BOUNDS FOR THE SIZE OF INTEGRAL SOLUTIONS TO $Y^{m}=f(X)$

by DIMITRIOS POULAKIS

(Received 20th February 1997)

Let K be an algebraic number field with ring of integers O_{K} and $f(X) \in O_{K}[X]$. In this paper we establish improved explicit upper bounds for the size of solutions in O_{K}, of diophantine equations $Y^{2}=f(X)$, where $f(X)$ has at least three roots of odd order, and $Y^{m}=f(X)$, where m is an integer ≥ 3 and $f(X)$ has at least two roots of order prime to m.

1991 Mathematics subject classification: 11D41.

1. Introduction

Let K be an algebraic number field with ring of integers $O_{K}, f(X)$ a polynomial in $O_{K}[X]$ and m an integer ≥ 2. Consider the diophantine equation

$$
\begin{equation*}
Y^{m}=f(X) \tag{*}
\end{equation*}
$$

and assume that if $m \geq 3, f(X)$ has at least two roots of order prime to m and if $m=2, f(X)$ has at least three roots of odd order. When $K=\mathbb{Q}$, Baker [1] obtained the first explicit upper bound for the size of integral solutions to the equation (*). This result has been extended to an arbitrary algebraic number field and has been improved by several authors. The best known results have been obtained by Voutier [10]. Moreover, a generalization of the equation (*) has been studied in [5].

Throughout this paper we denote by d, D_{K} and N_{K} the degree of K, the discriminant of K and the norm from K to \mathbb{Q}. Further, we denote by \bar{K} an algebraic closure of K. By an absolute value we will always understand an absolute value that it extends either the standard absolute value of \mathbb{Q} or a p-adic absolute value $\|_{p}$ of \mathbb{Q}. Let $M(K)$ be a set of symbols v such that with every $v \in M(K)$ an absolute value $\left\|\|_{v}\right.$ is associated. We denote by d_{0} the local degree of $\|_{0}$. We define the field height of a point $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right)$ in the projective n-space $\mathbb{P}^{n}(K)$ by

$$
H_{K}(\mathbf{x})=\prod_{D \in M(K)} \max \left\{\left|x_{0}\right|_{D}, \ldots,\left|x_{n}\right|_{0}\right\}^{d_{0}},
$$

and the absolute height by $H(\mathbf{x})=H_{K}(\mathbf{x})^{1 / d}$. For $x \in K$ we define $H_{K}(x)=H_{K}((1: x))$
and $H(x)=H((1: x))$. Let G be a polynomial in one or several variables and with coefficients in K. We define the field height $H_{K}(G)$ and the absolute height $H(G)$ of G, respectively, to be the field height and the absolute height of a point in a projective space having as coordinates the coefficients of G (in any order). For an account of the properties of heights see [9, Chapter VIII] and [3, Chapter 3]. Finally, for $z \in \mathbb{R}, z>0$, we let $\log ^{*} z=\max \{1, \log z\}$.

In [6] we have obtained the following improved upper bound on the size of integral solutions to the elliptic equation:

Theorem A. Suppose $f(X)=X^{3}+a X^{2}+b X+c$ has coefficients in O_{K} and discriminant $\Delta(f) \neq 0$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{2}=f(X)$ satisfy

$$
\max \left\{H_{K}(x), H_{K}(y)\right\}<\exp \left\{\Omega(d)\left|D_{K}\right|^{25}\left|N_{K}(\Delta(f))\right|^{27} \log ^{*} H_{K}(f)\right\}
$$

where

$$
\Omega(d)<10^{740 d+48} d^{312 d+13}
$$

In this paper we generalize the above result and we obtain explicit upper bounds of the above type for the height of integral solutions to the equation (*) over K, improving on the estimates obtained by Voutier.

Let $(x, y) \in O_{K}^{2}$ be a solution of $y^{m}=f(x)$. Since we have

$$
H_{K}(y) \leq H_{K}(y)^{m}=H_{K}\left(y^{m}\right) \leq(\operatorname{deg} f+1)^{d} H_{K}(f) H_{K}(x)^{\operatorname{deg} f},
$$

it is sufficient to calculate an upper bound for $H_{K}(x)$. We obtain the following explicit estimates:

Theorem 1. Let $f(X)=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ be a polynomial of degree ≥ 3 in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K}. Assume that $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K$ and e_{1}, e_{2}, e_{3} are odd. Put $g(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)$ and denote by $\Delta(g)$ the discriminant of $g(X)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{2}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Phi_{1}(d)\left|D_{K}\right|^{50}\left|N_{K}(\Delta(g))\right|^{180} \log ^{*} H_{K}(g)\right\},
$$

where

$$
\Phi_{1}(d)<10^{1700 d+53} d^{624 d+13}
$$

Corollary 1. Let $f(X)=a_{0}\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ be a polynomial of degree $n \geq 3$ in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K} and e_{1}, e_{2}, e_{3} are odd. Put $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ and denote by $\Delta(G)$ the discriminant of $G(X)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{2}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Phi_{2}(d, r)\left(\left|D_{K}\right|^{10}\left|N_{K}(\Delta(G))\right|^{36}\left|N_{K}\left(a_{0}\right)\right|^{36 r n}\right)^{10 r^{3}} \log ^{*}\left(H_{K}\left(a_{0}\right) H_{K}(G)\right)\right\}
$$

where

$$
\Phi_{2}(d, r)<\left(10^{16}\left(d r^{3}\right)^{5}\right)^{250 d^{3}}
$$

Theorem 2. Let p be a prime ≥ 3 and $f(X)=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ a polynomial of degree ≥ 2 in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K} with $a_{1}, a_{2} \in K$ and $\left(e_{i}, p\right)=1 \quad(i=1,2)$. Assume that K contains a primitive pth root of 1 . Put $g(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)$ and denote by $\Delta(g)$ the discriminant of $g(X)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{p}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Psi_{1}(d, p)\left|D_{K}\right|^{50 p^{2}}\left|N_{K}(\Delta(g))\right|^{10 p^{2}} \log ^{*} H_{K}(g)\right\}
$$

