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ON BOUNDARY VALUE PROBLEMS FOR

ELLIPTIC EQUATIONS IN A

SINGULAR DOMAIN

KAZUNARI HAYASHIDA

1. Let Ω be a bounded domain in the plane and denotes its closure

and boundary by Ω and 3Ω, respectively. We shall say that the domain

Ω is regular, if every point P e dΩ has an 2-dimensional neighborhood U

such that 3Ω Π U can be mapped in a one-to-one way onto a portion of

the tangent line through P by a mapping T which together with its inverse

is infinitely differentiable. Let L be an elliptic operator of order 2m

defined in Ω and let {Bj}™^ be a normal set of boundary operators of

orders mj<2m. If / is a given function in Ω, the boundary value

problem U(L,f,Bj) will be to find a solution u of

Lu = f in Ω

satisfying

BjU = 0 on dΩ, j — 1, , m.

Schechter [8] proved the following: If the set {2̂ }7=i is normal and

covers L, there is another normal set [B/

J}%1 such that a solution of the

problem Iί{L,f9Bj) exists if and only if the only solution of U(L*,0,Bj) is

u = 0. Here Z,* denotes the formal adjoint of L.

We consider the problem ΐl{L,f,Bj) when Ω is not regular in our

sense. When Ω is a domain in the plane, we shall call it singular if dΩ

consists of a set {Γi}^ of boundary portions which are sufficiently smooth

and satisfy the following conditions.

(i) Each boundary portion Γt is a slit in Ω or is contained in the outer

boundary of Ω. When Γt is a slit, we distinguish between both sides.

(ii) If Γi and /> are contained in the outer boundary and adjoining at
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S, they are tangent at S of infinite order from the interior. More preci-

sely, some neighborhood of S in Ω can be mapped in a one-to-one C°°

way into an open disk which has an incision.

In this note we consider general boundary value problems for elliptic

partial differential equations when Ω is singular in our sense.

Let {Bij}
rj'=1 be a set of partial differential operators on each Γ*. The

problem we consider is the following: Given a function / in Ω, find the

solution u such that

Lu = f in Ω,

Butt = 0 on Γi9

i = 1, , N, j = 1, , m.

Our method employs coerceiveness inequalities specially adapted to the

probelm. In neighborhood of points of the inner part of Γi9 no new

inequalities are needed (c.f. [1,8]). For the endpoint of/\ we obtain special

inequalities which are reduced to the mixed boundary value problems.

Mixed boundary value problems in a planar domain were studied quite

extensively by Peetre [7] and Shamir [12]. They used some properties of

the Hubert transform on the half line which were given in [5], [11], and

[15]. For arbitrary dimension, Schechter [9] treated the mixed boundary

problems under a rather complicated compatibility condition. In this note

our proof relies upon mainly the results of Schechter [9] and Shamir [12].

2. Let Rn be the n-dimensional Euclidean space. Throughout this

note we consider only the case n = 1 or 2. Points in R2 are denoted by

P={x,t) and \P\2 = \x\2 +\t\2. The half space t>0 (<0) is denoted by

Rl(Rl). Let a = (a19 a2) be a multi-index of non-negative integers with

length \a\= ct! + a2. We shall write

D = (Dx, A), D* = DIΦ^ [Dx = dldx, Dt = d/dt).

We consider an elliptic differential operator of the form

(2. 1) L(D) = Σ a»D\
\a\=2tn

where the coefficients aΛ are complex numbers and 2m is the order of

L(D). The characteristic polynomial corresponding to L(D) is

= Σ
|β|=2w

We set
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(2. 2) Ltf, τ) = L(ξ, τ), L2(ξ, τ) = L(ξ, - τ)

and

(2. 3) JBΓ,(D) = D{-\ B~2j{D) = (- 1 ) ^ Γ S y = 1, ,2m.

In this section we shall mainly describe Agmon-Douglis-Nirenberg's

results for the boundary value problem of the elliptic system:

L^D)^ = Λ, L2(D) = Λ, ί > 0,
(2.4)

Bljuι + J32i/«2 = ^ t = 0, y = 1, ,2m.

Denote by τJ lΛ(f) (or τ~ *(£)), fc = 1, « ,»ί the roots of Li(f,τ) = 0 with

positive (or negative) imaginary parts, and set

M+(?,τ) = Lt(?,r)L^,r), f ^ 0.

