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Abstract

Let 5 be the surface of the unit sphere in three-dimensional euclidean space, and let a>n =
(X\-,X2,...,XN) be an N-tuple of points on 5. We consider the product of mutual distances
p(a>f/) = Ylj^k \xj ~ xk I a nd. f° r t ' l e variable point x on S, the product of distances p(x, (ON) =
n^Li I* - Xj\ from x to the points of « # . We obtain essentially best possible bounds for

p{cofi) and for m i n ^ maxxesp(x, wjv)-
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1. Introduction

Let 5 be the surface of the unit sphere in three-dimensional euclidean space.
Given an TV-tuple of points U>N = {X\,X2,...,XN) on S, we define a function
pN(x) = P(X,CON) to be the product of the euclidean distances from the
variable point x e 5 t o the points x\,xi,...,XN-

N

(1)

What can be said about the maximum value attained by PN(X) on the surface
5? Instead of (1), consider the function

QN{X) = q{x, (oN) = J^ (!«g\x - Xj\ + log^- J.
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[2] Distances to a point set on a sphere 467

It is easy to verify that the integral of QN(X) over the surface 5 (with respect to
the usual surface measure a) vanishes. This means for the original function
Ps{x) that the following inequality holds trivially: maxx€s PN{X) > (2/y/e)N.
We prove more.

THEOREM 1. Let (Op/ be an N-tuple of points on S. Then with some numer-
ical constant c\ > 0, the following inequality holds:

This result is in a sense best possible. We prove

THEOREM 2. For each N there exists an N-tuple of points CON on S such
that the inequality

maxpN(x)<(l+c2)(2/Ve~)N

holds with some absolute constant c2 > 0.

Note that Theorems 1 and 2 are true for the unit circle U (instead of the
unit sphere) with c\ = c2 = 1 and the normalizing factor (2/y/e)N omitted.
For in this case, the product ps{x) is the modulus of a polynomial on U with
its zeros on U. Theorem 1 and 2 now follow from the fact that the unit root
polynomials are "minimal polynomials" for U.

In the case of the unit circle the author proved in a previous paper [7] that
Theorem 2 is no longer true if the iV-tuples coN = (x\, x2,..., xN) are sections
of a given infinite sequence co = {x\,xi,...). A similar result can be proved
for the unit sphere.

THEOREM 3. Let co = {xi,X2,...) be an infinite sequence of points on S.
Let As(co) = (y/e/2)N maxxesllj!=i \x-Xj\. Then, for some absolute constant
c> 0 and infinitely many values ofN, the following inequality holds:

(3) AN(co) >

The lower bound (3) is probably not best possible. As in the case of the
unit circle, one might conjecture that (3) holds with log iV instead of y'log N.

The problems considered up to this point have a natural counterpart con-
cerning the product of mutual distances between the points of a set. For an
N-tuple of points (ON = {X\,X2,...,XN) on the unit circle it is known that
FIy<* \xj - xk\ < NNI2 is true. In the case of the unit sphere we prove a
similar upper bound with the exponent (N/4) instead of (N/2).
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468 Gerold Wagner [3]

THEOREM 4. For each A'-tuple CON — (XI,X2,---,XN) of points on S the
following inequality holds:

\xj - xk\ <

Again the result of Theorem 4 is best possible, apart from the exact order
of the error term o(N) in the exponent. The point set u>s, which will be
constructed in order to prove Theorem 2, also satisfies the relation

\Xj - xk\ >

2. Construction of a good point set

We begin by proving Theorem 2. It is sufficient to find, for each N, an
N-tuple (o°N = (xi,..., XN) on S such that maxx€iS q(x, co%) < O{ 1) holds for
the function q(x,a)°N) denned by (2).

Let N (> iVo) be given. Set M = [\/N]. We introduce spherical coordinates
6 (0 < 9 < n) and q> (0 < q> < 2n) on S. We define a partition of S into
spherical zones in the following way.

Choose numbers 0,,, 0 = 0Q < 9 < •• • < 9M-\ < 9M = n in such a way
that (N/2)(cos9p - cosfl^+i) (/z = 0, l,...,M - 1) is a positive integer and
that the differences (0^+i - 9^) are bounded from above and from below by
const /\/N. Set A^ = (N/2)(cos9/i - cosfl^+i). On each of the M circles of
latitude 9 = £M = (9M + 0A+1 )/2 (n = 0 , 1 , . . . , M - 1) we place Nf, points; at
the vertices of a regular A^-gon. The position of the regular A^-gon on the
circle is arbitrary. In this way, Y^IQ NM = f E J H o V 0 8 ^ ~ cos0A+i) = N
points are distributed over the surface S.