where

$$
\Psi_{1}(d, p)<10^{1700 d p^{2}+53} d^{624 d p^{2}+13} p^{1438 d p^{3}+9}
$$

Corollary 2. Let p be a prime ≥ 3 and $f(X)=a_{0}\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ a polynomial of degree $n \geq 2$ in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K} with $\left(e_{i}, p\right)=1 \quad(i=1,2)$. Put $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ and denote by $\Delta(G)$ the discriminant of $G(X)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{p}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Psi_{2}(d, r, p)\left(\left|D_{K}\right|^{5}\left|N_{K}(\Delta(G))\right|^{51}\left|N_{K}\left(a_{0}\right)\right|^{5 \ln r}\right)^{10 r^{2} p^{4}} \log ^{*}\left(H_{K}\left(a_{0}\right) H_{K}(G)\right)\right\},
$$

where

$$
\Psi_{2}(d, r, p)<\left(10^{3}\left(d r^{2}\right) p^{3 p}\right)^{62 S d r^{2} p^{4}}
$$

Theorem 3. Let $f(X)=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e^{e}}$ be a polynomial of degree ≥ 2 in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K} with $\alpha_{1}, \alpha_{2} \in K$ and e_{1}, e_{2} are odd. Assume that K contains a primitive 4 th-root of 1 . Denote by $\Delta(g)$ the discriminant of the polynomial $g(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{4}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Omega_{1}(d)\left|D_{K}\right|^{800}\left|N_{K}(\Delta(g))\right|^{4620} \log ^{*} H_{K}(g)\right\},
$$

where

$$
\Omega_{1}(d)<10^{50597 d+73} d^{9984 d+13} .
$$

Corollary 3. Let $f(X)=a_{0}\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ be a polynomial of degree $n \geq 2$ in $O_{K}^{2}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K} and e_{1}, e_{2} are odd. Put $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ and denote by $\Delta(G)$ the discriminant of $G(X)$. Then, all solutions $(x, y) \in O_{K}^{2}$ to the equation $Y^{4}=f(X)$ satisfy

$$
H_{K}(x)<\exp \left\{\Omega_{2}(d, r)\left(\left|D_{K}\right|^{64}\left|N_{K}(\Delta(G))\right|^{330}\left|N_{K}\left(a_{0}\right)\right|^{370 n r}\right)^{100 r^{2}} \log ^{*}\left(H_{K}(a) H_{K}(G)\right)\right\}
$$

where

$$
\Omega_{2}(d, r)<\left(\left(10^{49}\left(d r^{2}\right)^{8}\right)^{10^{4} d r^{2}}\right)
$$

Assume that m is an integer ≥ 4 and $f(X)$ a polynomial in $O_{K}[X]$ having at least two roots of order prime to m. Let $x, y \in O_{K}$ with $y^{m}=f(x)$. If m has a prime divisor $p \geq 3$, then $\left(x, y^{m / p}\right)$ is an integral solution to the equation $Y^{p}=f(X)$. Hence Theorem 2 (or Corollary 2) implies an upper bound for $H_{K}(x)$. Similarly, if $m=2^{t}, t \geq 2$, Theorem 3 (or Corollary 3) gives an upper bound for $H_{K}(x)$. Therefore, in all cases, Theorems 1,2 and 3 (or Corollaries 1,2 and 3) give a bound for the integral solutions to the equation (*).

Following Kubert and Lang [2, §1], we reduce the proofs of Theorems 1, 2 and 3, to our Theorem A. This reduction relies on the following result:

Proposition 1. Let $m=p^{t}$, where p is a prime and t is an integer ≥ 1. Let $f(X)=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}$ be a polynomial in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in \bar{K}. Assume that K contains a primitive mth root of $1, \alpha_{1}, \ldots \alpha_{s} \in K$ $(s \leq r)$ and $\left(e_{i}, m\right)=1(i=1, \ldots, s)$. Put $g(X)=\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ and denote by $\Delta(g)$ the discriminant of $g(X)$. Let $x, y \in O_{K}$ with $y^{m}=f(x)$. Then the algebraic number field $L=K(w)$, where $w^{m}=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{s}\right)$, has discriminant D_{L} satisfying

$$
\left|D_{L}\right|<p^{(2 p-1) d t p^{t-1}}\left|D_{K}\right|^{\mid p t}\left|N_{K}(\Delta(g))\right|^{(2 p-1)) p^{t-1}} .
$$

2. Auxiliary lemmas

For the proof of Proposition 1 and Theorems 1, 2 and 3 we shall need the following lemmas:

Lemma 1. Let K be a field of characteristic p and m an integer ≥ 2 not divisible by p. Denote by C the algebraic curve defined by the equation

$$
Y^{m}=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}},
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements in an algebraic closure \bar{K} of K and $\left(e_{1}, m\right)=1$. Let V be a discrete valuation ring of $\bar{K}(C)$ above $X=\alpha_{1}$. Then, the function $t_{V}=\left(X-\alpha_{1}\right)^{c} Y^{d}$, where $c, d \in \mathbb{Z}$ with $m c+e_{1} d=1$, is a local parameter at V.

