MINIMAL DECOMPOSITIONS OF COMPLETE GRAPHS INTO SUBGRAPHS WITH EMBEDDABILITY PROPERTIES

L. W. BEINEKE

Although the problem of finding the minimum number of planar graphs into which the complete graph can be decomposed remains partially unsolved, the corresponding problem can be solved for certain other surfaces. For three, the torus, the double-torus, and the projective plane, a single proof will be given to provide the solutions. The same questions will also be answered for bicomplete graphs.
I. Complete graphs. For a given surface S and graph G, define the S-thickness of G to be the minimum number of S-embeddable graphs whose union is G. If the characteristic of S is χ, it follows from Euler's polyhedron formula that a triangulation of S using p vertices has $3(p-\chi)$ edges. This implies that the S-thickness of a graph G with p vertices and q edges satisfies the inequality

$$
\begin{equation*}
t_{S}(G) \geqq\left\{\frac{q}{3(p-\chi)}\right\} . \tag{1}
\end{equation*}
$$

(Here, $\{x\}$ denotes the least integer greater than or equal to x. It is readily seen that $\{x\}=-[-x]$. Also, if a and b are positive integers,

$$
\{a / b\}=[(a+b-1) / b] .)
$$

The surfaces which will be considered here are the orientable surfaces S_{n} obtained from the sphere by adding n handles and the non-orientable surfaces $S^{[n]}$ obtained from the sphere by making n crosscuts. The corresponding characteristics are of course $2-2 n$ and $2-n$. The corresponding thicknesses of the graph G will be denoted by $t_{n}(G)$ and $t^{[n]}(G)$.

For the plane (or sphere), the inequality (1) has been shown (1) to be equality for "five-sixths" of the complete graphs K_{p}. The known results are summarized in the following theorem.

Theorem 1. If $p \neq 9$ and $p \not \equiv 4(\bmod 6)$, then the planar thickness of the complete graph is

$$
t_{0}\left(K_{p}\right)=\left[\frac{p+7}{6}\right] .
$$

Furthermore, $t_{0}\left(K_{4}\right)=1, t_{0}\left(K_{9}\right)=t_{0}\left(K_{10}\right)=3, t_{0}\left(K_{22}\right)=4, t_{0}\left(K_{28}\right)=5$, and $t_{0}\left(K_{34}\right)=6$.

Received March 11, 1968.

For the projective plane S^{\prime}, the torus S_{1}, and the double-torus S_{2}, the lower bound of (1) gives the corresponding thickness of all complete graphs. These expressions can be simplified in the following way.
For the projective plane:

$$
t^{\prime}\left(K_{p}\right) \geqq\left\{\frac{p(p-1)}{2 \cdot 3(p-1)}\right\}=\left\{\frac{p}{6}\right\}=\left[\frac{p+5}{6}\right]
$$

For the torus:

$$
t_{1}\left(K_{p}\right) \geqq\left\{\frac{p(p-1)}{6 p}\right\}=\left\{\frac{p-1}{6}\right\}=\left[\frac{p+4}{6}\right]
$$

For the double-torus:

$$
t_{2}\left(K_{p}\right) \geqq\left\{\frac{p(p-1)}{6(p+2)}\right\}=\left[\frac{p^{2}+5 p+11}{6(p+2)}\right] \geqq\left[\frac{p+3}{6}\right] .
$$

For the reverse inequalities, constructive decompositions will be provided to show that for any positive integer n,

$$
t^{\prime}\left(K_{6 n}\right) \leqq n, \quad t_{1}\left(K_{6 n+1}\right) \leqq n, \quad \text { and } \quad t_{2}\left(K_{6 n+2}\right) \leqq n .
$$

The second of these has also been shown by Ringel (4).
The device which will be used is the matrix $A_{n}=\left(a_{i j}\right)$, whose entries are the integers $1,2, \ldots, n$ as defined by

$$
a_{i j} \equiv(-1)^{i}\left[\frac{i}{2}\right]+(-1)^{j}\left[\frac{j}{2}\right] \quad(\bmod n)
$$

For $n=5$ and $n=6$, these matrices are:

$$
A_{5}=\left[\begin{array}{lllll}
5 & 1 & 4 & 2 & 3 \\
1 & 2 & 5 & 3 & 4 \\
4 & 5 & 3 & 1 & 2 \\
2 & 3 & 1 & 4 & 5 \\
3 & 4 & 2 & 5 & 1
\end{array}\right], \quad A_{6}=\left[\begin{array}{cccccc}
6 & 1 & 5 & 2 & 4 & 3 \\
1 & 2 & 6 & 3 & 5 & 4 \\
5 & 6 & 4 & 1 & 3 & 2 \\
2 & 3 & 1 & 4 & 6 & 5 \\
4 & 5 & 3 & 6 & 2 & 1 \\
3 & 4 & 2 & 5 & 1 & 6
\end{array}\right]
$$

This matrix A_{n} was essential to the proof of the results on the planar thickness, by means of some interesting properties. Several of the same properties, as set forth in the following lemma, will be used here. Its proof can be found elsewhere (1).