Then we have

LEMMA 2. 1. The boundary value problem (2. 4) satisfies the Complementing

Condition in the sense of [2], That is, for each real ξ ψ 0 the relations

2m

(2.5)
2m

Σ3 λjBϊjMLfaτ) = U2(τ)M+(ξ,τ)
3 = 1

imply that Ufa), U2{τ) and the λj all vanish, where the λj are complex constants

and the Ui{τ) are polynomials.

Proof We note that (2. 5) are equivalent to

2m

Σ 2jB;j(τ) = Uί(τ)Lt(ξ,τ),
j=\

(2.6)
2m

where t/ (τ) are other polynomials. From (2. 2) we have L\(ξ,τ) = L+{— ζ,τ)

Hence the relations (2. 6) imply that

2m
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Thus it follows that

- U[{- τ)Z/(f,- r) = ^ ( τ ) L + ( - ξ,τ).

Noting that L+(ξ,-τ) = ( - l ) m Zr(- ξ,r), we see

(2. 7) (- l Γ - ^ ί ( - τ)L"(- €, τ) = tf ί (τ)L+(- £, r).

Since E7«(r) are of degree at most m— 1, the relation (2.7) means that

every Ϊ/JM vanishes. Hence all λj vanish. This completes the proof.

We first consider the problem (2.4) in the case / 1 = / 2 = 0 and Pi(&)>

<p2(x) e C^ίi?)1^ This problem can be solved by the formula

2m Λ

(2. 8) Ui{x, t) = Σ \iζy(α - 2/, t)φj{y)dy, i = 1,2,

where Kijix, t) are Poisson kernels of class C°° for t > 0 except at the origin.

We set

Λf

G{z,M) = - (2π/M)-12:Λf(log («/i) - Σ

Then we have for odd q > 0

(2.9)

(ntj = deg. B~ = j — 1)

and

J?,y(B, ί, ± 1) = (2πz)-1 Σ ( Li(± 1, T) X

(2. 10) X G(± x +

where T is a closed curve in Im τ > 0 enclosing all the zeros of M+(± 1,τ)

and ctu a r e constants depending on Lj and L2.

The functions MZm-ι-γ in (2. 10) are polynomials such that

We denote i?1 by i?.
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It is seen that Ktj{x,t) are of class C00 for t 2^0, except at the origin, and

satisfy

(2. 11) | /> β /ζ y | ^ C(x* + /»)(«;-1 I-D/2(i + |log(a2 + *2)|).

We now consider the problem (2. 4) for /Ί, / 2 e Cj( j?5). For this

purpose we extend fi to the whole plane R2 as functions with compact

support of class CN (see [1, p. 519]). Let fψ\x91) be the extended func-

tions. Having chosen some large N, we set

(2. 12) υt(P) = JΓ«(P - Q)f?\Q)dQ,

where rt(P) is a fundamental solution of the equation LiU = 0. The

function ^ satisfies Liv< = f\m and it is known that

(2. 13)

In addition, we see that for β such that \β\ = 2rn

(2. 14) Z)^4 = ̂ Γ(P - Q)fψ\Q)dQ

and that Z^Γ is a homogeneous kernel of degree — 2 to which Calderon-

Zygmund's results on singular integrals can be applied.

PROPOSITION 2. 11}. Let ut be C°° solutions with compact support in t^O of

the problem (2. 4). Then it holds

(2. 15) D^u, = D*vt + Σ [iPKtjix - 2/, 0 (^(2/) - Φj(v))dy,

This was proved in detail in [1] and [2] for \a\^2m and we easily

verify it for \a\ — 2m — 1.

For an integral r ^ O w e use the norm

\\u,Ω\\r = Σ (\Ω\D*u\2dxy/2f

where Ω = Rn or Rftn = 1,2). For a real s ^ O w e define the seminorms

For single equations this was verified in [12].
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lu, Ω]s = 2 [D'a, β]s-.[s], 1 ̂  s.
| ( * | = 5

Let W*(J2) be the completion of C°°(Ω) with respect to the norm

\\u,Ω\\s = \\u, ΩWw + [u, Ω]8.

Then we have from (2. 14) (c.f. [1])

(2. 16) | |t;4,/?ϊ| |2 m < C\\fψ\R*\U£ C\\LjUi9 R
2

+\\o.

