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BOUNDS FOR THE SIZE OF INTEGRAL SOLUTIONS TO
Ym =f(X)

by DIMITRIOS POULAKIS
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Let K be an algebraic number field with ring of integers OK and f(X) 6 OK[X]. In this paper we establish
improved explicit upper bounds for the size of solutions in OK, of diophantine equations Y2 =f(X), where
f(X) has at least three roots of odd order, and Y" =f(X), where m is an integer > 3 and/(X) has at least
two roots of order prime to m.

1991 Mathematics subject classification: 11D41.

1. Introduction

Let K be an algebraic number field with ring of integers OK,f{X) a polynomial in
OK[X] and m an integer > 2. Consider the diophantine equation

Ym =f(X) (*)

and assume that if m > 3, f(X) has at least two roots of order prime to m and if
m = 2, f(X) has at least three roots of odd order. When K = Q, Baker [1] obtained the
first explicit upper bound for the size of integral solutions to the equation (*). This
result has been extended to an arbitrary algebraic number field and has been improved
by several authors. The best known results have been obtained by Voutier [10].
Moreover, a generalization of the equation (*) has been studied in [5].

Throughout this paper we denote by d, DK and NK the degree of K, the discriminant
of K and the norm from K to Q. Further, we denote by K an algebraic closure of K.
By an absolute value we will always understand an absolute value that it extends either
the standard absolute value of Q or a p-adic absolute value | \p of Q. Let M(K) be a
set of symbols v such that with every v e M{K) an absolute value | !„ is associated. We
denote by dv the local degree of | !„. We define the field height of a point
x = (x0, . . . . xn) in the projective M-space V(K) by

HK(x)= f ]

and the absolute height by H(x) = HK(x)yd. For x e K we define HK(x) = HK((\: x))
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128 DIMITRIOS POULAKIS

and H(x) = H((l :x)). Let G be a polynomial in one or several variables and with
coefficients in K. We define the field height HK{G) and the absolute height H(G) of G,
respectively, to be the field height and the absolute height of a point in a projective
space having as coordinates the coefficients of G (in any order). For an account of the
properties of heights see [9, Chapter VIII] and [3, Chapter 3]. Finally, for
z e R, z > 0, we let log'z = max{l, logz}.

In [6] we have obtained the following improved upper bound on the size of integral
solutions to the elliptic equation:

Theorem A. Suppose /(AT) = X3 + aX2 + bX + c has coefficients in OK and
discriminant A(J~) / 0. Then, all solutions (x, y) € O2

K to the equation Y2 = f(X) satisfy

max{Hx(x), HK(y)} < exp{CKd)\DK\2i\NK(AUy)\" log" HK(f)},

where

In this paper we generalize the above result and we obtain explicit upper bounds of
the above type for the height of integral solutions to the equation (*) over K,
improving on the estimates obtained by Voutier.

Let (x, y) 6 0^ be a solution of ym = / (x) . Since we have

HK(y) < HK(y)m = HK{f) < (deg/ + I)'HK(f)HK{xf,

it is sufficient to calculate an upper bound for HK(x). We obtain the following explicit
estimates:

Theorem 1. Let f{X) = (X — a,)6' . . . QX — ar)'
r be a polynomial of degree > 3 in

OK[X], where a,, . . . , ar are pairwise distinct elements in K. Assume that a,, a2, a3 e K and
e,,e2, e3 are odd. Put g(X) = (X - a,)(X - <x2)(X - a3) and denote by A(g) the
discriminant of g(X). Then, all solutions (x, y) e O\ to the equation Y2 —f{X) satisfy

HK(x)

where

Corollary 1. Let f{X) = ao(X-tt.x)
e'...(X-a.r)'' be a polynomial of degree

n > 3 in OK[X], where a , , . . . , a r are pairwise distinct elements in K and eue2,ez

are odd. Put G(X) = Oo(X — a , ) . . . {X — at) and denote by A(G) the discriminant of
G(X). Then, all solutions (x, y) e O\ to the equation Y2 =f(X) satisfy

HK(x) < exp{a>20f, r)(|Ac|
10|WK(A(G))|36|JVK(fl0)|

36"1;r3 log'(HK(oo)HK(G))},
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where

