise nity—tp- f/C )̂-*/?* £3 by
Lemma 4.1(iv,ii). Now set £3 = t'y

Alternatively, if the last step of t\ -» t2 is a congruence, say

u, -»u't

then the induction hypothesis yields reductions M,- -»> «,- and uj—>$• u,- for each i.
Hence ^(u'J-tp- &~(vi) and 5"(UJ) ^ r <̂ ~(i>,) unless ^"(u,) has a principal sub-term
uj for which Uj -»r vj ends with v'j being expanded. Then "̂(u,-) where v[ = vt if i =/= ;
is the required term. •

Lemma 5.3
Restricted parallel expansion satisfies the diamond lemma relative to ^-reduction.
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Proof
Given two -»r-reducts of t, there is a completion of the form

r r

P'

P'
where the top square arises from the diamond lemma for parallel expansion, the
triangular cells are instances of Lemma 5.2, and the bottom cell is given by confluence
of j?-reduction. •

Lemma 5.4
Restricted parallel expansion is fi-extendable.

Proof
Any divergence of the form t\ <—p t -» r t2 can be completed to

8 B' r
H - <• p - > - — — t5

where the first cell is the ^-extendability of -» and the second is by Lemma 5.2. •

Theorem 5.5
The restricted expansionary system is confluent.

Proof
The confluence of ->^U -»r is an application of Theorem 3.2 so that it suffices
to prove that the restricted system has the same reflexive transitive closure. That
restricted parallel expansion is reflexive and contains restricted expansion follows as
in the unrestricted case, and Lemma 5.1 establishes the rest. •

6 Strong Normalization

Theorem 6.1
The restricted reduction system is strongly normalizing to Huet's long /ty-normal
forms. D-
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The long /fy-normal forms are simply the normal forms of the restricted system.
Reduction to normal form can be achieved by first reducing to /?-normal form,
and then performing restricted expansions (from the inside out). Cubric's counter-
example to this strategy arises from taking a=>* to be a /?-rule. The following lemmas
are of use

Lemma 6.2
(i) Let t : AxB be a term. Ifnt and n't are strongly normalizable then so is t.

(ii) Let t : A-*B be a term and x : A be a variable not free in t.lftx.B is strongly
normalizable then so is t.

Proof
For (i) it suffices to show that all the 1-step reducts of t are strongly normalizable,
by induction on the rank of nt. The result {nt, n't) of a basic expansion is strongly
normalizable since its only reductions arise from those of its components. Any other
1-step reduction t=>t' induces another such of nt and n't. The projections of t!
are strongly normalizable, and of lower rank than those of t. Thus t7 is strongly
normalizable by induction, (ii) is proved similarly to (i) since reductions of ,1-terms
are all obtained by reductions of their body. •

Strong normalization of the restricted system is proved by Girard's reducibility
techniques (Girard et al., 1989). The presence of expansionary, context sensitive
rewrite rules means that the reducibility predicates must be modified slightly.

The set RED^ of reducible terms for each type T is defined by induction on the
structure of T. Let t : T be a term:

(i) If T is an atomic type then t is reducible if it is strongly normalizable.
(ii) If T = UxV then t is reducible if nt and n't are.
(iii) If T = U—*V then t is reducible if tu : V is reducible for all reducible u : U.

The proof hinges on simultaneously establishing the following three hypotheses:

CRI If t € REDr then t is strongly normalizable.
CR2 If t e REDT and t=>t! then t! e REDr.

CR3' If t is neutral and every 1-step reduct of t other than those obtained by a basic
expansion of t is in RED^ then t e REDT-

CR3' differs from the original CR3 by the insertion of the italicized restriction,
introduced to cope with the expansions. In particular, CR3' implies that variables are
reducible. Although the modifications to the usual proof are minor, it is presented
in full because of the basic delicacy of the arguments.

Lemma 6.3
Let CRl,2,3' hold for types A and B and let u : A and v : B be reducible. Then (u,v)
is reducible.

Proof
Both u and v are strongly normalizable by CRI. Thus we can use induction on the
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sum of their ranks to prove that t = n(u,v) is reducible by CR3'. Its 1-step reducts
(other than basic expansions) are:

(i) u
(ii) n{u',v), where u=>u'

(iii) n(u,v') where v=>v'

(i) u is reducible by assumption, (ii) u' is reducible by CR2 and has lower rank than
u. Hence n(u',v) is reducible by induction, (iii) This is similar to (ii). •

Lemma 6.4

Let CR1,2, 3' hold for all sub-types of A and B (inclusive) and let t : B be a term
and x : A be a variable. If the term t[u/x] : B is reducible whenever u : A is, then
Xx.t : A—>B is reducible.