Proposition 2. 2. (c.f. [2]) Assume that ut{x91) belong to Cί(R+) and

/ ̂  2m. Then there is a constant C such that

(2. 17) II^Λϊlli + lk 2,Rl\\ι< CiWL&vRlWt-tn
2m

+ \\L2U2,Rl\\ι-2m + Σ H ϊ̂jWi + iS^M2^llz-m--l

This was proved in [1],[2] under potential theoretic considerations.

3. Let {B+}%1 be a set of boundary operators with constant coefficients.

We assume that B+

a is homogeneous of degree nή (<2m) and that the

Complementing Condition on [B'j] is satisfied. In this section we shall

give a proof of the following mixed a priori estimates for ut e C~(Rl),

u19 Rl\\2m + \\u2, Rl\\2m < CiWL.u,, ΛJIlo + \\L2u29 Rl\\Q

2m

(3. 1) + Σ WBTjU, +
j=ι

2m

+ Σ WBtM+

The proof of (3. 1) is obtained in a similar manner to the method developed

by Shamir for single equations (c.f. [11]).

We consider now the Hilbeit transform on R defined by

Put sfφ = (CJ^+ + DJ%f~)φ9 where φ is a 2m dimensional vector function

and C and £) are 2m x 2m matrices with constant coefficients.
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PROPOSITION 3. 1. If C and D are non singular and if the eigenvalues of

C~ιD do not lie on the negative real axis, then for φ <Ξ WHR)

(3. 2) [φ, #L < C([φ, RJ]h + [jfφ, #+]4) D.

The inequality (3. 2) was established by several authors (c.f.e.g.,

Koppelman-Pincus [5], J. Schwartz [14], Widom [15], Shamir [11] and for

any dimensional case Shamir [13]). Now we set ui—vi = wi9 ψj — ψj =

Bϊj wι + B2jW2\t=0 = o)j in the representation formulas (2. 15). Then it follows

from Proposition 2. 1 that

(3.3) D*wί{x,t)=Σi\D*KiJ(x-y,t)ωj{y)dy, \a\^2m-l.

Put l±j = 2m — l — m% Then we obtain from (3.3) by integration by

parts

Btkw2){x, t)

(3.4) = Σ {DiKBXt
J=lJ-co

Let t tend to zero in both sides of (3. 4). Then we have

+ +Soo 2 W

Σ(c
-co j - l

where {cKj}9 {dkj} are two matrices with constant coefficients. Put C = {ckj}

and D = {dkj}. We make the following assumption.

ASSUMPTION 3. 1. Two matrices C, D are non singular and eigenvalues of

C~ιD do not lie on the negative real axis.

Then we have

THEOREM 3. 1. Under Assumption 3. 1, the mixed a priori estimates (3. 1)

holds.

If φ = (0i, •• ,02m), we set \\φ,Ω\\s =Έ±\\φuΩ\\9 and [φ, Q]s -

https://doi.org/10.1017/S0027763000013143 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013143


106 KAZUNARI HAYASHIDA

Proof. We set

ψj{x) = DιΛBϊiw1 + B2jw2){x,0),

a n d

ψ = (9Ί, , <P2m), Φ = (Ψl,

We have by (3. 5)

(3. 6) φ

Since ψ e WHR) from (2. 13), Proposition 3. 1 is applicable to the equation

(3. 6). Hence it follows that

(3. 7) Σ H-BΰWi + 52/W2. R\\tm-mri

Bl,wt, R+\

Since wt = MS — v^ we see

(3. 8) ^ HBΪyβ! + Bϊμit, «±||,m_m}-j

According to the well known result (c.f.e.g. [1], [8]) there exists a constant

C depending only on k (ίgO) such that the following inequality holds:

(3.9) \\f,R\\*^C\\f,Rl\\k+i

for all / e C(Rl).

Thus we see from (3. 9)

< WBtft! +B tjv2, Rl\\2m.m±

Using the inequalities (2. 16) and (3. 9), we have

(3. 10) WBtjVi + Bijυv R±\\2m-mj-i

On the other hand it follows from Proposition 2. 2 that
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ll»2. *ίll*» ±= CdiLi*,, Rl\u

\\L2u2,Rl\\a

2m

(3. 11)

j=l

2m

J=ι 1J * 2J *' 2m~mJ

+ \\u1,Rl\U+\\u2,Rl\\Q).

Combining (3. 7), (3. 8), (3. 10) and (3. 11), we obtain the proof of the

theorem.

