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ON BOUNDARY VALUE PROBLEMS FOR
ELLIPTIC EQUATIONS IN A
SINGULAR DOMAIN

KAZUNARI HAYASHIDA

1. Let 2 be a bounded domain in the plane and denotes its closure
and boundary by 2 and 392, respectively. We shall say that the domain
2 is regular, if every point Pe€ 32 has an 2-dimensional neighborhood U
such that 2 N U can be mapped in a one-to-one way onto a portion of
the tangent line through P by a mapping T which together with its inverse
is infinitely differentiable. Let L be an elliptic operator of order 2m
defined in 2 and let {B;}7., be a normal set of boundary operators of
orders my <<2m. If f is a given function in £, the boundary value
problem II(L, f, B;) will be to find a solution # of

Lu=f in 2
satisfying
Biju=0 on 902, j=1,--,m.

Schechter [8] proved the following: If the set {B;}7., is normal and
covers L, there is another normal set {Bj}7., such that a solution of the
problem II(L, f, B;) exists if and only if the only solution of II(L*0,Bj) is
#u=0. Here L* denotes the formal adjoint of L.

We consider the problem II(L, f, B;) when 2 is not regular in our
sense. When £ is a domain in the plane, we shall call it singular if 32
consists of a set {I";})., of boundary portions which are sufficiently smooth
and satisfy the following conditions.

(i) Each boundary portion I'; is a slit in £ or is contained in the outer
boundary of 2. When I'; is a slit, we distinguish between both sides.
(i) If r; and I'y are contained in the outer boundary and adjoining at
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S, they are tangent at S of infinite order from the interior. More - preci-
sely, some neighborhood of S in £ can be mapped in a one-to-one C”
way into an open disk which has an incision.

In this note we consider general boundary value problems for elliptic
partial differential equations when @ is singular in our sense.

Let {Bi;}7-, be a set of partial differential operators on each I';. The
problem we consider is the following: Given a function f in £, find the
solution # such that

Lu=f in £
Biju=0 on I,
i=1,-+,N, j=1---,m
‘Our method employs coerceiveness inequalities specially adapted to the
probelm. In neighborhood of points of the inner part of I, no new
inequalities are needed (c.f. [1,8]). For the endpoint of I'; we obtain special
inequalities which are reduced to the mixed boundary value problems.

Mixed boundary value problems in a planar domain were studied quite
extensively by Peetre [7] and Shamir [12]. They used some properties of
the Hilbert transform on the half line which were given in [5], [11], and
{15].  For arbitrary dimension, Schechter [9] treated the mixed boundary
problems under a rather complicated compatibility condition. In this note
our proof relies upon mainly the results of Schechter [9] and Shamir [12].

2. Let R™ be the n-dimensional Euclidean space. Throughout this

note we consider only the case n=1 or 2. Points in R? are denoted by
P=(x,t) and |P}]2=]xz|24|#|%. The half space ¢>0 (<0) is denoted by
RiR?%). Let a=(apa,) be a multi-index of non-negative integers with

length |a|= a;+ a,, We shall write
D= (D, D), D*= DpD3> (D, =d/ox, D, =0/ot).
We consider an elliptic differential operator of the form

2. 1) L(D) = | 2 aD’
a|=2m
where the coefficients a, are complex numbers and 2m is the order of
L(D). The characteristic polynomial corresponding to L(D) is
L&) = |¢|§'zma“§1m“2'

We set
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(2- 2) Ll(&a T) = L(&, T)’ Lz(gy T) = L(E,— T)
and
(2. 3) Bi;(D)= D{™', B3(D)=(—17'D{™", j=1,++,2m.

In this section we. shall mainly describe Agmon-Douglis-Nirenberg’s
results for the boundary value problem of the elliptic system:

(2. 4) Li(Dyu, = f1, LyD)=f, ¢t>0,
o Biu, + By =9;, t=0, j=1,+.,2m.

Denote by < (&) (or =7, (&), k=1,---,m the roots of L,&z)=0 with
positive (or negative) imaginary parts, and set

L&, 1) = f}%— % (&),

M*(&7) = Li(§,7)L3(&,7), &+0.