Theorem 2. Let p be a prime > 3 andf(X) = {X — a,)'1 . . . (AT — ar)'r a polynomial of
degree > 2 in OK[X], where a ar are pairwise distinct elements in K with aua2 e K
and (ehp)—\ ( i = l , 2 ) . Assume that K contains a primitive pth root of I. Put
g{X) = {X — aLi)(X — a2) and denote by A(g) the discriminant of g(X). Then, all solutions
(x, y) e O2

K to the equation Yp —f[X) satisfy

HK(x) < expf^.Cd, p)|DK|50">K(A(3))|510p2 log* HK(g)},

where

Corollary 2. Let p be a prime > 3 and f{X) = ao(X — a,)'1 . . . (AT — a,)'' a polynomial
of degree n>2 in OK[X], where a , , . . . , a r are pairwise distinct elements in K with
(e, ,p)=l ( i= l ,2) . Put G(Ar) = a0(Ar-a ,) . . . (A'-a r ) and denote by A(G) the dis-
criminant ofG(X). Then, all solutions (x, y) e O2

K to the equation Yp —f{X) satisfy

HK(x) < exp{V2(d, r,p)(\DK\5\NK(A(G))\51\NK(ao)\
5Ur)IOr2''' lo

where

Theorem 3. Let f(X) = (X - a,)" . . . (AT - ar)'' be a polynomial of degree > 2 in
OK[X], where a , , . . . , ar are pairwise distinct elements in K with a,, a2 € K and e,, e2 are
odd. Assume that K contains a primitive 4th-root of 1. Denote by A(g) the discriminant of
the polynomial g(X) = (X — a,)(X — a2). Then, all solutions (x, y) e O2

K to the equation
Y*=f(X) satisfy

HK(x) <

where

Corollary 3. Let f(X) = ^(X — a,)'1 . . . (AT - ar)'r be a polynomial of degree n > 2 in
O2

K[X], where a , , . . . , a r are pairwise distinct elements in K and et,e2 are odd. Put
G(X) = ao(X - a , ) . . . (A" - ar) and denote by A(G) the discriminant of G(X). Then, all
solutions (x, y) e O2

K to the equation Y* =f{X) satisfy

HK{x) < txp{Q2(d, r)(|DKr|yVK(A(G))|"°|NK(ao)|370"')100'2 \og'(HK(a)HK{G))},

where
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Assume that m is an integer > 4 and /(AT) a polynomial in OK[X] having at least
two roots of order prime to m. Let x, y e OK with ym =/(x) . If m has a prime divisor
p > 3, then (x, f/p) is an integral solution to the equation Y? =f{X). Hence Theorem 2
(or Corollary 2) implies an upper bound for HK(x). Similarly, if m = 2', t > 2, Theorem
3 (or Corollary 3) gives an upper bound for HK(x). Therefore, in all cases, Theorems
1, 2 and 3 (or Corollaries 1, 2 and 3) give a bound for the integral solutions to the
equation (*).

Following Kubert and Lang [2, §1], we reduce the proofs of Theorems 1, 2 and 3,
to our Theorem A. This reduction relies on the following result:

Proposition 1. Let m = p', where p is a prime and t is an integer > 1. Let
f(X) = (X — a,)Cl . . . (X — a.r)'

r be a polynomial in OK[X\ where a , , . . . , ar are pairwise
distinct elements in K. Assume that K contains a primitive mth root of 1, a l t . . . as e K
(s < r) and (e,, m) = 1 (i = 1 s). Put g(X) = (X - a , ) . . . (X - ar) and denote by A(g)
the discriminant of g(X). Let x,y e OK with ym —f{x). Then the algebraic number field
L = K(w), where wm = (x — a , ) . . . (x — as), has discriminant DL satisfying

\DL\ < p(2

2. Auxiliary lemmas

For the proof of Proposition 1 and Theorems 1, 2 and 3 we shall need the following
lemmas:

Lemma 1. Let K be a field of characteristic p and m an integer > 2 not divisible by
p. Denote by C the algebraic curve defined by the equation

where a , , . . . , a, are pairwise distinct elements in an algebraic closure K of K and
(gj, m) = 1. Let V be a discrete valuation ring of K(C) above X = a,. Then, the function
tv — (X — ocl)

cYd, where c,d eZ with me + exd = 1, is a local parameter at V.