4. In this section we shall prove coerceive inequalities for a singular

domain. Let gϊ be an open disk with the center O and radius r which

has an incision along the positive x axis. We denote by Γ19Γ2 the upper

and lower boundary portions of the incision respectively. Let & be the

closure of the subspace ^ in a manifold which distinguish between Γ1

and Γ2. Put C~(£g?) = {u e Cco(£gί)\u = 0 in a neighborhood of \x\ = 0

and |ίc |= r}.

Let us consider an elliptic differential operator L{D) of the form (2. 1)

and let {-§̂ }7=i be a set of boundary operators on Γ* such that Bi5 is

homogeneous of degree πij (< 2m).

Set

LX{D) = L(D), UD) = L(DX, - A),

(4. 1) BUD) = BUD), BUD) = B2j{Dx, - Dt)

BUD) = DΓ1, BUD) = (- l)'D{-\

j = 1, , m.

Then we can prove the following

THEOREM 4. 1. If {Li{D),B*j{D)} of type (4. 1) satisfies Assumption 3. 1

and if {Li(D),B1[j(D)} satisfies the Complementing Condition, then there exists a

constant C such that
•m

( 4 . 2) ||>
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for all u e &%{<&).

Proof Put

u^x, t) = u(x91), u2{x, t) = u{x, —/), t > 0.

Then we easily see

B~ιjuι + B~2ju2 = 0, t = 0,

and

Thus it is sufficient to prove that

This inequality follows from Theorem 3. 1. So, the proof of Theorem 4. 1

is obtained.

Let Ω be a singular domain in our sense. Denote by C°°(£?) a set of

functions which are C°° in Ω and vanish near the endpoints of each

boundary portion. We consider an elliptic operator of order 2m in the

form

(4. 3) L(P, D)= Σ aΛ{x, t)Dl*D**> aa(x, t)

On each boundary portion Γ* there are defined m partial differential

operators

(4. 4) BtJ(P9 D) = Σ btj9(x, t)D*Φ«>, j = l, ,m,

where m^ < 2m and the coefficients are in C°°(Γi)

We make the following assumption.

ASSUMPTION 4. 1. We assume that the boundary set {B^P, D)}™^ is normal

in the sense of [8] and satisfies the Complementing Condition.
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Let Po be an endpoint of a boundary portion Γt. For a real vector

τ tangent to Γ* at Po and a real vector v normal to Γt at Po, we rewrite

the operators L(P0, D), Bij{P0, D) of type (4. 3), (4. 4) in the form

(4. 5) BtjiPo, D) = BiΛP09 Dx9 Dt)

^SijiPof Dτ, Dv) = 5«,(P0, ΰ),

where Dτ = -~— and Dv = -^—. Then we have the following
OT OVOT

THEOREM 4. 2. Under Assumption 4. 1, consider operators L{P, D), Bij{P, D)

of type (4. 3), (4. 4) in a singular domain Ω. Suppose that L(P0, D), Bij(P0, D)

of the form (4. 5) satisfy Assumption 3. 1 for each endpoint Po of boundary portions.

Then there is a constant C depending only on L{P,D), Bij(P9D) and such that

(4.6) llu,fl||8Λ

+ Il\\Bij(P,D)u,Γi\\2m-mj-i

+ \\u,Ω\\0)

for all u e C°(Ω).

Proof The passage from the equations with constant coefficients in a

half space to the estimate (4. 6) is performed in a familiar method based

on a partition of unity (c.f.e.g. [4,8,9,10]). Thus we shall show (4. 6) only

in a neighborhood of the endpoints of each r i #

Let Po be an endpoint of Γίβ From our definition of singular domains,

we can take a sufficiently small neighborhood U{P0) of Po such that U(P0)

can be mapped in a one-to-one C°° way into an open disk £%r which has

an incision along the positive x axis. By applying Theorem 3. 1, it follows

that

\\u, U{P0)nΩ\\2m < C(\\L(P0, D)u, U{P0)nΩ\\0

(4. 7) + Σ \\BUJ(P0, D)u, ΛJItm-*,-}

for all w G C;([/(P0)nβ), Here Co(U(P0)nΩ) = {u e C"(U(PQ)nΩ)\u = 0 in a

neighborhood of PQ and dU(P0)}. We see from (4. 7)
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\\u,U(Po)«Ω\\2m^C(\\L(P,D)u,U(Po)nΩ\\o

+ Σ \\BHj(P, D)u, Γi2\\2m-mrι

(4. 8) + \\(L(P0, D) - L(P, D))u, U(P0) n β||0

+ ΣII(B^jiPo, D) - BtlJ{P, D))u,rtl\\tM-Mi-i

+ Σ \\(Bi2J(Po> D) - B{2J(P, D))u,Γtt\\tm-Mri

+ \\u,U{PJniH\o).