Proof
Assume the result is true whenever the type of kx.t is a proper sub-type of A-*B.
Since t = t[x/x] is reducible it follows that it is strongly normalizable, as is any
reducible u : A. Thus we can use induction on the sum of their ranks to prove that
(Xx.t)u : B is reducible by CR3'. Its 1-step reducts (other than basic expansions) are

(i) t[u/x]
(ii) (Ax.t)u', where u=>u'

(iii) (kx.t')u where t=>tf

(i) t[u/x] is reducible by assumption, (ii) u' has lower rank than u. (iii) Since f has
lower rank than t it suffices to show that t' [u/x] is reducible, and apply induction.

If the reduction t=>t' induces a reduction t[u/x]=>t'[u/x] then we are done by
CR2. A simple induction on the structure of t shows the only alternative to be that
t' is obtained by a basic expansion of an occurrence of the free variable x in t
and u is either a pair or a A-abstraction. Now n{u) is reducible: in the first case by
Lemma 6.3; in the second, if u : C-*D then uv : D is reducible whenever v : C is, and
induction shows that Xy.uy is reducible (where y is not free in u). Hence t[t](u)/x]
is reducible by assumption. Finally, Lemma 4.1 implies that t[t](u)/x]->*pf[u/x], and
so this reduct is also reducible, by CR2 for B.

O

Theorem 6.5

CR1,CR2 and CR3' hold for every type T.

Proof
The proof is by induction on the structure of the type T. In each case two forms
of 1-step reduction of a term t : T are considered, namely the basic expansions and
the others.

If T is atomic then CRI is a tautology and CR2 holds trivially. For CR3' it suffices
to show that any basic expansion of t is also strongly normalizable but the only
case is t=>*.
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Consider T = AxB. If t is reducible then so are nt and n't which are then strongly
normalizable by induction. Thus t is strongly normalizable by Lemma 6.2 and so
CRI holds.

CR2 for a basic expansion of t follows from Lemma 6.3 since the components of
the pair {nt,n't) are reducible by definition. Otherwise a 1-step reduction £=>t' yields
nt=>ntl whence nt' is reducible by CR2 for A. The analogous argument for n't! holds
and so t! is reducible, as required.

For CR3', let t be a neutral term whose 1-step reductions other than basic
expansions produce reducible terms. Since t is neutral, a 1-step reduction of nt
which is not a basic expansion must be of the form nt=>nt! where t=>t'. The latter
reduction is not a basic expansion since otherwise nt=>nt! would be triangular. Thus
t1 is reducible by hypothesis, whence nt' is by definition. Thus nt is reducible by CR3'
for A. The analogous argument for n't holds and so t is reducible, as required.

Now consider T = A—>B. If t is a reducible term and x : A is a variable not free
in t then tx is reducible by definition, and so strongly normalisable by hypothesis.
Thus t is strongly normalizable by Lemma 6.2.

CR2 for a basic expansion of t to Xx.tx follows from Lemma 6.4 since its conditions
are satisfied by assumption. The other 1-step reductions t=>t' induce tu=>t'u for any
reducible term u : A and so t'u is reducible by CR2 for B. Thus tf is reducible by
definition.

For CR3', let t be a neutral term whose 1-step reductions other than basic expansion
produce reducible terms. We will show that tu : B is reducible for every reducible
term u : A by CR3' for B and induction on the rank of u and t. Consider a 1-step
reduction of tu which is not a basic expansion. Since t is neutral, it is given by
either t=>tf or u=>u'. Now such a reduction t=>t' cannot be a basic expansion (since
otherwise tu=>t'u would be triangular) and so t' is reducible, whence t'u is. On the
other hand, u' is reducible and of lower rank than u by CRI and CR2. •

Lemma 6.6
The term t = It(a, h, n) is reducible ifa,h and n are.