Lemma. Each integer 1, 2, . . , n appears exactly once in every row and column of the matrix A_{n}. Furthermore, any two distinct integers are consecutive entries of exactly two columns. In one, both are on or above the main diagonal and in the other, both are on or below it.

Figures 1, 2, and 3 show K_{6} embedded in the projective plane, K_{7} in the torus, and K_{8} in the double-torus. The models of the surfaces used here are the
standard polygons with sides being identified as labeled: $\alpha \alpha$ for the projective plane, $\alpha \beta \alpha^{-1} \beta^{-1}$ for the torus, and $\alpha \beta \gamma \delta \alpha^{-1} \beta^{-1} \gamma^{-1} \delta^{-1}$ for the double-torus.

All these graphs have the same six distinguished faces $H(x)$ with vertices x, y, and $-y$. These faces will be modified by adding vertices and edges, so that when appropriately labeled, n copies of each graph will have a complete graph as their union. First consider the case of the projective plane.

Form n graphs G_{r}, for $r=1,2, \ldots, n$, from the graph of Figure 1 by inserting the graph $H_{n}(x)$ of Figure 4 in each of the faces labeled $H(x)$ for $x= \pm u, \pm v, \pm w$. Each of the resulting graphs is clearly S^{\prime}-embeddable and has $6 n$ vertices. Other than the dual base vertices, the graph $H_{n}(x)$ has n vertices. These are to be labeled using that column, say the j th, whose leading entry is r, as follows: If $a_{i, j}=s$, the i th vertex is $+x_{s}$ or $-x_{s}$ according as $\min (i, j)$ is odd or even. (For example, when $n=5$, the non-base vertices of $H\left(u_{2}\right)$ are $u_{2},-u_{3}, u_{1},-u_{4}, u_{5}$, and when $n=6$, those of $H\left(-v_{2}\right)$ are $-v_{2}, v_{3},-v_{1}, v_{4}, v_{6}, v_{5}$)

Figure 1
That the union of these n graphs is $K_{6 n}$ will now be verified. By symmetry, it is sufficient to show that u_{τ} is adjacent to each of the other $6 n-1$ vertices in one of the graphs. First, it is clearly adjacent to $-u_{r}, v_{r},-v_{r}, w_{r}$, and $-w_{r}$ in G_{r}. Now assume that $s \neq r$. Then u_{r} is adjacent to v_{s} and $-v_{s}$ in G_{s} since they are the base vertices of $H\left(u_{s}\right)$ and $H\left(-u_{s}\right)$ and u_{τ} appears in one of these. It is adjacent to w_{s} and $-w_{s}$ in G_{r} since it is a base vertex of $H\left(w_{r}\right)$ and $H\left(-w_{r}\right)$ which contain those vertices. Finally, by the lemma, r and s are consecutive entries in two columns of A_{n}. If h is the leading entry of the column in which

Figure 2

Figure 3
they are on and above the diagonal and if k heads the other column, then u_{τ} is adjacent to $-u_{s}$ in G_{h} and to u_{s} in G_{k}. Therefore, u_{r} is adjacent to all of the other vertices, and the union of the n graphs is $K_{6 n}$.

Figure 4
In the graph of Figure 2, z is adjacent to the other six vertices and in Figure 3, both z and $-z$ are adjacent to all other vertices. Since these graphs have the same six distinguished faces $H(x)$, it follows that $K_{6 n+1}$ can be decomposed into n toroidal graphs and $K_{6 n+2}$ into n graphs embeddable in the double-torus. This completes the proof of the following theorem.

Theorem 2. For three surfaces, the S-thickness of the complete graph K_{p} is the following:
Projective plane:

$$
\begin{aligned}
& t^{\prime}\left(K_{p}\right)=\left[\frac{p+5}{6}\right], \\
& t_{1}\left(K_{p}\right)=\left[\frac{p+4}{6}\right], \\
& t_{2}\left(K_{p}\right)=\left[\frac{p+3}{6}\right] .
\end{aligned}
$$

After these, the next surfaces to be considered are of course the Klein bottle $S^{\prime \prime}$ and the "triple-torus" S_{3}. In both cases, difficulties appear quickly. Although its characteristic is the same as that of the torus, the Klein bottle cannot have an embedding of K_{7}. This was shown by Franklin (3) and means that in this case the equality in (1) does not always hold. The next question here is whether K_{13} is the union of two $S^{\prime \prime}$-embeddable graphs. For the triple-torus, the first unanswered question is whether K_{16} is the union of two S_{3}-embeddable graphs. It is noteworthy that in both cases the two subgraphs in a decomposition would have to be triangulations of the corresponding surfaces. Incidentally, it is not difficult to establish the results for "five-sixths" of the complete graphs for both of these surfaces, as has been done for the plane.
II. Bicomplete graphs. The planar thickness of "nearly all" complete bipartite graphs has been found (2), as given in the following theorem.