Then we have

LemMAa 2. 1. The boundary value problem (2. 4) satisfies the Complementing
Condition in the sense of [2).  That is, for each real &<=0 the relations

5 ABLLE ) = UM ()
(2. 5) .
3 B3 (L6, 0) = UM ()

imply that U,(z), Uy(z) and the 2; all vanish, where the 2; are complex constants
and the U(z) are polynomials.

Proof. We note that (2. 5) are equivalent to

B Bile) = UlleILi(E o),
(2. 6) .
£ 4B3(e) = UllaLi(e, )

where U/(z) are other polynomials. From (2. 2) we have L}(§,7) = L*(— &, 7).
Hence the relations (2. 6) imply that

2m
21 2-"7}—1 = U;(T)L+(E’ )y
]=

S 2= Ve = UYL (— &),
7=
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Thus it follows that

—Ui(—=)L* (&, — <) = Us(e)L¥*(— &, 7).
Noting that L*(§,— <) = (—1)"L~(—&,7), we see
2.7 (= D)™ U (=o)L (— & 7) = Us(r)L*(— &, 7).

Since Uj(zr) are of degree at most m—1, the relation (2.7) means that
every Uj(z) vanishes. Hence all 2; vanish. This completes the proof.

We first consider the problem (2. 4) in the case fy=f,=0 and ¢,(x),
py(2) € C3(R)D.  This problem can be solved by the formula

2m

(2. 8) ufa,t) = 3 (Kule — v, D0i0)dy, i =1,2,

Jj=1
where K;(z,t) are Poisson kernels of class C= for £ >0 except at the origin.
We set

G(z, M) =— (2zi M)~'2*(log (2/i) — kg}l 1/k).

Then we have for odd ¢>0

(2. 9) Kij(x, t) =<_a_>(1+4)/2

2m—1—-m=
) (=) Ram it £

(m; =deg. Bj=j7—1)

and

Rz, t,+1) = (2ni)‘1§STL,~(-_t 1,7) %

(2. 10) X G2+ tr,g+2m—1)

2m—1
+ M2m—z—1(i1,'€)
X B T, 9T

where 7 is a closed curve in Im >0 enclosing all the zeros of M*(+ 1,7)
and c},; are constants depending on L, and L,.
The functions M,,-,-, in (2. 10) are polynomials such that

;\=1 Mzm—x-l(i 1, T) k _
(271) ST—-—*M(i 1,9 tdr = 3y,
0<j,k<2m—1.

1) We denote R! by R.
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It is seen that K(x,t) are of class C* for ¢+ =0, except at the origin, and
satisfy

(2. 11) | D*K;| < C(a? + ¢2)mj—le1=1/2 (1 +|log (22 + £2)]).

We now consider the problem (2.4) for f,,f,e Cs(R:). For this
purpose we extend f; to the whole plane R? as functions with compact
support of class C¥ (see [1, p.519]). Let f${(x,¢) be the extended func-
tions. Having chosen some large N, we set

(2. 12) 0(P) =[I(P— Q) f(QdQ,

where I',(P) is a fundamental solution of the equation L,# =0. The
function v, satisfies L,v; = f and it is known that

(2. 13) D*v;(P) = O(|P|#m=2-1¢I(1 +]|log|P|l), P-»oo.

In addition, we see that for g such that |g|= 2m
(2. 14) DPs, =(D’r(P— Q)f"(Q)dQ

and that DPI" is a homogeneous kernel of degree — 2 to which Calderon-
Zygmund’s results on singular integrals can be applied.

PROPOSITION 2. 1V,  Let u, be C= solutions with compact support in t =0 of
the problem (2. 4).  Then it holds

(2. 15) D, = Do+ 5[ DKol = 4, 1-(94(4) — 40y,
(la|=2m—1)

where $,(y) = Biw(y,0) + Bzv:(y,0).
This was proved in detail in [1] and [2] for |a|=2m and we easily
verify it for |a|=2m — 1.
For an integral » =0 we use the norm

w2l = 33 (§,10°uldz) "™

where 2 = R™ or R*n =1,2). For a real s=0 we define the seminorms

1 For single equations this was verified in [12].

https://doi.org/10.1017/5S0027763000013143 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013143

104 KAZUNARI HAYASHIDA

20, = ([ A=t azay)”, 0<s <1,

[u, 21, = X [D%uy QLs—s, 1=s.