Denote the point set defined in this way by co°N, its points by x^ (fi =
0,...,M- 1; a = Q,1,...,NM — 1), and their coordinates by ( ^ , ^ Q ) where
we choose (p^ = 2na/N/1 for convenience.

We shall prove

(4) maxq(x,co°N)<O(l).

As a first step, we split the distance function (x = (9,<p),xo = (0
d(x, XQ) = log \x - XQ\ - log(2/v^) into two parts. Let

e{9, e0) = e-(9,90) := log(e/4) + log(l + cos0) + log(l - cos0o)

for 0 < 9 < 0n <
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[4] Distances to a point set on a sphere 469

and

e{6, d0) = e+{d, 0O) := log(e/4) + log( 1 - cos 0) + log( 1 + cos 0O)

for 0 < 0 < 0O < rc.

Furthermore, let

(6) ^ ^

where

and

p = p_ = f tan - / tan y J for 0 < 6 < 0O < n

p = p+= ( t a n y / t a n | J for 0 < 0O < 0 < n.

An easy calculation shows that d(x,xo) — \e{8,60) + f(8, q>; 6$, <p0). Given
the set co°N, let eM(d) = e{0,ZM) and fm(0,f) = f{6,^,^,9^) (n = 0,...,

In order to prove (4), it is sufficient to show that the two functions

(7) E{d)=Y,Nli-ell{0), F{e,f) = Y,fl,a{e,9)
11=0 fi,a

are bounded from above.

LEMMA 1. E{6) < 0(1).

PROOF. Let 6 e (0,n). Choose m e {0, l,...,M - 1} such that £m-i <
9 < £m holds. The case when 0 < 6 < £0 or £,M-\ < Q < n \% settled in a
similar way. By (5), (7), and the construction of a°N, we have

M-\ N M~x

E(6) = J2 i V ( W = y
H=0

= T E Aef •sin^ •

n=o

Here we set Ad^ = 6^+1 - 6^. Using the relation A0^ < N~xl2, we obtain
£(*) = f EjLV A0^ ' s i n ^ • e ( 0 ' ^ ) + 0(maX/i I sin^ • e{d,^)\). The term
sin^ • e(9,Zn) is bounded, uniformly in ^ and 0, as can be seen from the
definition (5) and the inequality \t • \o%t\ < e~x, valid for 0 < t < 1. Hence
we get

E{6) = y 2 A0A • s in^ • e(0,^) + 0(1) = E*{6) + 0(1).
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It remains to prove that E*(6) is bounded from above. We have

y*(0) = y E Aen •sin^ • *+( W + y E
fi=O

We interpret the first sum as a Riemann sum for the integral y f^1" sin t
e+{8,t)dt and obtain (see [4], Part II, Problem 11)

n=o

= -=- / sin t • e+(8, t)dt - -^y~] (A0^)3(sin t • e+(8, t))"=nu

° u=0

where 6M < rj^ < 8^+\. A calculation shows that

d1 . . .„ „

/ pL COS / \

= sint log-p + -. +log(l -cos^) + log(l +cos/) ,
\ 4 1 + cos t )

and this expression is bounded from above for 0, t e (0, n). Hence

(8) -^Y^M^sin^-e^e,^)^ I sint e+(d,t)dt +0(1).
2 T^o J°

A similar estimate shows that

(9) ^EAVsin<^M0,<^)< f\mte-(6,t)dt

Adding (8) and (9), and carrying out the integrations, we obtain

E*{6) < 0(1) + y ( l - cos0m)(log(l - cos0) - Iog(l -

y (1 + COS0m)(lOg(l + COS0) - lOg(l + COS0m))

The term R(6,8m) assumes its maximum value 0 at 8 = 8m, and is negative
elsewhere. This proves Lemma 1.

LEMMA 2. F(8,(p) <O(\).