Proof. For $h \in \bar{K}(C)$ we denote by $\operatorname{ord}_{V}(h)$ the order of h at V. The equation

$$
Y^{m}=\left(X-\alpha_{1}\right)^{e_{1}} \ldots\left(X-\alpha_{r}\right)^{e_{r}}
$$

yields

$$
m \operatorname{ord}_{v}(Y)=e_{1} \operatorname{ord}_{V}\left(X-\alpha_{1}\right)
$$

Since $\left(e_{1}, m\right)=1$, we get

$$
\operatorname{ord}_{V}\left(X-\alpha_{1}\right)=m \quad \text { and } \quad \operatorname{ord}_{V}(Y)=e_{1}
$$

Let $c, d \in \mathbb{Z}$ such that $m c+e_{1} d=1$. Then the function $t_{V}=\left(X-\alpha_{1}\right)^{c} Y^{d}$ has

$$
\operatorname{ord}_{v}\left(t_{v}\right)=m c+e_{1} d=1
$$

Therefore t_{V} is a local parameter at V.
Lemma 2. Let K be an algebraic number field with ring of integers O_{K}. Let L be a cyclic extension of K of degree ℓ, where ℓ is a prime, and T a finite set of prime ideals in O_{K} such that the extension L / K is unramified outside T. Then the discriminant D_{L} of L satisfies

$$
\left|D_{L}\right|<\left|D_{K}\right|^{l}\left|N_{K}\left(\prod_{P \in T} P\right)\right|^{2 \ell-1} .
$$

Proof. Let $\mathcal{D}_{L / K}$ be the different of L over K. Then

$$
\mathcal{D}_{L / K}=\mathcal{P}_{1}^{r_{1}} \ldots \mathcal{P}_{k}^{r_{k}}
$$

where $\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}$ are prime ideals in L such that $\mathcal{P}_{j} \cap O_{K} \in T(j=1, \ldots, k)$. Let \hat{L}_{j} and \hat{K}_{j} be the completions of L and K with respect to the prime ideals \mathcal{P}_{j} and $P_{j}=\mathcal{P}_{j} \cap O_{K}$ $(j=1, \ldots, k)$. Denote by $\mathcal{D}_{L_{j}, K_{j}}$ the different of \hat{L}_{j} over \hat{K}_{j} and by $\hat{\mathcal{P}}_{j}$ the prime ideal generated by \mathcal{P}_{j} in the ring of \mathcal{P}_{j}-adic integers in \hat{L}_{j}. By [8, Proposition 10, page 61] we have $\mathcal{D}_{i_{j} \hat{K}_{j}}=\hat{\mathcal{P}}_{j}^{T_{j}}$. By [8, Corollary 4, page 41] \hat{L}_{j} is a finite Galois extension of \hat{K}_{j} and its Galois group is the group of decomposition of \mathcal{P}_{j}. Then [8, Lemma 3, page 91, and Exercise 3.c, page 79] give

$$
r_{j} \leq 2 \ell-1 \quad(j=1, \ldots, k)
$$

Denote by $N_{L / K}$ and $D_{L / K}$ respectively the norm and the discriminant ideal of L over K. The prime ideals $P_{i}(i=1, \ldots, k)$ are the only prime ideals in O_{K} that are ramified in L. Since ℓ is a prime number, it follows that the ramification index of P_{i} is ℓ. Then $N_{L / K}\left(\mathcal{P}_{i}\right)=P_{i}(i=1, \ldots, k)$. Further, we have $N_{L / K}\left(\mathcal{D}_{L / K}\right)=D_{L / K}$. Thus

$$
\left|N_{K}\left(D_{L / K}\right)\right| \leq\left|N_{K}\left(P_{1} \ldots P_{k}\right)\right|^{2 \ell-1} \leq\left|N_{K}\left(\prod_{P \in T} P\right)\right|^{2 \ell-1}
$$

Therefore

$$
\left|D_{L}\right|=\left|D_{K}\right|^{\ell}\left|N_{K}\left(D_{L / K}\right)\right| \leq\left|D_{K}\right|^{\ell}\left|N_{K}\left(\prod_{P \in T} P\right)\right|^{2 \ell-1} .
$$

Lemma 3. Let K be an algebraic number field with ring of integers O_{K}. Let $g(X)=\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ be a polynomial in $O_{K}[X]$, where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise
distinct elements in \bar{K}. Set $K_{i}=K\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ and denote by $D_{K_{i}}$ the discriminant of K_{i} $(i=1, \ldots, r)$. Then

$$
\left|D_{K_{i}}\right| \leq\left|D_{K}\right|^{(r-1) \ldots(r-i+1)}\left|N_{K}(\Delta(g))\right|^{i r-1}
$$

where $\Delta(g)$ is the discriminant of $g(X)$.
Proof. Set $K_{0}=K$ and denote by $D_{K_{l} / K_{i-1}}$ the discriminant ideal of the extension $K_{i} / K_{i-1}(i=1, \ldots, r)$. By [8, Proposition 8, page 60] we get

$$
\left|D_{K_{1}}\right| \leq\left|D_{K}\right|^{r} N_{K}\left(D_{K_{1} / K}\right) \mid .
$$

Let $G(X)$ be the irreducible polynomial of α_{1} over K and $\operatorname{deg} G=\zeta$. Since α_{1} is an algebraic integer, the discriminant $D_{K_{1} / K}$ divides the discriminant of elements $1, \alpha_{1}, \ldots, \alpha_{1}^{\xi-1}$, which is equal to the discriminant $\Delta(G)$ of $G(X)$. The element α_{1} is a root of $g(X)$. Thus $G(X)$ divides $g(X)$ and we deduce that $\Delta(G)$ divides $\Delta(g)$. It follows that $D_{K_{1} / K}$ divides $\Delta(g)$. Then

$$
\left|D_{K_{1}}\right| \leq\left|D_{K}\right|^{\top}\left|N_{K}(\Delta(g))\right| .
$$

Assume that Lemma holds for $i-1 \geq 1$. Thus

By the reasoning above, we get

$$
\left|D_{K_{i}}\right| \leq\left|D_{K_{i-1}}\right|^{(r-i+1)}\left|N_{K}(\Delta(g))\right|^{(r-1) \ldots(r-i+2)} .
$$

Applying the inductive hypothesis, we obtain

$$
\left|D_{K_{l}}\right| \leq\left|D_{K}\right|^{(r-1) \ldots(r-i+1)}\left|N_{K}(\Delta(g))\right|^{i^{i-1}}
$$

Lemma 4. Let f and g be two polynomials in one variable with coefficients in \bar{K} and $\operatorname{deg} f+\operatorname{deg} g<M$. Then

$$
\left(1 / 4^{M}\right) H(f g) \leq H(f) H(g) \leq 4^{M} H(f g)
$$

Proof. See [3, Proposition 2.4, page 57].