[eT=s
Let W*(Q) be the completion of C~(2) with respect to the norm
llue, Qs = llue, s + [y 2.
Then we have from (2. 14) (c.f. [1])
(2. 16) lvis Rillen = CIFE, REy < ClILjus, RE|

Proposition 2. 2. (c.f. [2]) Assume that u,(=,?) belong to Cy(R%) and
[ =2m. Then there is a constant C such that

(2. 17) oty REN, + oy REN| =< C(I|Lytty, RE||1-2m
I Latty Rellicam + 33 1B 0 + Bitts Rl
+ llogy RElo + llota, RELo)-
This was proved in [1],[2] under potential theoretic considerations.

3. Let {B}}7., be a set of boundary operators with constant coefficients.
We assume that BY is homogeneous of degree m} (<2m) and that the
Complementing Condition on {Bj} is satisfied. In this section we shall
give a proof of the following mixed a priori estimates for u; € C3(R2),

|21 R¥llom + lltt2s REllom = CUI L2ty REllg + || Lottyy Rl

2m
(3. 1) + ]Z=1“BIjul + B-z_juzy R-—”Zm—m}
2m
+ ng 1BYsty + Bijttys Rillgm-mt
+ oy, REllo + Notgy RE|lo).

The proof of (3. 1) is obtained in a similar manner to the method developed
by Shamir for single equations (c.f. [11]).
We consider now the Hilbert transform on R defined by

* =i N7 Sf(y)
(2 */)(@) = lim (2xi) Lﬂ‘i;_—ydy-

Put /¢ =(C2#* 4+ D27 )e, where ¢ is a 2m dimensional vector function
and C and D are 2m X 2m matrices with constant coefficients.

https://doi.org/10.1017/5S0027763000013143 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013143

ELLIPTIC EQUATIONS 105

ProrosiTioN 3. 1. If C and D are non singular and if the eigenvalues of
C-'D do not lie on the negative real axis, then for ¢ € WH(R)

(3. 2) [, Rl < C([g, R-1; + [/, R.1) P,

The inequality (3.2) was established by several authors (c.fe.g.,
Koppelman-Pincus [5], J. Schwartz [14], Widom [15], Shamir [11] and for
any dimensional case Shamir [13]). Now we set u, —v,=w; ¢ — ¢;=
Biw, + B3;ws| =, = 0; in the representation formulas (2. 15). Then it follows
from Proposition 2. 1 that

(3. 3) Dw,(x,t) = %ﬂ
i=

1

[D*Kistz — v, o)y, lalz2m—1.

Put I =2m—1—m5. Then we obtain from (3. 3) by integration by
parts

DLk(Btaw; + Biawy)(, t)
3. 4 = 3| (DUBLK, + Bl — v,0) -
D%i(Biw, + Bzw,)(y,0)dy.
Let ¢ tend to zero in both sides of (3. 4). Then we have
DLE(Btaw, + Biiw,)(x,0)
. 5) " Stewsr + duse)-

DLi[Biw, + Bz w,)(y,0)dy,

where {c;;}, {di;} are two matrices with constant coefficients. Put C = {c¢;}
and D= {d;;}. We make the following assumption.

AssumpTiON 3. 1. Two matrices C, D are non singular and eigenvalues of
C'\D do not lie on ihe negative real axis.

Then we have

TueoreMm 3. 1. Under Assumption 3.1, the mixed a priori estimates (3. 1)
holds.

1y} If ¢ = (¢1v A ¢2m)) we set H¢3Qus = 2”?51)9“3 and [¢,Q]s = Z[¢i)g]s~
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Proof. We set
¢j(w) = Dii(Biws + Biw,)(2,0),
¢i(@) = DB, + Blaw,)(#,0)
and
O =(Pu s Pem)s &=y dom)
We have by (3. 5)
3. 6) ¢ =(CH* + DF")p.