PROOF. Let again <Jm_] < 8 < £„,, 0 < <p < 2n. Note that the points of
a>°N have coordinates (£,,, (p^) (n = 0 , . . . , M - 1; a = 0, . . . , A^ - 1) where
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[6] Distances to a point set on a sphere 471

6/ta = Ina/N^. For n<m-\ fixed we have

W*,P)= E'
a=0 'a=0

(10)

where p^ = tan(<JA/2)/tan(0/2). Similarly, we get for /z > w

a=0

where p'^ = tan(0/2)/tan(£A/2). Relations (10) and (11) imply the following
inequality:

(12) "=°
V ; m - l

m-l M-\

F{6, <?)<J2 log(l + pj!") + E

We may assume that 0 < 6 < n/2. In order to obtain an estimate for
the first sum in (12), note that A^ > A"i • ji and tan(^/2)/tan(0/2) < 1 -
-j£h(m - n - 1) holds for fi = 0 , 1 , . . . , m - 1 and suitably chosen absolute
constants K\ > 0 and Ki > 0. In addition, it follows from the assumption
fm-i < 0 < €m that 6 < Kim/y/N, and hence p^ < 1 - ^T4(w - /i - l)/m
where ^ 4 = K2/Ki. We obtain

m-l m- l / js \ Ki/i m- l

E PIT ± E (i - §(w - ^ -1)) ^ E ^ ^(m^-I)

u=0 u=0 ^ ' u=0
(13) m

< 2 J ff-jf-fi(«-/.-i) ̂  2 f r * " < l.

Proceeding in quite a similar way as before, we get the corresponding estimate
for the second sum in (12):

(14)

From (13) and (14) the assertion follows.
Lemma 1 and 2 together imply the validity of Theorem 2.
It seems remarkable that from the point of view of uniform distribution

the point set co°N constructed above is not a very good one. Denoting by K
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an arbitrary spherical cap of S, by F(K) its area, and by ZN(K) the number
of points in K, we certainly have

(15) sup
K

ZN{K) - ±N • F(tc)

It is known, however (see [1]), that there exist point distributions for which
the left-hand side of (15) is < N1/4 • log1/2iV. It seems that a point set
CON for which the function g(x, CON) possesses a small maximum, must have
properties somewhat distinct from those of a point set for which (15) is small.

As mentioned already, the point set coN can also be used to prove that
the upper bound in Theorem 4 is best possible. As the proof is even more
computational in nature than that of Theorem 2, we shall not give all the
details and restrict ourselves to a brief sketch.

Let (o°N = (x^) {n = 0,...,M - 1; a = 0 , . . . , i ^ - 1) be the point set
contracted above, where xAa = (^, (p^a). It is sufficient to prove that the sum

(16) £ \og\Xtla-xvP\-N{N-\)-\og^=

is bounded from below by (N/2) log N + O(N). Using the functions e and /
denned by (5) and (6), we obtain the following representation of the expres-
sion (16):

A/-1

11=0 a^fi H±v a,f)

The first sum (I) constitutes the main term and can be evaluated as follows:

(I) = J2

The second sum (II) is bounded by O(N). In order to prove this, we may
proceed as in the proof of Lemma 2, noting however that this time we need
a lower bound instead of an upper bound. Finally, following the idea of the
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proof of Lemma 1, we can also show that the sums (III) and (IV) are bounded
by O(N).

3. Proof of Theorem 1

The proof of Theorem 1 is based on the remarkable fact that the distance
function d(x,Xo) = \og\x - xo\ + \o%{\fe/2) is superharmonic on S. As the
Laplace operator A is rotation invariant, it is sufficient to consider Ad(x, xo)
where JCO is the north pole on S. In this case,

d{x, x0) = log ^2 sinsin - J + log ^

M(x,x0) = A^logsin^J = ^ ^ (sinO^ (bgs in^ j = - ^

and

Let (ON = (xi, X2,.. .,XN) be an arbitrary A^-tuple of points on S. It follows
from the preceding remark that Aq(x, coN) - -N/2 holds for all points x ^
xj(j=l,2,...,N)onS.

In accordance with the point set CON, we construct a test function T(6, <p)
in the following way. Consider the domain D c S denned by

(The choice of D is rather arbitrary.) Let r be an integer satisfying 2N <
4r < SN. We decompose the domain D into 4r "squares"

BMV = {{B,<p): \{v - 1) • 2 " ' < I - 6 < I • v • 2~r;

with n,v both running from 1 to 2r. There are two kinds of squares BMU:
squares of the first kind, denoted by B'^v, that contain some point Xj in
their interior, and squares of the second kind, denoted by B'^u, that are free
from such points. Note that the total area of squares B'^v satisfies the rela-
tion £o{B'^v) » 1 {a = area measure). On each B^ we define a function
^iif(&,<P) as follows. If B^ is of the first kind, let XnV{6,<p) = 0. If B^ is
of the second kind, let x^id, <p) = sin2(6 • 2rd) • sin2(6 • 2r<p). Note that the
normal derivative of T^ with respect to the boundary of B^ vanishes, and
that