Lemma 5. Let $G(X)=\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$ be a polynomial in $K[X]$ and $a \in K$. Then, the height of the polynomial $E_{s}(X)=\left(X-a \alpha_{1}\right) \ldots\left(X-a \alpha_{s}\right), s \leq r$, satisfies

$$
H\left(E_{s}\right)<2^{s-1}(s+1) 4^{r+1} H(a)^{s} H(G) .
$$

Proof. Set $G_{s}(X)=\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{s}\right)$. By [9, Lemma 5.9, page 211] and [7, Lemma 3] we obtain

$$
H\left(E_{s}\right) \leq 2^{s-1} H(a)^{s} H\left(\alpha_{1}\right) \ldots H\left(\alpha_{s}\right) \leq 2^{s-1}(s+1) H(a)^{s} H\left(G_{s}\right) .
$$

On the other hand, Lemma 4 gives

$$
H\left(G_{s}\right) \leq 4^{r+1} H(G) .
$$

Hence

$$
H\left(E_{s}\right) \leq 2^{s-1}(s+1) 4^{r+1} H(a)^{s} H(G) .
$$

3. Proof of Proposition 1

Denote by S the set of prime ideals in O_{K} dividing p or $\Delta(g)$. Let $(x, y) \in O_{K}^{2}$ such that $y^{m}=f(x)$ with $x \neq \alpha_{i}(i=1, \ldots, s)$. Put $L=K(w)$, where w is an algebraic integer satisfying $w^{m}=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{s}\right)$. Let \mathcal{P} be a prime ideal in O_{K} such that $\mathcal{P} \notin S$ and let $O_{K, \mathcal{P}}$ be the local ring of O_{K} at \mathcal{P}. Denote by $\bar{x}, \bar{y}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}$ respectively the reductions of $x, y, \alpha_{1}, \ldots, \alpha_{r} \bmod \mathcal{P}$. Set $k=O_{K} / \mathcal{P}$ and denote by \bar{k} an algebraic closure of k.

Let \bar{C} be the curve over k defined by the equation

$$
Y^{m}=\left(X-\bar{\alpha}_{1}\right)^{\varepsilon_{1}} \ldots\left(X-\bar{\alpha}_{r}\right)^{e_{r}} .
$$

Since \mathcal{P} does not divide $\Delta(g)$, the elements $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}$ are pairwise distinct in \bar{k}. Put $[L: K]=\mu$. We have two cases:

First case $\bar{x} \neq \bar{\alpha}_{i}(i=1, \ldots, s)$. Since w is an algebraic integer, the discriminant D_{L} of L divides the discriminant $D\left(1, w, \ldots, w^{\mu-1}\right)$ of the elements $1, w, \ldots, w^{\mu-1}$. Further, $D\left(1, w, \ldots, w^{\mu-1}\right)$ divides the discriminant $\Delta(R)$ of the polynomial

$$
R(T)=T^{m}-\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{s}\right)
$$

Then D_{L} divides $\Delta(R)$. We have

$$
\Delta(R)=(-1)^{m-1} m^{m}\left[\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{s}\right)\right]^{m-1}
$$

Since $\bar{x} \neq \bar{\alpha}_{i}(i=1, \ldots, s)$, we deduce that $\Delta(R) \not \equiv 0 \bmod \mathcal{P}$. Thus \mathcal{P} does not divide D_{L}. Therefore \mathcal{P} is unramified in L.

Second case $\bar{x}=\bar{\alpha}_{i}(1 \leq i \leq s)$. Let V be a discrete valuation ring of the function field $\bar{k}(\bar{C})$, above the local ring of \bar{C} at (\bar{x}, \bar{y}). By Lemma 1, the function $t_{V}=\left(X-\bar{x}_{i}\right)^{c} Y^{d}$, where $c, d \in \mathbb{Z}$ with $m c+e_{i} d=1$, is a local parameter at V. Then the function

$$
\tau=\left(X-\bar{\alpha}_{1}\right) \ldots\left(X-\bar{\alpha}_{s}\right) / t_{V}^{m}
$$

is a unit in V. Thus $\tau(\bar{x}, \bar{y}) \neq 0, \infty$. Consider the element

$$
z=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{s}\right) /\left(\left(x-\alpha_{i}\right)^{c} y^{d}\right)^{m} .
$$

Since $x \neq \alpha_{i}(i=1, \ldots, s)$, we deduce that $z \neq 0$. Further, we have $z \equiv \tau(\bar{x}, \bar{y}) \neq$ $0, \infty \bmod \mathcal{P}$. If z is not a unit in $O_{K . \mathcal{P}}$, then $z=0$ or $\infty \bmod \mathcal{P}$ which is a contradiction. Thus z is a unit in $O_{K, \mathcal{P}}$. Put $\omega=w /\left(x-\alpha_{i}\right)^{c} y^{d}$. Since $\omega^{m}=z$, we deduce that ω is a unit in L. Then the discriminant \mathbb{D} of the integral closure of $O_{K, \mathcal{P}}$ in L divides the discriminant $D\left(1, \omega, \ldots, \omega^{\mu-1}\right)$ of the elements $1, \omega, \ldots, \omega^{\mu-1}$ in $O_{K, \mathcal{P}}$. Since ω is a root of the polynomial $Q(T)=T^{m}-z, D\left(1, \omega, \ldots, \omega^{\mu-1}\right)$ divides the discriminant

$$
\Delta(Q)=(-1)^{m-1} m^{m} z^{m-1}
$$

of $Q(T)$. It follows that \mathbb{D} divides $\Delta(Q)$ in $O_{K, p}$. The element z is a unit in $O_{K, \mathcal{P}}$ and \mathcal{P} does not divide m. Thus $\Delta(Q)$ is a unit in $O_{K, \mathcal{P}}$. It follows that \mathbb{D} is also a unit in $O_{K, \mathcal{P}}$. So we deduce that \mathcal{P} is unramified in L. Therefore, the ideals of O_{K} which do not lie above the elements of S are unramified in L.