Proof. For h € K{C) we denote by o\Av{h) the order of h at V. The equation

yields

wordr(y) = e, ordv{X — a,).

Since (ex,m)= 1, we get

ordK(X —a,) = m and ord,,(Y) = et.
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Let c,deZ such that me + e,d = 1. Then the function tv - (X - a , ) c r ' has

ord^(t^) = me + exd = 1.

Therefore tv is a local parameter at V.

Lemma 2. Let K be an algebraic number field with ring of integers OK. Let L be a
cyclic extension of K of degree I, where I is a prime, and T a finite set of prime ideals in
OK such that the extension L/K is unramified outside T. Then the discriminant DL of L
satisfies

IA.I < \DK\'

Proof. Let VL/K be the different of L over K. Then

where Vx,...,Vk are prime ideals in L such that Vi^ n OK e T (; = 1 k). Let Lj and
Kj be the completions of L and K with respect to the prime ideals Vs and P, = VjC\OK

(j = 1 , . . . , k). Denote by 2?t;/^ the different of L; over Kt and by Vj the prime ideal
generated by Vj in the ring of T>-adic integers in L;. By [8, Proposition 10, page 61] we
have £>!.,./*, = P'j. By [8, Corollary 4, page 41] Ly is a finite Galois extension of Kj
and its Galois group is the group of decomposition of Vj. Then [8, Lemma 3, page 91,
and Exercise 3.c, page 79] give

rt<U-\ 0 = 1. • • • . * ) •

Denote by NL/K and DL/K respectively the norm and the discriminant ideal of L over
K. The prime ideals Pt (i = 1 , . . . , k) are the only prime ideals in OK that are ramified
in L. Since £ is a prime number, it follows that the ramification index of Pt is I. Then
NL,K(P,) = J», (i = 1 k). Further, we have NL/K(VL/K) = DL/K. Thus

(D')l\P>K(UL/K)\ 5 MVKV"I • • • "k)\ —

Therefore

\&L\ — \DK\C\NK(DL/K)\ < \DK\e

Lemma 3. Let K be an algebraic number field with ring of integers OK. Let
g(X) = (X — a , ) . . .{X — ar) be a polynomial in OK[X], where a , , . . . , a r are pairwise
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distinct elements in K. Set Kt — K ( a i .•••,<*,•) and denote by DK. the discriminant of K,
( i = 1 r). Then

\DK,\ < ID^'-V^N^AigW''1,

where A(g) is the discriminant ofg(X).

Proof. Set Ko = K and denote by DKl/Ki{ the discriminant ideal of the extension
/C,//C,_, (i — 1 r). By [8, Proposition 8, page 60] we get

\DKl\<\DJNK(DKl/K)\.

Let G(X) be the irreducible polynomial of a, over K and deg G = (. Since a, is an
algebraic integer, the discriminant DKt/K divides the discriminant of elements
1, a, , . . . , <x\~l, which is equal to the discriminant A(G) of G(X). The element a, is a root
of g(X). Thus G(X) divides g(X) and we deduce that A(G) divides A(g). It follows that
DK]/K divides A(g). Then

\DKl\<\DKnNK(A(g))\.

Assume that Lemma holds for i — 1 > 1. Thus

By the reasoning above, we get

I Ac, I < \DKlJ-i+l)\NK(A(g))\«'-»-<'-i+2K

Applying the inductive hypothesis, we obtain

\DKl\ < \DK\+-li"«-'+n\NK(A(g))\b>~1 •

Lemma 4. Let f and g be two polynomials in one variable with coefficients in K and
deg/ + degg < M. Then

(l/4M)H(fg) < H<J)H{g) < 4MH(fg).

Proof. See [3, Proposition 2.4, page 57].