(17)
sin 2i
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474 Gerold Wagner [9]

holds everywhere. Now define the test function T(d,(p) on 5 by T{6,q>) =
A v ( 0 , p ) for (d,(p) e Bf,,,, and T(d,<p) = 0 for (d,(p) <£ D. Using Green's
second formula for domains on curved surfaces (see, for example, [2, Section
91]), we obtain the following estimate:

\qN(x)\do(x)-sup\T(x)\ > I / qN{x)T{x)da{x)
xes \Js

H,v

= y E /„ y N-

Recalling inequality (17), we find that supx€5 \T(x)\
finally

holds, and that

(18) f \qN{x)\da{
Js

x)^\.

In view of the relation fsqN(x)do(x) — 0, (18) is even stronger than the
assertion of Theorem 1. This finishes the proof of Theorem 1.

4. Proof of Theorem 3

In order to prove Theorem 3 we make use of two ideas. The first one is
due to K. F. Roth [6] and consists in replacing the dynamic problem by a
static one. The second idea is due to G. Halasz [3]: different test functions
are combined in the form of a Riesz product to obtain a lower bound for the
maximum in question.

Let co = (JCI,X2, . . . ) be an infinite sequence on S. Define numbers an(co)
by

an(co) = max
X€S

x - Xj\ + log ^f

Consider the section coN — (XI,X2,...,XN) of CO with N = 4'2 where / is a
fixed positive integer. We shall prove that

(19)

from which the assertion follows. Denote by X the box 5 x [0,1) = {(6, <p, t):
0 < 6 < 7r,0 < <p < 2n,0 < t < 1}. Let X be endowed with the product
measure v = a x X, where a is the usual area measure on S, and k is the one-
dimensional Lebesgue measure. To each point Xj = (6j, cpj) of the section
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[10] Distances to a point set on a sphere 475

CON, we assign as a counterpart on X the point y/j — (0;, q>j, (j - l)/N) (j =
l,2,...,N). Define a function Q(y) = Q{0,q>,t) on X by

,<p,t) = q[Nl]+i(x)=

Following Roth's idea, it is sufficient to prove the lower estimate

from which (19) follows. In the sequel, we may assume without loss of
generality that fx \Q\dv < /, otherwise the assertion follows in view of the
relation fx Qdv — 0.

Now we use the method of Halasz. We construct a test function T(y) =
nl=iO + pRa{y)) on X, where 0 < p < 1/2 is a suitably chosen parameter,
and the functions Ra{y) possess the following properties:

and
(2) JxRai{y) • Ra2(y) • • •Ra,(y)dv{y) = 0 for 1 < a, < a2 < • • • < a, < /.

These two properties imply that Jx T(y)dv(y) = fx 1 -dv(y) = 4n holds. We
have

(20) maxQOO = 4-maxQ(y) • I T(y)dv(y) > i - / Q(y)T(y)dv(y).
yex An yex Jx 47T Jx

The functions Ra(y) are chosen in such a way that the linear terms p-Ra in the
expansion of ni=i (1 + P^aiy)) give t n e main contribution to the integral on
the right of (20), whereas the mixed terms psRaiRa2 • • • Ras (s > 2) produce
error terms dominated by the main contribution.

Let X* c X be the subdomain X* = D x [0,1), where D is the domain
introduced in Section 3. Let a e {1,2,. . . , /} and define na = 2a\ Note that
N = 4'2 = nf. Let Pa be a partition of X* into boxes A^, where A{*]x is the
cartesian product of the box

B$ = {(6,9): j • {v - I)*"1 < 6 < | v • «" ' ;

with the interval CJQ) = {t: (A - 1) • j% < t < k jft}. The indices n and v run
from 1 to na, the index k runs from 1 to 2N/nl. Hence, for each a, 1 < a < /,
we have a partition of X* into 2N boxes A^^. Again, there exist two kinds
of boxes: boxes of the first kind that contain some point yj as an interior
point, and boxes of the second kind that are free from such points.
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476 Gerold Wagner [11]

On each box of the second kind we define a function u^x(y) = u^x(6, g>, t)
by

where sign = - 1 for (X - 1 ) ^ < t < (X - j)$ft, signt = +1 for (X -

t < X- fy, and r^(6, q>) = —c • n~2 • sin 6na6 • sin (>na<p. Here c > 0 is an
absolute constant (c = 1/1000 will do) chosen in such a way that the spherical
Laplacian derivative Ar/lu(6,^) is bounded by 1 in absolute value.