Put $K_{i}=K\left(w^{t-1}\right)(i=0, \ldots, t)$. Then $K_{0}=K$ and $K_{t}=L$. Denote by S_{i} the set of prime ideals of $K_{i}(i=1, \ldots, t)$ lying above the elements of S and by $D_{K_{i}}$ the discriminant of K_{i}. The extension K_{i+1} / K_{i} is unramified outside S_{i}. By Lemma 2,

$$
\left|D_{K_{i+1}}\right|<\left|D_{K_{i}}\right|^{p}\left|N_{K_{i}}\left(\prod_{\mathcal{P} \in S_{i}} \mathcal{P}\right)\right|^{2 p-1} \quad(i=0, \ldots, t-1) .
$$

Thus, we obtain by induction

$$
\left|D_{L}\right|<\left|D_{K}\right|^{p t}\left|N_{K}\left(\prod_{p \in S} \mathcal{P}\right)\right|^{(2 p-1) / p^{t-1}} .
$$

Therefore

$$
\left|D_{L}\right|<p^{(2 p-1) d p^{t-1}}\left|D_{K}\right| p^{p t}\left|N_{K}(\Delta(g))\right|^{(2 p-1)) p^{t-1}}
$$

4. Proofs of Theorems 1,2,3 and Corollaries 1, 2, 3

Proof of Theorem 1. Let x, y be integers in K satisfying $y^{2}=f(x)$. Set $g(X)=$ $\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)$ and denote by $\Delta(g)$ the discriminant of $g(X)$. Let w be an algebraic integer such that $w^{2}=g(x)$ and let $L=K(w)$. Theorem A gives

$$
\max \left\{H_{L}(x), H_{L}(w)\right\}<\exp \left\{\Omega(2 d)\left|D_{L}\right|^{25}\left|N_{L}(\Delta(g))\right|^{27} \log ^{*} H_{L}(g)\right\}
$$

By Proposition 1, the discriminant D_{L} of the number field $L=K(w)$ satisfies

$$
\left|D_{L}\right|<8^{d}\left|D_{K}\right|^{2}\left|N_{K}(\Delta(g))\right|^{3} .
$$

Thus

$$
\max \left\{H_{L}(x), H_{L}(w)\right\}<\exp \left\{\Phi_{1}(d)\left|D_{K}\right|^{50}\left|N_{K}(\Delta(g))\right|^{180} \log ^{*} H_{K}(g)\right\}
$$

where

$$
\Phi_{1}(d)<10^{1700 d+53} d^{62 d d+13} .
$$

Proof of Corollary 1. Let $f(X)=a_{0} X^{n}+a_{1} X^{n-1}+\ldots+a_{n}$ and $x, y \in O_{K}$ satisfying $y^{2}=f(x)$. Then ($a_{0} x, a_{0}^{(n-1) / 2} y$) is an integral solution over $K\left(a_{0}^{(n-1) / 2}\right)$ to the equation $Y^{2}=\bar{f}(X)$, where

$$
\tilde{f}(X)=X^{n}+a_{1} X^{n-1}+a_{2} a_{0} X^{n-1}+\ldots+a_{n} a_{0}^{n-1}=\left(X-a_{0} \alpha_{1}\right)^{e_{1}} \ldots\left(X-a_{0} \alpha_{r}\right)^{e_{r}} .
$$

Put $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right), G_{1}(X)=\left(X-a_{0} \alpha_{1}\right) \ldots\left(X-a_{0} \alpha_{r}\right)$ and denote by $\Delta(G), \Delta\left(G_{1}\right)$ respectively their discriminants. By Lemma 5 , the height of the polynomial $h(X)=\left(X-a_{0} \alpha_{1}\right)\left(X-a_{0} \alpha_{2}\right)\left(X-a_{0} \alpha_{3}\right)$ is

$$
H(h) \leq 4^{r+3} H\left(a_{0}\right)^{3} H(G) .
$$

Further, the discriminant $\Delta(h)$ of h satisfies

$$
\left|N_{M}(\Delta(h))\right| \leq\left|N_{M}\left(\Delta\left(G_{1}\right)\right)\right| \leq\left(\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|\right)^{2(r-1)(r-2)} .
$$

By Lemma 3, the discriminant D_{L} of $L=K\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ has

$$
\left|D_{L}\right| \leq\left|D_{K}\right|^{\mid r-1)(r-2)}\left|N_{K}\left(\Delta\left(G_{1}\right)\right)\right|^{3 r^{2}} .
$$

Since $\left|N_{K}\left(\Delta\left(G_{1}\right)\right)\right| \leq\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|$, we get

$$
\left|D_{L}\right| \leq\left(\left|D_{K}\right|\left|N_{K}\left(a_{0}\right)\right|^{3 r}\right)^{r(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|^{3 r^{2}} .
$$

On the other hand the discriminant D_{M} of $M=L\left(a_{0}^{(n-1) / 2}\right)$ satisfies

$$
\left|D_{M}\right| \leq\left|D_{L}\right|^{2}\left(4^{d}\left|N_{K}\left(a_{0}\right)\right|^{(n-1)}\right)^{r(r-1)(r-2)} .
$$

Thus

$$
\left|D_{M}\right| \leq\left|N_{K}(\Delta(G))\right|^{6 r^{2}}\left(4^{d}\left|D_{K}\right|^{2}\left|N_{K}\left(a_{0}\right)\right|^{n+6 r-1}\right)^{r(r-1)(r-2)} .
$$