Lemma 5. Let G(X) = (X - a ,) . . . (X - ar) be a polynomial in K[X] and a e K. Then,
the height of the polynomial E£X) — {X — aa,)... (X — aa.s), s < r, satisfies

H(E,) < 2J"'(s + l)4r+1//(
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Proof. Set G,(X) = (X-ai)...(X-as). By [9, Lemma 5.9, page 211] and [7,
Lemma 3] we obtain

H(E.) < Y-*H{ayH{*i)... H(a.) < 2-'(s + l)H(a)'H(G,).

On the other hand, Lemma 4 gives

H(Gs)<4r+'//(G).

Hence

H(E,) < 2s"1 (s + l)4r+l H(a)'H(G).

3. Proof of Proposition 1

Denote by S the set of prime ideals in OK dividing p or A(g). Let (x, y) € 02
K such that

ym = / ( x ) with x ^ a, (i = 1,. . . , s ) . Put L = #C(w), where w is an algebraic integer
satisfying wm = (x — a , ) . . . (x — a,). Let V be a prime ideal in OK such that V & S and
let OKV be the local ring of OK at V. Denote by x, y, a , , . . . , ar respectively the
reductions of x, y, a , , . . . , a rmodP. Set /c = OK/P and denote by k an algebraic closure
of*.

Let C be the curve over k defined by the equation

Y" = ( * - « , ) " . . . ( * - « , ) « .

Since V does not divide A(^), the elements a , , . . . , a r are pairwise distinct in /c. Put
[L:K] = fi. We have two cases:

First case x / a, (i = 1 , . . . , s). Since w is an algebraic integer, the discriminant DL

of L divides the discriminant £)(1, w, . . . , w^"1) of the elements 1, w , . . . , w*1"1. Further,
D(l, w , . . . , w*1"1) divides the discriminant A(R) of the polynomial

Then DL divides A(«). We have

A(R) = (-lf-'m-Kx - «,)... (x - «s)r'•

Since x ^ af (i = 1,. . . , s), we deduce that A(R) # OmodP. Thus P does not divide DL.
Therefore V is unramified in L.
_ Second case x = a, (1 < i < s). Let V be a discrete valuation ring of the function field
k(C), above the local ring of C at (x, ~y). By Lemma 1, the function tv = (X — aI.)

cy'>
where c, d e Z with me + e,d = 1, is a local parameter at V. Then the function
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is a unit in V. Thus T(X, ~y) ^ 0, oo. Consider the element

r = ( x - « , ) . . . (x -a f ) / ( (x -« , ) ' / ) " .

Since x # a, ( i = l , . . . , s ) , we deduce that z ^ 0. Further, we have z = ?(x,y)^
0, oomodP. If z is not a unit in OKP, then z = 0 or oomod'P which is a contradiction.
Thus z is a unit in OKV. Put <w = w/(x - a ,) ' / . Since of = z, we deduce that a> is a unit
in L. Then the discriminant D of the integral closure of OKV in L divides the
discriminant D(l, to, . . . , a/"1) of the elements 1, a>,..., a/"1 in OKV. Since a> is a root
of the polynomial Q(T) = Tm — z, D(l, a,..., co""1) divides the discriminant

of G(T). It follows that D divides A(Q) in OKv. The element z is a unit in OKV and P
does not divide m. Thus A(0 is a unit in OK v. It follows that ID) is also a unit in OKV.
So we deduce that V is unramified in L. Therefore, the ideals of OK which do not lie
above the elements of S are unramified in L.

Put Kt = K{W'") (i = 0 , . . . , t). Then Ko = K and K, = L. Denote by St the set of
prime ideals of Kt (i = 1 , . . . , t) lying above the elements of S and by DK. the
discriminant of K,. The extension Ki+JK{ is unramified outside S,. By Lemma 2,

' (' = » ' - • ) .