Proof
By CR3', it suffices to show that any reduct of t other than a basic expansion is
reducible, by induction, first on the sum of the ranks of a, h and n and second, on
the number of leading S's in n. Any such reduction of t is either a reduction of one
of one of its sub-terms, in which case induction applies, or is of the form

t = It(a, h, Sn')=>hlt(a, h, n') or t = I t (a, h, 0)=>a

In the first case, as h is reducible, it suffices to prove that It(a,h,ri) is. Now n' must
be reducible and of no higher rank than n, and furthermore, has one less leading
S in its construction so the induction hypothesis applies. In the second case, a is
reducible by assumption. •

Proposition 6.7

Let t : T be any term, with free variables among x, : Xi for i = l,...,n and let u, : X;

be reducible terms. Then t[ui/xH is reducible.
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Proof
The proof is by induction over the structure of the term. The cases involving
variables, *, 0, successor, projection and application are all trivial, while pairing and
iterator are handled by Lemma 6.3 and Lemma 6.6. Finally, if t = Xy.b : A—>B then
t[u,/xi] is reducible iff b[ui/xi][v/y] is reducible for all reducible v : A which follows
by induction. D

Corollary 6.8
In the restricted system every term is reducible, and so is strongly normalizable.

Proof
Apply the theorem with u, = x,-. •

This normalization result yields separate proofs of the earlier confluence theorems.
That of the restricted system follows upon establishing weak confluence (Curien et
al., 1991), a task made more complex than usual by the context sensitive nature of
the relation. The full system is covered by

Corollary 6.9
If t=>t' in the full system then t and t! have the same normal form in the restricted
system. Hence the full system is confluent.

Proof
Let to be the normal form of t in the restricted system. It suffices, by induction on
the length of the reduction sequence, to consider a 1-step reduction t =>t'. If this step
is in the restricted system then t' also has normal form to- Otherwise, to=>t\ is a
triangular expansion, and so is reversible, whence t\=>t$=>t in the restricted system.
Confluence follows directly. •

7 Essential normalization

As noted above, the presence of reduction loops means that no terms of higher type
are normal in the full system, at least in the usual sense. There is, however, a weaker
notion which 'ignores' reversible reductions.

A term ( is an essential normal form if any reduction of it is reversible, i.e. if
t=>f' (not necessarily in one step) then tJ=>t. It is essentially normalizable if there
is a number k, called an essential bound for t, such that each reduction sequence
from t has at most k irreversible steps. The reduction system is (strongly) essentially
normalizing if every term is so, and weakly essentially normalizing if every term
reduces to an essentially normal term.

Theorem 7.1
The full system is weakly essentially normalizing to the long fin-normal forms.

Proof
If t is a long /ty-normal form then by Corollary 6.9 its reducts in the full system
reduce to its normal form in the restricted system, i.e. to t itself. Thus t is essentially
normal. As every term reduces to a long /ty-normal form in the restricted system,
we are done. •
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Several plausible conjectures about this system do not hold, as will be seen from
the following examples.

Not every reversible reduction is triangular. Let / : N—*N—>N and m,n : N all be
variables. Then

ftnn=>(Ax.fx)mn=>(lxAy.fxy)mn (4)

Now fmn is a long /fy-normal form and so of course the first reduction must be a
triangular expansion. The second expansion is reversible but not triangular. Similar
possibilities arise with pairing.

Proposition 7.2
The full system is not strongly essentially normalizing.

Proof
Let s = (Xx.{y,y'))x : NxN where x,y,y' : N are variables. Then ns=>y and n's=>y'
and so

ns => n{ns, n's)

=> n(y,n's)

=> n(y,n'{ns,n's))

=> n(y,n'(ns,y')}

Now set r = n{y,n'{z,y')) where z : N is a variable and define

So = ns

sn+i = r[sn/z]

That sn=>sn+i was proved above for n = 0, while in general

sn+i = r[sn/u]=>r[sn+i/u] = sn+2

The result follows upon showing the irreversibility of these reductions. More
generally, we show, by induction on m, that if sm=>sn then m> n. The base case is
vacuously true. For the induction step, consider a reduction sm+i = r[sm/z]=>sn.

Observe that if r=>r' then all occurrences of z in r' are as a component of a pair,
since r' =̂= z by normalization considerations and z may not be the subject of a
projection.

Thus the reduction above decomposes into a one of r=>r' and, for each free
occurrence of z in r', a reduction of sm to a sub-term t of sn. Now t has the
same essential normal form y as sm and so must be either y or sp for some p < n
(by induction on n). Thus if t is sp then the original induction hypothesis implies
n> p >m&s required. Otherwise, each t is y and so r'\y/z] = sn which is impossible
since the left-hand side is 1-free. •
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