Theorem 1 gives

$$
H_{M}\left(a_{0} x\right)<\exp \left\{\Phi_{1}(2 d r(r-1)(r-2))\left|D_{M}\right|^{50}\left|N_{M}(\Delta(h))\right|^{180} \log ^{*} H_{M}(h)\right\}
$$

Since

$$
H_{M}(x) \leq H_{M}\left(a_{0} x\right) H_{M}\left(a_{0}^{-1}\right)=H_{M}\left(a_{0} x\right) H_{M}\left(a_{0}\right),
$$

combining the above estimates, we get

$$
H_{M}(x)<\exp \left\{\Phi_{2}(d, r)\left(\left|D_{K}\right|^{10}\left|N_{K}(\Delta(G))\right|^{36}\left|N_{K}\left(a_{0}\right)\right|^{36 r n}\right)^{10 r^{3}} \log ^{*}\left(H_{K}\left(a_{0}\right) H_{K}(G)\right)\right\}
$$

where

$$
\Phi_{2}(d, r)<\left(10^{16}\left(d r^{3}\right)^{5}\right)^{250 d r^{3}}
$$

Proof of Theorem 2. Let x, y be integers in K satisfying $y^{p}=f(x)$. Set $g(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)$ and denote by $\Delta(g)$ the discriminant of $g(X)$. Let w be an algebraic integer such that $w^{p}=g(x)$. Thus

$$
w^{p}-\alpha_{1} \alpha_{2}=x^{2}-\left(\alpha_{1}+\alpha_{2}\right) x .
$$

Multiplying by 4^{p} and adding the term $\left(2^{p-1}\left(\alpha_{1}+\alpha_{2}\right)\right)^{2}$ in the two members, we get

$$
(4 w)^{p}-4^{p}\left(\alpha_{1} \alpha_{2}\right)+\left(2^{p-1}\left(\alpha_{1}+\alpha_{2}\right)\right)^{2}=\left(2^{p} x\right)^{2}-2^{p}\left(\alpha_{1}+\alpha_{2}\right)\left(2^{p} x\right)+\left(2^{p-1}\left(\alpha_{1}+x_{2}\right)\right)^{2} .
$$

Setting

$$
t=2^{p-1}\left(2 x-\left(\alpha_{1}+\alpha_{2}\right)\right) \quad \text { and } \quad u=4 w
$$

we obtain

$$
t^{2}=u^{p}+4^{p-1} \Delta(g)
$$

Put $L=K(w)$ and $R(X)=X^{p}+4^{p-1} \Delta(g)$. Denote by D_{L} and $\Delta(R)$ respectively the discriminants of L and $R(X)$. Let $M=L(z)$, where z is a root of the polynomial $R(X)$. By Lemma 3,

$$
\left|D_{M}\right|<\left|D_{L}\right|^{p}\left|N_{L}(\Delta(R))\right| .
$$

It is well known that $\Delta(R)=p^{p}\left(4^{p-1} \Delta(g)\right)^{p-1}$. Thus

$$
\left|D_{M}\right|<\left(p 4^{p}\right)^{d p^{2}}\left|D_{L}\right|^{p}\left|N_{K}(\Delta(g))\right|^{p(p-1)} .
$$

By Proposition 1,

$$
\left|D_{L}\right|<p^{(2 p-1) d}\left|D_{K}\right|^{\rho}\left|N_{K}(\Delta(g))\right|^{2 p-1} .
$$

Therefore

$$
\left|D_{M}\right|<\left(p^{3} 4^{p}\right)^{d p^{2}}\left|D_{K}\right|^{p^{2}}\left|N_{K}(\Delta(g))\right|^{3 p^{2}} .
$$

Let ω be a pth primitive root of 1 . According to our assumptions $\omega \in K$. Put $h(X)=(X-z)(X-z \omega)\left(X-z \omega^{2}\right)$. Applying Theorem 1, we get

$$
H_{M}(u)<\exp \left\{\Phi_{1}\left(d p^{2}\right)\left|D_{M}\right|^{50}\left|N_{M}(\Delta(h))\right|^{180} \log ^{*} H_{M}(h)\right\} .
$$

We have

$$
\left|N_{M}(\Delta(h))\right| \leq\left|N_{M}(z)\right|^{6} p^{d p^{3}} \leq\left|N_{K}(\Delta(g))\right|^{2 p^{2}} p^{s d p^{3}}
$$

and Lemma 4 gives

$$
H_{M}(h) \leq H_{M}(z)^{3} 4^{d(p+1) p^{2}} \leq H_{K}(\Delta(g))^{p^{2}} 16^{d p^{3}} \leq H_{K}(g)^{2 p^{2}} 2^{5 d p^{3}} .
$$

Therefore

$$
H_{M}(u)<\exp \left\{\Phi_{1}\left(d p^{2}\right) 4^{52 d p^{3}} p^{950 d p^{3}}\left|D_{K}\right|^{50 p^{2}}\left|N_{K}(\Delta(g))\right|^{510 p^{2}} \log ^{*} H_{K}(g)\right\} .
$$

We have

$$
H(t) \leq H(t)^{2}=H\left(t^{2}\right) \leq 2 H\left(u^{p}\right) H\left(4^{p-1} \Delta(g)\right) \leq 2^{2 p-1} H\left(u^{p}\right) H(\Delta(g)) \leq 2^{2 p+2} H\left(u^{p}\right) H(g)^{2} .
$$

Then

$$
H(x) \leq 2^{p+2} H(t) H(g) \leq 2^{3 p+4} H\left(u^{p}\right) H(g)^{3} .
$$

Hence

$$
H_{M}(x)<\exp \left\{\Psi_{1}(d, p)\left|D_{K}\right|^{50 p^{2}}\left|N_{K}(\Delta(g))\right|^{510 p^{2}} \log ^{*} H_{K}(g)\right\}
$$

where

$$
\Psi_{1}(d, p)<10^{17000 p^{2}+53} d^{624 d p^{2}+13} p^{1438 d p^{3}+9} .
$$

Proof of Corollary 2. Let $x, y \in O_{K}$ be a solution of $y^{p}=f(x)$. Then ($a_{0} x, a_{0}^{(n-1) / p} y$) is an integral solution over $K\left(a_{0}^{(n-1) / p}\right)$ to the equation $Y^{p}=\tilde{f}(X)$, where

$$
\tilde{f}(X)=\left(X-a_{0} \alpha_{1}\right)^{e_{1}} \ldots\left(X-a_{0} \alpha_{r}\right)^{e^{\prime}} .
$$