Thus, we obtain by induction

Therefore

4. Proofs of Theorems 1, 2, 3 and Corollaries 1, 2, 3

Proof of Theorem 1. Let x, y be integers in K satisfying y2 =/(x). Set g(X) —
(X — a,)(AT — <x2)(X - a3) and denote by A(g) the discriminant of g(X). Let w be an
algebraic integer such that w2 = g(x) and let L = K(w). Theorem A gives

max{HL(x)> HL(w)} < txp{Q{2d)\DL\25\NL(A(g))\2' log*

By Proposition 1, the discriminant DL of the number field L — K(w) satisfies
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\DL\ < &d\DK\2\NK(A(g))\\

Thus

max{//t(x), HL(w)) < exp{(D1(d)|DK|50|iVK(A(g))|180log- HK(g)},

where

Proof of Corollary 1. Let f{X) = a^X" + axX"~x + ... + an and x, y e OK satisfying
y2 =f(x). Then (aox, a(o~l)ny) is an integral solution over K($~l)/2) to the equation
Y2 =f(X), where

f{X) = Xn+ atX-1 + a2a0X-1 +...+ a .^" 1 =(X- wJ' ...(X- w,)".

Put G(X) = ao(X-oil)...(X-<xr), G1(X) = (X-aoal)...(X-ao<xr) and denote by
A(G), A(G() respectively their discriminants. By Lemma 5, the height of the polynomial
h(X) = (X- fl0a,)(X - ao<x2)(X - aoa3) is

H(h) < 4r+iH(a0?H(G).

Further, the discriminant A(/i) of h satisfies

\NM(A(h))\ < |NM(A(G,))I < (|NK(a0)|"-"<r-2)

By Lemma 3, the discriminant DL of L = /C(a,, a2, a3) has

\DL\ < | £ > K | ' < ' - " ( r - 2 ) | 2

Since |iVK(A(G,))l < |NK(a0)|(r-|)(r-2)|NK(A(G))|, we get

On the other hand the discriminant DM of M = L(a(o~])/2) satisfies

\DU\ < tftf^y1**

Thus

\DM\ < INKi

Theorem 1 gives
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HM(oox) < e x p f O . W ~ l)(r - 2))|DM|50|NM(A(/I))|
180 log' HM(h)}.

Since

HM{x) < HM(aox)HM(a;>) = HM(aox)HM(ao),

combining the above estimates, we get

HM{x) < exp{(D2(d, r)(\DK\l0\NK(A(G))\36\NK(a0)\
i6"')""i log'(HK(a0)HK(G))},

where

O2(d,r)<(1016(dr3)5)250"r3.

Proof of Theorem 2. Let x, y be integers in K satisfying / —f(x). Set
g(X) = {X — a,)(AT — a2) and denote by A(g) the discriminant of g(X). Let w be an
algebraic integer such that vJ — g(x). Thus

wp — a,a2 — x2 — (a, + a2)x.

Multiplying by 4P and adding the term (2p""l(al + a2))
2 in the two members, we get

(4w)p - 4"(a,a2) + (2"-'(a, + a2))
2 - (2"x)2 - 2'(a, + a2)(2'x) + (2'"I(a, + a2))

2.

Setting

t = 2p- ' (2x-(a1+a2)) and u = 4w,

we obtain

Put L = K(w) and R(X) = A"*1 + 4""lA(g). Denote by DL and A(R) respectively the
discriminants of L and R(X). Let M = L{z), where z is a root of the polynomial R(X).
By Lemma 3,

\DM\ < |D

It is well known that A(R) = pp(4'>-|A(g))p"1. Thus

\DM\ < (p4')*I|

By Proposition 1,
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Therefore

\DM\<(P
i4p)dp2\DK\p2\NK(A(g))\

ip2.

Let (u be a pth primitive root of 1. According to our assumptions co e K. Put
h(X) = (X - z)(X - z(o)(X - zco2). Applying Theorem 1, we get

HM{u)

We have

< \NK(A(g))\2"2p5d"3

and Lemma 4 gives

HM(h) <

Therefore

HM(u) <

We have

H(t) < H(tf = H(t2) <

Then

H(x) < 2p+2H(t)H(g) < 2if+/iH{up)H(g)\

Hence

log* HK(g)}.

-xA{g)) < 22""1 H(up)H(A(g)) < 22p+2H(u")H(g)2.