On boxes of the first kind, set u^x(y) = 0. Finally, define Ra(y) = u{^x{y)

for y e A{^x, Ra(y) = 0 for y € X\X", and let T(y) = U'a=\(l + P ' Ra(y))-
The parameter p, 0 < p < 1/2, will be chosen later on.

First of all, we shall prove that the Ra's form a system of functions com-
pletely orthogonal with respect to the measure v.

LEMMA 3. Let 1 < a\ < a2 < • •• < as < I. Then the following orthogonal-
ity relation holds: Jx Rai{y)Ra2(y) • • • Ras(y)dv(y) = 0.

PROOF. For fixed d,q> consider the set {{d,<p,t):{X - \)nlJ2N < t <
XnlJ2N}. The functions Ra2,...,Ras are of constant value on this inter-
val, whereas Rai is of constant absolute value but changes sign in the mid-
dle of the interval. Integrating first with respect to dt, then with respect to
sinddddp, proves the assertion.

COROLLARY 1. fx T(y)dv(y) — fxdv(y) = 4n.

LEMMA 4. For each box A^x of the second kind, the following inequality
holds:

(21) f Q(y)Ra(y)dv(y)^>N-i.
JA{aK

PROOF. Fix t0, (X-\)n2J2N < t0 < (X-\)n2J2N, and set tx = to+\n2J2N.
Note that Ra{6, q>, t0) = -Ra(6, <p, t\). We obtain the integral in question by
first integrating (2(6, <p, t0) • Ra(9, <p, t0) + Q(6,<p,t\)-Ra(d, tp,t\) with respect
to da{6, q>) over Bffi, using Green's formula as in the proof of Theorem 1,
and then with respect to dt\ over the interval (X - j)nl/2N < t\ < Xnl/2N.
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[12] Distances to a point set on a sphere 477

We have

f
JB1;

= f Ra{e,(p,tx){Q{d,<p,u)-Q{e,(p,to))da

r
= / Ar$(d, 9)

(22)

[Mol+2

Integrating (22) with respect to rf<i, and noting that v(A^x) » iV"1, we
obtain the desired result. This proves Lemma 4.

Summing (21) over all boxes A^x of the second kind, we get

C O R O L L A R Y 2. T,'a=lpfx Q{y)Ra{y)dv{y) > / > • / .

In a final step we show that the remaining terms in the expansion of
nl=iO + pRa(y)) give a contribution which is dominated by p • I.

LEMMA 5. The following inequality holds:

p2 f QRai Ra2dv + J2 P3 I QR°i R^Ra.dv + p 2 • I.

PROOF. Let 1 < ai < Q2 < • • • < as < I. Consider a box of the form
BJZ'] x C|Ql). Denote by IUI2 the two halves of the interval CJai). For fixed
6,(p, the functions Rai,...,Ras are constant in the variable t on Bffi x C|ai),
whereas Ra[ is constant in absolute value, but changes sign in the middle of
CJQl). We split the product Rai(y) • Ra2(y) /*«,_,00 on B^ x I2 into
two parts: Rai(y) ^a j_ ,00 = m + e(y), where m is the mean value on
Bffl x h with respect to v, and e(y) is the error term. Similarly, on B^s) x /i
we get ^ ( y ) Ra.-tiy) = -m + e(y). In view of \Ra(y)\ < 1, we have
the inequalities \m\ < 1 and

_
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Integrating over B%s) x c[a'} = B%{) = B{
M

aJ} x (/, U/2), we obtain the following
inequality:

Q(y)Rai(y) R*,(y)dv(y)

(23)

f Q(y)Ras(y)dv(y) - f Q(y)Ras(y)dv(y)
JB^xh JB%s)xI{

>] x

,„„
In order to obtain the first term in (23), we may proceed as in the proof of
Lemma 4, replacing the symbol » by < , and noting that N(t\ - to) < nlt in
our case.