Consider the polynomials $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right), G_{1}(X)=\left(X-a_{0} \alpha_{1}\right) \ldots\left(X-a_{0} \alpha_{r}\right)$ and denote by $\Delta(G), \Delta\left(G_{1}\right)$ respectively their discriminants. Let ω be a pth primitive root of 1 . By Lemma 3, the discriminant D_{L} of $L=K\left(\alpha_{1}, \alpha_{2}, \omega\right)$ is

$$
\left|D_{L}\right| \leq p^{d \rho r^{2}}\left|D_{K}\right|^{\left.\right|^{2}(p-1)}\left|N_{K}\left(\Delta\left(G_{1}\right)\right)\right|^{2 \pi(p-1)} .
$$

Thus, we obtain

$$
\left|D_{L}\right| \leq p^{d \rho r^{2}}\left|D_{K}\right|^{r^{2}(\rho-1)}\left(\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|\right)^{2 r(p-1)} .
$$

Put $M=L\left(a_{0}^{(n-1) / p}\right)$ and denote by D_{M} the discriminant of M. Since the discriminant of the polynomial $X^{p}-a_{0}^{n-1}$ is $(-1)^{(p-1) / 2} p^{p} a_{0}^{(n-1)(p-1)}$, Lemma 3 gives

$$
\left|D_{M}\right| \leq\left|D_{L}\right|^{p}\left(p^{d p}\left|N_{K}\left(a_{0}\right)\right|^{(n-1)(p-1)}\right)^{(p-1) r(r-1)} .
$$

It follows that

$$
\left|D_{M}\right|<p^{2 d p^{2} r^{2}}\left|D_{K}\right|^{r^{2}(p-1) p}\left|N_{K}(\Delta(G))\right|^{2 r(p-1) p}\left|N_{K}\left(a_{0}\right)\right|^{2 r^{2} p^{2}(n-1)} .
$$

By Lemma 5, the height of the polynomial $h(X)=\left(X-a_{0} \alpha_{1}\right)\left(X-a_{0} \alpha_{2}\right)$ satisfies

$$
H(h)<4^{r} 12 H\left(a_{0}\right)^{2} H(G) .
$$

Furthermore, the discriminant $\Delta(h)$ of h satisfies

$$
\left|N_{M}(\Delta(h))\right| \leq\left|N_{M}\left(\Delta\left(G_{1}\right)\right)\right| \leq\left(\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|\right)^{r(r-1) p(p-1)} .
$$

Using Theorem 2 and the above estimates, we get

$$
H_{M}(x)<\exp \left\{\Psi_{2}(d, r, p)\left(\left|D_{K}\right|^{5}\left|N_{K}(\Delta(G))\right|^{51}\left|N_{K}\left(a_{0}\right)\right|^{51 r n}\right)^{10 r^{2} p^{4}} \log ^{*}\left(H_{K}\left(a_{0}\right) H_{K}(G)\right)\right\}
$$

where

$$
\Psi_{2}(d, r, p)<\left(10^{3}\left(d r^{2}\right) p^{3 p}\right)^{62 S d r^{2} p^{4}}
$$

Proof of Theorem 3. Let $x, y \in O_{K}$ be a solution of $y^{4}=f(x)$. Consider the polynomial $g(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)$ and denote by $\Delta(g)$ its discriminant. Let w be an algebraic integer such that $w^{4}=g(x)$. Then

$$
w^{4}-\alpha_{1} \alpha_{2}=x^{2}-\left(\alpha_{1}+\alpha_{2}\right) x .
$$

Multiplying by 2^{4} and adding the term $\left(2\left(\alpha_{1}+\alpha_{2}\right)\right)^{2}$ in the two members, we obtain

$$
(2 w)^{4}+4 \Delta(g)=\left[(4 x)-2\left(\alpha_{1}+\alpha_{2}\right)\right]^{2}
$$

Setting $t=2 w$ and $z=(4 x)-2\left(\alpha_{3}+\alpha_{2}\right)$, we get

$$
z^{2}=t^{4}+4 \Delta(g) .
$$

Put $L=K(w)$ and $S(X)=X^{4}+4 \Delta(g)$. Denote by D_{L} and $\Delta(S)$ respectively the discriminants of L and $S(X)$. Let $M=L(u)$, where u is a root of the polynomial $S(X)$. By Lemma 3,

$$
\left|D_{M}\right|<\left|D_{L}\right|^{4}\left|N_{L}(\Delta(S))\right| .
$$

Since $\Delta(S)=4^{4}(4 \Delta(g))^{3}$, we have

$$
\left|N_{L}(\Delta(S))\right| \leq 4^{28 d}\left|N_{K}(\Delta(g))\right|^{12} .
$$

By Proposition 1,

$$
\left|D_{L}\right|<2^{12 d}\left|D_{K}\right|^{4}\left|N_{K}(\Delta(g))\right|^{12}
$$

Therefore

$$
\left|D_{M}\right|<4^{52 d}\left|D_{K}\right|^{16}\left|N_{K}(\Delta(g))\right|^{60} .
$$

Set $h(X)=(X-u)(X-u \omega)\left(X-u \omega^{2}\right)$, where ω is a 4th primitive root of 1 . Then Theorem 1 gives

$$
H_{M}(t)<\exp \left\{\Phi_{1}(16 d)\left|D_{M}\right|^{50}\left|N_{M}(\Delta(h))\right|^{180} \log ^{*} H_{M}(h)\right\}
$$