Since ¢ € WXR) from (2. 13), Proposition 3.1 is applicable to the equation
(3. 6). Hence it follows that

(3.7) ? 1 Bijwy + Bzjwes Rllom-m ;-3

= C 31 1Bl + Biswy Rillan-ni-t -

Since w; = u; —v;, we see
| B3 jwy + B3, Rillzm—mj’—%
(3- 8) é ”ijul + ijuz, R:t”2m—m§—%
+ | B3vy + B3ive, Ri:”Zm—m_j;—% .

According to the well known result (c.f.e.g. [1], [8]) there exists a constant
C depending only on k& (=0) such that the following inequality holds:

(3.9) ILfs Rlle =< CIIf, Rille+3

for all f e C*(R2).
Thus we see from (3. 9)

1Biv1 + B2 Rellom-mi-3
=< |Biv1 + Bijve Rllem-m*-3
= [Bijvs +B3ive Rillom-mt
= Clllvy, Rillam + llvgy REllom)-
Using the inequalities (2. 16) and (3. 9), we have
(3. 10) 1Biv1 + B3ve Rellzm-mi-3
=< C(I|Lyu1s REllo + N Lyzy RE o).

On the other hand it follows from Proposition 2. 2 that
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12ty REllgm + b2y REllzm < C(I| Lyt R[4
+ || Lotz Rl

2m
(3. 11) +JEIHB;101 + B3y R”zm—m;

2m
+-§1”B;J'w1 + B;JwZ’ R”Zm—m;

+ Ny REHlg + ey REHo).

Combining (3. 7), (3.8), (3.10) and (3. 11), we obtain the proof of the
theorem.

4. In this section we shall prove coerceive inequalities for a singular
domain. Let & be an open disk with the center O and radius » which
has an incision along the positive 2 axis. We denote by I',,I', the upper

and lower boundary portions of the incision respectively. Let & be the
closure of the subspace & in a manifold which distinguish between I

and I, Put C5(2)={ueC(Z)u=0 in a neighborhood of |z|=0
and |xz]=7r}.

Let us consider an elliptic differential operator L(D) of the form (2. 1)
and let {B;;}7., be a set of boundary operators on I'; such that B;; is
homogeneous of degree m; (< 2m).

Set
LI(D) = L(D)’ Lz(D) = L(Da:’ — D),
(4. 1) Biy(D) = Byy(D), B3(D) = By{(D;,— D)
B3{D)= D{™', B3/D)=(—1)’Di?,
j=1-,m

Then we can prove the following

TrEOREM 4.1. If {L/(D),Bf;(D)} of type (4.1) satisfies Assumption 3.1
and if {L,(D), Bi;(D)} satisfies the Complementing Condition, then there exists a
constant C such that

@2 It Z lm = CULL s S N+ 23 1Bssts Iz

+2] ”Ewu’ Fz”zm-—mj—§
J=1

+ llu, 2 |ly)
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Jor all ue Cy(2).
Proof. Put
u(x,t) = u(x, t), wuy(x,t) = u(x,—1t), t>0.

Then we easily see

Biju, + B3u, =0, t =0,

Byulr, = Btjuy| 1=y
and

Byju|r, = Bijuy )=y

Thus it is sufficient to prove that
lot1y Rillom + llttoy REllom = CUILyttyy RENly + | Lyttsy Rl

2m
+ 2 ”B;;Ml + ng”» R-“zm—m}'
j=1 )

2m
+J_¥1”BTJ'MI + B;juzy R+”2m—m'§
+ Ny REllo + gy REI).

This inequality follows from Theorem 3. 1. So, the proof of Theorem 4. 1
is obtained.

Let 2 be a singular domain in our sense. Denote by C=(2) a set of
functions which are C* in 2 and vanish near the endpoints of each
boundary portion. We consider an elliptic operator of order 2m in the
form

(4. 3) L(P,D) = I [szz a,(x, ) D21 D%,  a,(x,t) € C(Q2).