Summing (23) over all boxes B{
Mls) x C{

x°"\ and noting that fx \Q{y)\dy[y) <
/ without loss of generality, we get

\JxQ(y)Rai(y) Ras(y)dv(y)

(24)

Summing (24) over all 5-tuples 1 < an < ai < • • • < as < I with 5 > 2, we get

2 f QRa,Ra2dv + J2 P3 f QRaiRa2Ra,dv + •

= M£2-«((1
Q = 2

This proves Lemma 5.

a « p2l.
a=2
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Corollary 2 and Lemma 5 imply the following final inequality:

f , ^ f

Q(y)T(y)dv(y) = / Q(y)dv(y) + / / £ / Ra(y)Q(y)dv(y)
i

+ YPS V
s=2 o>i<-<as

>c{pl-c2p
2l,

where C\ and c2 are positive absolute constants. Choosing p < Ci/2c2, the
assertion of Theorem 3 follows in view of relation (20).

5. On the product of mutual distances

Let (ON = (x\, xi,..., XN) be a point set on S, and let dj, <Pj be the spherical
coordinates of the points Xj. We shall derive an upper bound for the product
of mutual distances between the points of CON. The first proof is more elegant
and gives a slightly better remainder term, whereas the idea of the second
proof is more general and applicable both to higher dimensions and various
types of similar kernels.

FIRST PROOF. Set

aj = cos(9j/2) • exp(i(pj/2) and bj = sin(0,/2) • cxp{-i<pj/2),

and note that

(25) \xj -xk\ = 2- \djbk - akbj\.

Relation (25) allows us to express the product of mutual distances by means
of a determinant of the Vandermonde type. Consider the (N, N)-matrix
P = (/V) (^.v = 1,2 JV) where p^ = aj?~u • b£~l. It is easy to prove
that

Now replace the matrix P by a new matrix P' = {p'^) where

/ A T - 1 \ 1 / 2

P'w = PM>> • [ „ _ i ) (fi,v = 1,2,...,N).

Note that |Det/>| = |Deti"| • l\Li ( ^ I i ' ) ^ 2 from which

N , . . . v - 1 / 2
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follows. We obtain an upper bound for |Det/" | by applying Hadamard's
inequality. The length of the fith row vector of P' is equal to

/ N \XI2 / N

Hence |DetP' | < 1 and

(26)
j<k v=\

It suffices to evaluate Ut=i(u-l) = Uu^ii^M)- U s i n 8 Stirling's formula,
we get

N-\

(27) TT (Vv/V\) = e^/2)N{N-l

u=\

From (26) and (27) the upper estimate

I ] \Xj - xk\ < (2/^)N{N

follows.

SECOND PROOF. Let x and y be points on S, and let y be the angle between
the radius vectors pointing from the center of the sphere to x and y, respec-
tively. We have log|x - y\ = (l/2)log(2 - 2cosy). Define a new distance
function dr{x,y) on 5 by setting dr{x,y) = (l/2)log(l + r2 - 2rcosy). The
parameter r e (0,1) will be chosen later on. Note that the mean value mr of
dr(x,y) on S is

1 fn 1
mr = -j -log(l+r2-2rcosd)sinddd

For short, let D(x,y) = log \x - y\ - \o%{2ly/e) and Dr(x,y) — dr(x,y) - mr.
Consider the following trivial inequality:

x,- - xk\ - N(N -

^2,xk) - Dr(xjtxk))
j j?k

- N\og{\ -r) + N-mr

-l) max(D(x,y) - Dr{x,y)).
x,y€S
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A calculation shows that

,y) - Dr{x,y)) = ((1 - r)2/4r)log((l + r)/(l - r)).

Now choose r = 1 - 1/^NlogN. We obtain

j.ik

N
-\ogN + O(NloglogN).

We shall prove that the first term on the right of (28) is negative. Let
SJjti ott(r)Pn(cx)s6) be the expansion into spherical harmonics of the ker-
nel kr(0) = (l/2)log(l + r2 - 2rcos0) - mr (0 < r < 1). It is known that
all the coefficients an{r) are negative (the proof works in exactly the same
manner as the proof of [5, Hilfssatz 6, page 36]). Consider the new ker-
nel Kr(d) = E~ , ( - a* ( r ) • 2f±i)1/2/'n(cos0), which is a convolution root of
-kr(0). Let Sr(x,y) be the distance function generated by Kr(6) on 5. Then
Legendre's addition formula for spherical harmonics implies the following
relation:

(29) ^Dr(Xj,Xk) = - \^dr(x,Xj)\ d(T(X)<0.
j,k J s \ j J

From (28) and (29) the assertion of Theorem 4 follows a second time.
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