By the well known interpolation method, we find a neighborhood U(P0)

for a given ε > 0 such that

\\(L(P0, D) - L{P, D))u,U(P0)nΩ\\0

(4.9)
Σ \\(Bikj(P0, D) -

k = 1,2.

By (3. 9) we see

, D) - BikJ(P, D))u,Γik\\2m-mri

< C(s\\u,U(P0)nΩ\\2

Combining (4. 8), (4. 9) and (4. 10), we can find U(P0) such that

+ Έ\\BiιJ(P,D)u,Γiι\\!ίm-mrι

+ Σ \\Bt2i{P, D)u, ΓH\\Zm-mri

for all u e U%(U(P0)nΩ). This inequality means that (4. 6) holds in a

neighborhood of the endpoints of Γ4. The proof is thus complete.

5. Let us consider a set of partial differential operators [L{P,D),

B{j[P,D)} of type (4.3), (4.4) in a singular domain Ω. Throughout this

section we assume that the set of boundary operators {B{J{P, D)} satisfies

Assumption 4. 1. In this section we shall • prove the alternative theorem
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for elliptic boundary value problems Π(L,/, 1?̂ ) in a singular domain.

Our method is essentially along the lines of Schechter [8,9,10]. We denote

by {S} a set of all endpoints of boundary portion Γt.

L E M M A 5; 1. There exists another boundary set {Bij(P,D)} satisfying Assump-

tion 4. 1 such that if u e C°(Ω — {S}) and if

{u, L*v) = (Lu, υ)

for all v e C°°{Ω) satisfying B'%jυ = 0 on Γi9 then BijU = O o κ Γ*.

The set {Blj} is called adjoint to {Z?̂ } relative to L. The proof of

Lemma 5. 1 can be obtained in a quite similar manner to the proof

developed by Aronszajn-Milgram [3] and Schechter [8] for regular domains.

By a solution of the problem U(L,f9Bij) we shall mean a function u such

that u e C°°(Ω — {S})nL2(Ω) and such that

Lu = / in Ω9 B^u = 0 on Γi9 j = 1, , mi}.

THEOREM 5. 1. Let {L(P9D)9 Bij(P9D)} be a set of operators of type (4. 3),

(4. 4) in a singular domain Ω. Assume that the set of adjoint operators {L*(P09D),

B'ij{P09D)} satisfies Assumption 3. 1 for each endpoint Po of boundary portions.

Then the boundary value problem Iί(L,f9Bij) has a solution if the only solution of

Π(L*,0,£^) is u = 0.

In the last section we shall give some example for Theorem 5. 1.

Proof. We proceed essentially the lines of Schechter [9,10], Let H{Ω)

be the completion of C°°(£?) with respect to the norm

It is easily verified that H{Ω) is a Hubert space and is a subspace of

W2m{Ω). We also set

[u,υl = \\QL*uΊ*υ dxdt +ψβB'ί

for all u9 v e C^iΩ)1^. Then we can see from Theorem 4. 2 that \u9 v\ is

defined for u, υ e H{Ω) and that there is a positive constant c such that

(5. l) c-MMI!» < ίu9 u] + Ha||; < c\\u\\im

for all u e H(Ω). For simplicity we denote \\u, Ω\\k by \\u\\k.

χ) Boundary inner products are defined by a partition of unity and Fourier transformation
(see e.g. [8]).
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Now we can prove that there is a positive constant c such that

(5.2) c-*\\u\\lm^[u,u\

for all u e H(Ω). Assume that the estimate (5. 2) does not hold. Then

there is a sequence [un] belonging to H{Ω) such that ft-MI^IHm^

If we put υn = uj\\un\\2m9 it follows that

(5.3) HfJI«m = l, vn<

and

(5.4) K,^J->0 (n->oo).

Applying Rellich's lemma to (5. 3), we have a subsequence (which is also

denoted by {vn} for the brevity) such that

(5.5) \\vn-v\\0-+0 (n-*oo).