On each boundary portion I'; there are defined m partial differential
operators

(4- 4) Bz‘j(P9 D) = | L:‘_lm” bz’ja(x’ t)D;‘D‘:zy .7 =1, -,m

el

where m;; <2m and the coeflicients are in C*(I;).
We make the following assumption.

AsSUMPTION 4. 1.  We assume that the boundary set {B,;(P, D)}7-, is normal
in the sense of [8] and satisfies the Complementing Condition.
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Let P, be an endpoint of a boundary portion I,  For a real vector
¢ tangent to I'; at P, and a real vector v normal to I, at P, we rewrite
the operators L(P, D), B,;;(P,, D) of type (4. 3), (4. 4) in the form

L(Pm D) = L(Poy Dz’ Dz)
= E(Po) D,, Dv) = E(Poy ﬁ)’

(4. 5) B;4(Py, D) = Bu’(Po’ D, D)
=B11(Po, D, D,) = Bi}(Po’ ﬁ)’
=j=m,
where D, =-2 and D,=-9 . Then we have the following

ot oy

THEOREM 4. 2.  Under Assumption 4. 1, consider operators L(P, D), B;;(P, D)
of type (4. 3), (4. 4) in a singular domain Q.  Suppose that L(Py D), B.i(Py D)
of the form (4. 5) satisfy Assumption 3. 1 for each endpoint P, of boundary portions.
Then there is a constant C depending only on L(P, D), B,;;P,D) and such that

(4. 6) e, Qllom < C(IL(P, D)u, 21l
+ S IBeP, Dt T3
+ llu, 2ll,)
Sor all ue C(2).

Proof. The passage from the equations with constant coefficients in a
half space to the estimate (4. 6) is performed in a familiar method based
on a partition of unity (c.fie.g. [4,8,9,10]). Thus we shall show (4. 6) only
in a neighborhood of the endpoints of each ;.

Let P, be an endpoint of I';,, From our definition of singular domains,
we can take a sufficiently small neighborhood U(P,) of P, such that U(P,)
can be mapped in a one-to-one C= way into an open disk & which has
an incision along the positive x axis. By applying Theorem 3. 1, it follows
that

lloes U(Po)n Q2 = C()| L(Pyy D), U(Py)n 2l
4. 7) + S BusPor Dt Lol
+2j ”Bizj(Po’ D)u, thnzm—mj-é + llu, U(Pp)n 2l

for all ue CyUP)n2). Here Co(UP)n2)={uc CUP)2|u=0 in a
neighborhood of P, and aU(P,)}. We see from (4. 7)
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llt, U(Po)a Qllem = CUIL(P, DY, U(Po)n 21l
+ SBolP, Dty Colim-nm-3
+ ;] IB1y5(P; D)tk ' |lm-m s-3
4. 8) + I(Z(Py, D) — L(P, D))u, U(Po)n Lllo
+ A]V_l‘ I (Bs,5(Pos D) — By, (Py D))ty I's,lym-m ;-3
+ ; (Bi35(Pos D) — By (P, D))ty I'iyllym-m ;-3
+ llue, U(Po)n 21o)-
By the well known interpolation method, we find a neighborhood U(P,)
for a given ¢>0 such that
I(L(Py» D) — L(P, D)), U(Po)n llo
= ellu, U(Py)n 2llzm
4. 9) + C(e)llu, U(Po)n 21l
S (Beyo Po D) = Bigo P, D)ty Ty limem -3
=ellu, Iy llzm-g + CleMlus Iy Jl-3
kE=1,2.
By (3. 9) we see
%} (Bi,s(Pos D) — By s(Py D)ty 'y llzm-m ;-3

=< Clellu, U(Py)n 2llzm + C(&)ll, U(Po)n 2llo).