Hu(x) < exp{4>,(<f, log* HK(g)),

where

Proof of Corollary 2. Let x ,ye 0K be a solution of / =/(x). Then
is an integral solution over K(a£1~l)/P) to the equation Yp =f(X), where
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Consider the polynomials G(X) = (^{X- a , ) . . . (AT - ar), G{(X) = (X- ^ a , ) . . . (X- a^tx,)
and denote by A(G), A(G,) respectively their discriminants. Let co be a pth primitive
root of 1. By Lemma 3, the discriminant DL of L — K(jx{, a2, co) is

\DL\ < p ^ 2 | D K
2

Thus, we obtain

\DL\ < p">r2|Dxr2°>-1)(|

Put M = L(d£~])/P) and denote by DM the discriminant of M. Since the discriminant
of the polynomial X" - a^1 is ( - l f ' 1 )Vflo" l ) ( r "> Lemma 3 gives

I A J < | D L r ( p d ' > ( ) ( ) O 1 W 1 )

It follows that

\DM\ < p»'2'2\D^-1)>\

By Lemma 5, the height of the polynomial h(X) = (X — aoa,)(Ar — a0a2) satisfies

H(h) < 4'12H(ao)2/f(G).

Furthermore, the discriminant A(/i) of h satisfies

Using Theorem 2 and the above estimates, we get

HM[x) < exp{¥2(rf, r, p)(|DK|5|NK(A(G))|51|iVK(ao)|5lr")lo'V \og\HK(a0)HK(G))},

where

Proof of Theorem 3. Let x, y e OK be a solution of / —f{x). Consider the
polynomial g(X) = (X — a,)(X — a2) and denote by A(g) its discriminant. Let w be an
algebraic integer such that w4 = g(x). Then

w4 — a,a2 = x2 — (a, + a2)x.

Multiplying by 24 and adding the term (2(a, + a2))
2 in the two members, we obtain

4 = [ ( 4 x ) - 2 ( a 1 + a 2 ) ] 2 .
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Setting t = 2w and z = (4x) - 2(a, + a2), we get

Put L = K(w) and S(X) = X4 + 4A(#). Denote by £>L and A(S) respectively the
discriminants of L and S(A"). Let M = L(u), where u is a root of the polynomial S(X).
By Lemma 3,

\DM\ < \DL\*\NL(A(S))\.

Since A(S) = 44(4A(g))3, we have

|NL(A(S))| < 4™\NK(A(g))\12.

By Proposition 1,

IA.I < 2l2d\DK\<\NK(A(g))\12.

Therefore

\DM\<4™\DK\l6\NK(A(g))f°-

Set h{X) = (X — u)(X — uco)(X — ua>2), where co is a 4th primitive root of 1. Then
Theorem 1 gives

We deduce as in the proof of Theorem 2 that

\NM(A(h))\ < 4*id\NK(A(g))\2< and Hu(h) <

Hence

HM(t) < exp{(D1(16rf)41M4M+4|DK|8()0|yVK(A(^))r62

We have

H(z) < H(zf < &H(tfH(A(g)) < 40H(tY

Hence

H(x) < 8H(g)H(z) < f

Thus

HM{x) 800
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where

Proof of Corollary 3. Consider the equation Y4 -f{X), where

/ ) " • • • ( * - f l o « r ) ' r -

If x,yeOK is a solution of y* —f(x), then (aQx, a£'~I)/4y) is an integral solution
over KC^""07") to the equation Y2 =J(X). We set G(X) = ^{X - a , ) . . .(X - ar),
G . W = (X - a o a , ) . . . (X - aoar), h(A-) = (AT - a ^ X * - a0a2) and we denote by A(G),
A(G,), A(ft) respectively their discriminants. By Lemma 3, the discriminant DL of
L = K(a,, a2, co), where <w is a 4th primitive root of 1, satisfies

\DL\ < 4rfr2|DK|2'2|

Put M = L(ao"~1)/4) and denote by DM the discriminant of M. Then, Lemma 3 gives

\DM\ <

Thus,

By Lemma 5, we get

H(h)<4r\2H(a0)
2H(G).

Further, we deduce

|NM(A(/0)| < |NM(A(G,))l < (|Nx(ao)l(r"'Xr"2)l

Theorem 3 and the above estimates give

HM(x) < exp{n2(d, r)(|DK|64|NK(A(G))|370|NKK)|370'ir)100r2 log'(HK(a)HK(G))},

where

n2(d,r)<((1049(rfr2)8)104'"2).
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