Now it follows from (5. 1) that

c~ι\\vn - υn,\\2

2m < \υn - vnf, vn - vnr] + \\vn - t;Λ,||§

(5. 6) ^ [vn9 vn] + [vnf, vnf] — [vn, vn,]

-[V»/,V»]+ \\Vn-vJ\l.

By Schwarz inequality

(5. 7) \vn,9 vj ^ [υnf9 υn,]kvn> vnf.

Combining (5. 4)—(5. 7), we see

in W2m(Ω).

Hence [υ, v] = lim [vn, vJ = 0. This implies that L*v = 0 in β and JB t̂; = 0̂

on Γi in the weak sense. Applying the regularity theorem, we see that

v e C°°(Ω — {S})n£2(£). From our assumptions this means that v = 0 in Jλ

On the other hand |M|0 = lim ||ι;Λ|| = 1. It is a contradiction. Thus (5. 2)
W~»oo

holds. That is, there is a constant c > 0 such that

for all u, v e J5"(ί?). For a given function / e C°°{Ω), the L2 inner product

(/,#) is a bounded linear functional in W2m(Ω). Hence there is a function

g e H(Ω) such that
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(5.8) lB,υl = (f,υ)

for all v e H(Ω) (c.f. [6]). If υ e CJ(fi), (5. 8) implies

(L*g,L*v) = (f,v).

Putting L*g = w, we see

(u,L*v) = (f,v), y

Hence, Lw = / in Ω and u e C(fl). If we choose υ such as yG C°°{Ω) and

β^t; = 0 on Γi, then we see u e C°°(Ω — {S}) by the regularity theorem.

Thus we obtain the proof by Lemma 5. 1

REMARK. When each rt is a closed smooth curve, N. Ikebe [4] has given

the existence of solutions C2m+*(Ω) (a > 0).

6. In this section we shall give some example for Theorem 5. 1. It

is sufficient to give some example such that Assumption 3. 1 holds. Let &

be the disk defined in the beginning of section 4. We consider the

Laplace operator L(D) = Δ. Then the operators defined in (4. 1) are of

the form

BT2

(D)

(D)

LiiD)

Bh

B22

= L2(L

(D)\

1

>) = Δ

1 x

d

Xdt

- 1

d
dt

(6.1)

Let us consider the boundary value problem (2. 4) in / ̂  0. That is,

Jui = 0, ΔUi = 0, t ^ 0,

= φί9

+ B22U2 = <P29 t = 0.

Then we see by direct calculation that the kernels in (2. 10) are of the

form

Rϊι{x,t,±D Rϊi(Xft,±

' - 2G<2>(± a; + it) 2Gm(± * + it)

2tGw >(± ίϋ + iί) 2tGC2)(± * + it)).
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Hence by (2. 9), the Poisson kernels for the problem (6. 1) are of the follo-

wing form:

-̂ -11 Λ21\ / C1\Z Z ) Cl\* Z ) \

K12 KJ " \c2(log z-1 -f log (- z-1)) c2(log z + log ( - r 1))/

where z = x + iy and Q are constants.

(I) Consider the boundary operators on the incision of £%f such as

(6. 2) Bί(D) ΞΞ 1 on Γί9 B2{D) s - Dt + aDx on Γ2.

Then from (4. 1)

B+

21(D)\ /I 0

Thus by calculation of (3. 4), the integral equation (3. 6) is of the form

\ψj \(i + a)H+ + (i — a)H' {at — 1)H+ + (at

that is, the matrices C, Z) in Assumption 3. 1 are

1 f

Λ/ — 1/, \i — <2 Λ? + 1/.

Hence we see

c-D = Ί - i-J β ί " 1 ' - 1 ]

Thus we conclude that if a is: real, the boundary operators (6. 2) satisfies

Assumption 3. 1.

(II) Secondly we consider the boundary operators

Bχ{D) = Dt + aDx on Γ19

B2(Dj=- Dt + aDx on Γ2.

Then proceeding similarly as in I), we see

C-ιD =
^ )

- (i+ a). , . 1— ail \i - a,. . at +.1/ ι + a \0 - 1/.

If a ψO and β-is (hot-pure imaginary, we see. tKat Assumption 3. 1 is satisfied.
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When a = 0, our assumption is not satisfied. But it is seen that the mixed
a priori estimates (3. 1) hold from the relations

T —
-* —

where ^f7 denotes Hubert transform on the whole real line.
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