(4. 10)

Combining (4. 8), (4. 9) and (4. 10), we can find U(P,) such that
llat, U(Po)n 2llam = C(IIL(P, D)ut, U(Po)n 21l
+ %‘, | B:,s(P, DYty Iy, llzmm -3
+ ?x | B:,i(P, D)ty Iyl mmm ;-3
+llue, U(Py)n 21lo)

for all ue CyUP)nR). This inequality means that (4.6) holds in a
neighborhood of the endpoints of I, The proof is thus complete.

5. Let us consider a set of partial differential operators {L(P, D),
Bij(P,D)} of type (4. 3), (4. 4) in a singular domain 2. Throughout this
section we assume that the set of boundary operators {B;;(P,D)} satisfies
Assumption 4.1. In this section we shall- prove the alternative theorem
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for elliptic boundary value problems II(L,f,B;;) in a singular domain.
Our method is essentially along the lines of Schechter [8,9,10]. We denote
by {S} a set of all endpoints of boundary portion I;.

Lemma 5.1, There exists another boundary set {B},(P, D)} satisfying Assump-
tion 4.1 such that if u e C(Q — {S}) and if

(uy L*v) = (Lu,v)

Sfor all ve C(Q) satisfying B{,v =0 on I';, then Byju =0 on I';.

The set {B};} is called adjoint to {B;;} relative to L. The proof of
Lemma 5.1 can be obtained in a quite similar manner to the proof
developed by Aronszajn-Milgram [3] and Schechter [8] for regular domains.
By a solution of the problem II(L, f, B;;) we shall mean a function # such
that u € C*(2 — {S})nL*R2) and such that

Lu=fin 2, Bgyju=0on T, j=1,+++,my
TureoreEM 5. 1. Let {L(P,D), B;;(P,D)} be a set of operators of type (4. 3),
(4. 4) in a singular domain Q. Assume that the set of ac{foint operators {L*(P,, D),
B.;(Py D)} satisfies Assumption 3.1 for each endpoint P, of boundary portions.
Then the boundary value problem TI(L, f, B;;) has a solution if the only solution of
II(L*0,B,;) s u=0.
In the last section we shall give some example for Theorem 5. 1.

Progof. We proceed essentially the lines of Schechter [9,10]. Let H(Q)
be the completion of C=(2) with respect to the norm

2 l® = 11t 2l3m +;j“Biju9ri”§m-m-

It is easily verified that H(Q) is a Hilbert space and is a subspace of
w2™(2). We also set

[u, v] = SSQL*uZ’T‘v dwdt + 3(BLst, Bl Plonen, .

for all u,0» € C~(2)». Then we can see from Theorem 4. 2 that [u,v] is
defined for u,» € H(2) and that there is a positive constant ¢ such that

(5. 1) cHulldn < [u, u] + lull} < cllullfn
for all u € H(®). For simplicity we denote ||u, 2l by |lull.

1 Boundary inner products are defined by a partition of unity and Fourier transformation
(see e.g. [8]).
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Now we can prove that there is a positive constant ¢ such that
(5. 2) N ullfm < [, ul < cllullfn

for all # € H(Q). Assume that the estimate (5. 2) does not hold. Then
there is a sequence {«,} belonging to H(Q) such that #n~|u,||2m = [%a, #.).
If we put v, = #,/llu,llym it follows that

(5. 3) lvallen =1, v, € H(Q)
and
(5. 4) [Vps 0,10 (1 = o).

Applying Rellich’s lemma to (5. 3), we have a subsequence (which is also
denoted by {v,} for the brevity) such that

(5. 5) lvn —2lly—=0  (n—>o0).
Now it follows from (5. 1) that

C-luvn - Unl”%m = [’l),, = VnnUp — vnl] + ”1),,, - vnr”g
(5- 6) é [vn’ vn] + [vnl’ vnl] - [’U,,, vnl]

— an val + v — valld
By Schwarz inequality
6.7 W 0] = [0 Ul L0 a1,
Combining (5. 4)~(5. 7), we see
v,—v In W2™(Q).