We deduce as in the proof of Theorem 2 that

$$
\left|N_{M}(\Delta(h))\right| \leq 4^{88 d}\left|N_{K}(\Delta(g))\right|^{24} \quad \text { and } \quad H_{M}(h)<4^{148 d} H_{K}(g)^{32} .
$$

Hence

$$
H_{M}(t)<\exp \left\{\Phi_{1}(16 d) 4^{18440 d+4}\left|D_{K}\right|^{800}\left|N_{K}(\Delta(g))\right|^{4620} \log ^{*} H_{K}(g)\right\} .
$$

We have

$$
H(z) \leq H(z)^{2} \leq 8 H(t)^{4} H(\Delta(g)) \leq 40 H(t)^{4} H(g)^{2}
$$

Hence

$$
H(x) \leq 8 H(g) H(z) \leq 320 H(t)^{4} H(g)^{3} .
$$

Thus

$$
H_{M}(x)<\exp \left\{\Omega_{1}(d)\left|D_{K}\right|^{800}\left|N_{K}(\Delta(g))\right|^{4620} \log ^{*} H_{K}(g)\right\},
$$

where

$$
\Omega_{1}(d)<10^{50597 d+73} d^{9884 d+13} .
$$

Proof of Corollary 3. Consider the equation $Y^{4}=\tilde{f}(X)$, where

$$
\tilde{f}(X)=\left(X-a_{0} \alpha_{1}\right)^{e_{1}} \ldots\left(X-a_{0} \alpha_{r}\right)_{r}^{e_{r}} .
$$

If $x, y \in O_{K}$ is a solution of $y^{4}=f(x)$, then $\left(a_{0} x, a_{0}^{(n-1) / 4} y\right)$ is an integral solution over $K\left(a_{0}^{(n-1) / p}\right)$ to the equation $Y^{2}=\tilde{f}(X)$. We set $G(X)=a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{r}\right)$, $G_{1}(X)=\left(X-a_{0} \alpha_{1}\right) \ldots\left(X-a_{0} \alpha_{r}\right), h(X)=\left(X-a_{0} \alpha_{1}\right)\left(X-a_{0} \alpha_{2}\right)$ and we denote by $\Delta(G)$, $\Delta\left(G_{1}\right), \Delta(h)$ respectively their discriminants. By Lemma 3, the discriminant D_{L} of $L=K\left(\alpha_{1}, \alpha_{2}, \omega\right)$, where ω is a 4 th primitive root of 1 , satisfies

$$
\left|D_{L}\right| \leq 4^{d r^{2}}\left|D_{K}\right|^{2 r^{2}}\left|N_{K}\left(\Delta\left(G_{1}\right)\right)\right|^{4 r} \leq 4^{d r^{2}}\left|D_{K}\right|^{2 r^{2}}\left(\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|\right)^{4 r} .
$$

Put $M=L\left(a_{0}^{(n-1) / 4}\right)$ and denote by D_{M} the discriminant of M. Then, Lemma 3 gives

$$
\left|D_{M}\right| \leq 4^{32 d r(r-1)}\left|D_{L}\right|^{4}\left|N_{K}\left(a_{0}\right)\right|^{24(n-1) r(r-1)} .
$$

Thus,

$$
\left|D_{M}\right| \leq 4^{36 d r^{2}}\left|D_{K}\right|^{8 r^{2}}\left|N_{K}(\Delta(G))\right|^{16 r}\left|N_{K}\left(a_{0}\right)\right|^{40(n-1)(r-1)} .
$$

By Lemma 5, we get

$$
H(h)<4^{r} 12 H\left(a_{0}\right)^{2} H(G) .
$$

Further, we deduce

$$
\left|N_{M}(\Delta(h))\right| \leq\left|N_{M}\left(\Delta\left(G_{1}\right)\right)\right| \leq\left(\left|N_{K}\left(a_{0}\right)\right|^{(r-1)(r-2)}\left|N_{K}(\Delta(G))\right|\right)^{8 r(r-1)} .
$$

Theorem 3 and the above estimates give

$$
H_{M}(x)<\exp \left\{\Omega_{2}(d, r)\left(\left|D_{K}\right|^{64}\left|N_{K}(\Delta(G))\right|^{370}\left|N_{K}\left(a_{0}\right)\right|^{370 n r}\right)^{100 r^{2}} \log ^{*}\left(H_{K}(a) H_{K}(G)\right)\right\}
$$

where

$$
\Omega_{2}(d, r)<\left(\left(10^{49}\left(d r^{2}\right)^{8}\right)^{10^{4} d r^{2}}\right)
$$

BOUNDS FOR THE SIZE OF INTEGRAL SOLUTIONS TO $Y^{m}=f(X)$

REFERENCES

1. A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambr. Philos. Soc. 65 (1969), 439-444.
2. D. Kubert and A. Lang, Units in modular function field I, Math. Ann. (1975), 67-96.
3. S. LaNG, Fundamentals of Diophantine Geometry, New York-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1983.
4. S. Lang, Introduction to algebraic and abelian Functions, New York-Berlin-Heidelberg: Springer-Veriag, 1982.
5. D. Poulakis, Solutions entières de l'équation $f(X, Y)^{x}=h(X) g(X, Y)$, C. R. Acad. Sci. Paris 315 (1992), 963-968.
6. D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. (Series A) 63 (1997), 145-164.
7. W. Schmidt, Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. LVI (1990), 161-179.
8. J. P. Serre, Corps Locaux, Hermann, Paris, 1962.
9. J. H. Silverman, The Arithmetic of elliptic curves, New York-Berlin-Heidelberg: SpringerVerlag, 1986.
10. P. Voutier, An Upper Bound for the Size of Integral Solutions to $Y^{m}=f(X), J$. Number Theory 53 (1995), 247-271.

Aristotle University of Thessaloniki
Department of Mathematics
54006 Thessaloniki
GREECE
E-mail address: poulakis@ccf.auth.gr