Hence [v,v] = lim[v,,v,] =0. This implies that L*» =0 in 2 and Bj;» =0
on I'; in the weak sense. Applying the regularity theorem, we see that
ve C(? — {SHnL¥2). From our assumptions this means that » =0 in Q.
On the other hand ||}, = ng)lo llvall = 1. It is a contradiction. Thus (5. 2)

holds. That is, there is a constant ¢ >0 such that

[[u, v1| = cllullymllvllzms

[Cot, ull = ¢ ull3m

for all u,v = A(Q). For a given function f & C*(2), the L? inner product
(f,v) is a bounded linear functional in W?2™(2). Hence there is a function
ge H(?) such that

https://doi.org/10.1017/50027763000013143 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013143

ELLIPTIC EQUATIONS 131

(. 8) [g,v] = (f,v)
for all ve H(Q) (c.f. [6]). If ve C3(2), (5.8) implies
(L*g, L*v) = (f, ).
Putting L*g = u, we see
(u, L*v) = (f,v), ve C3(Q).

Hence, Lu = f in 2 and « € C*(2). If we choose v such as » € C*(2) and
Biw=0 on I';, then we see ue C*(2 — {S}) by the regularity theorem.
Thus we obtain the proof by Lemma 5. 1

REeMARK. When each Ty is a closed smooth curve, N. Ikebe [4] has given
the existence of solutions C*™+*(2) (a > 0).

6. In this section we shall give some example for Theorem 5.1. It
is sufficient to give some example such that Assumption 3. 1 holds. Let &
be the disk defined in the beginning of section 4.  'We consider the
Laplace operator L(D)= 4. Then the operators defined in (4. 1) are of

the form
Li(D) = LyD) = 4
B1:(D) B;.(D) 1 —1
o | L3
Bi:,(D)  B::(D) ot ot /.

Let us consider the boundary value problem (2. 4) in ¢=0. That is,

Aul = 0’ Auz = 0, t% 0,

Biiu, + B34y = 9y

Biauy + Biaus = @, t =0,
Then we see by direct calculation that the kernels in (2. 10) are of the
form

(RII({G, t,+1) R3\(»,t, &= 1))
Ri,(z,t,+ 1) R3 (%, ¢, + 1)
(-— 2G(t = + i) 2GP(x+ 2+ i t))
2iG?(+ x + it) 2iG® (= x + it)/ .
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Hence by (2. 9), the Poisson kernels for the problem (6. 1) are of the follo-
wing form:

K, Ky (2™t — 77 cy(zt — 27)
(Km Kzz) - <c2(log z7 4 log (—271) cylogz + log (— 2")))
where z = ¢ 4 iy and c¢; are constants.
(I) Consider the boundary operators.on the incision of & such as
(6. 2) B(D)=1on I, ByD)=— D,+ aD, on I,
Then from (4. 1)

(B:I(D) ;I(D)) 1 0)
BL(D)  Bh(D) :

_kO z + aé

Thus by calculation of (3. 4), the integral equation (3. 6) is of the form

<¢1> ( — H*+ H- iH"-I;. iH- )(501>
o) \G+aH"+ (G —aH  (ai — DH*+ (ai + DVH\gy)

that is, the matrices C, D in Assumption 3.1 are

-1 i 1 i
C= a D=
i+a ai —1/, i—a ai +1/.

Hence we see

. ai —1 = 1§
C'D=—_*' _
l1—ai ( )

~(i+a) =1
Thus we conclude that if a..is: real, .the boundary operators (6. 2) satisfies
Assumption 3. 1. _ .
(II) Secondly we consider the boundary operators
BD)=D,+ aD, on I'y,
ByD)=—D;+aD, on I},
Then proceeding similarly as in I), we see

( i+a 1—-ai>‘1(.q—‘—i. . ai +"1)“i'—a‘ (1 0 )
C—1D= . - T
—(i+a t—ai] \izae. ai+l t+alg -1/,

If a+ 0 and q is'tot-pure imaginary, we see; that’' Assumption 3, 1 is satisfied.
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When ¢ =0, our assumption is not satisfied. But it is seen that the mixed
a priori estimates (3. 1) hold from the relations

I=2F-2F" 22 ="+,

where 27 denotes Hilbert transform on the whole real line.
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