Theorem 3. The planar thickness of the complete $m \times n$ bipartite graph is

$$
t_{0}\left(K_{i n, n}\right)=\left\{\frac{m n}{2(m+n-2)}\right\},
$$

except possibly when m and n are both odd, $m<n$, and there is an integer k, with $\frac{1}{4}(m+5) \leqq k \leqq \frac{1}{2}(m-3)$, such that

$$
n=\left[\frac{2 k(m-2)}{m-2 k}\right]
$$

There are no known exceptions to the equality of the theorem, and the unanswered cases are quite rare. For instance, when $m \leqq 30$, there are only six. Unfortunately, such cases also exist when other surfaces are considered. However, when consideration is restricted to the one-parameter family of regular bicomplete graphs $K_{n, n}$, exact results can be found for a number of surfaces.

A quadrangulation of a surface S with characteristic χ using p vertices has $2(p-\chi)$ edges. Therefore, a bipartite graph G with p vertices and q edges has S-thickness satisfying the inequality

$$
\begin{equation*}
t_{S}(G) \geqq\left\{\frac{q}{2(p-\chi)}\right\} \tag{2}
\end{equation*}
$$

This gives lower bounds for various S-thicknesses of $K_{n, n}$ as follows:

$$
\begin{array}{r}
\chi=1:\left\{\frac{n^{2}}{4 n-2}\right\}=\left[\frac{n^{2}+4 n-3}{4 n-2}\right] \geqq\left[\frac{n^{2}+7 / 2 n-4}{4 n-2}\right]=\left[\frac{n+4}{4}\right] \\
\begin{array}{r}
\chi=0,-1,-2:\left\{\frac{n^{2}}{4 n}\right\} \geqq\left\{\frac{n^{2}}{4 n+2}\right\} \geqq\left\{\frac{n^{2}}{4 n+4}\right\} \\
=\left[\frac{n^{2}+4 n+3}{4(n+1)}\right]=\left[\frac{n+3}{4}\right] .
\end{array}
\end{array}
$$

Constructive decompositions will next be given to show that $t^{\prime}\left(K_{4 r-1,4 r-1}\right) \leqq r$, $t^{\prime \prime}\left(K_{4 r, 4 r}\right) \leqq r$, and $t_{1}\left(K_{4 r, 4 r}\right) \leqq r$. These will determine the S-thickness of every $K_{n, n}$ for the torus, double-torus, projective plane, Klein bottle, and other surfaces.

Projective plane. First, it will be shown that given four vertices u_{1}, u_{2}, u_{3}, and u_{4} and $4 r-1$ vertices v_{j} (for $j=1,2, \ldots, 4 r-1$) one can join each u_{i} to $2 r+1$ of the vertices v_{j} in a graph with a particular S^{\prime}-embedding. Place the $4 r-1$ vertices v_{j} consecutively on one semicircle α of the projective plane model $\alpha \alpha$. See Figure 5 for the case $r=3$. Join u_{1} to the first $2 r+1$ of these vertices; beginning with $v_{2 r+1}$, join u_{2} to the next $2 r+1$; and beginning with the last of these, join u_{3} to the next $2 r+1$. That is, u_{1} is adjacent to $v_{1}, v_{2}, \ldots, v_{2 r+1} ; u_{2}$ to $v_{2 r+1}, \ldots, v_{4 r-1}, v_{1}, v_{2}$; and u_{3} to $v_{2}, v_{3}, \ldots, v_{2 r+2}$. One

Figure 5
face of the graph now has, in addition to u_{1}, u_{2}, and u_{3}, the vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{4 r-1}, v_{1}, v_{2}$. Join u_{4} to all of these. The resulting graph has each of the four vertices u_{i} adjacent to $2 r+1$ consecutive vertices v_{j}, and it is

Figure 6
embeddable in the projective plane model in such a way that no edge crosses the boundary $\alpha \alpha$. Therefore, new vertices can be added adjacent to any pair of consecutive vertices v_{j}, v_{j+1}. Take r copies of this graph with u_{i} being replaced by u_{i+4}, u_{i+8}, \ldots in the other graphs. In the $r-1$ graphs in which u_{1} does not appear, it can be made adjacent to $v_{2 r+2}$ and $v_{2 r+3}, v_{2 r+4}$ and $v_{2 r+5}$, etc. However, the same thing can clearly be done for the other vertices u_{i}, so that one can form r graphs whose union contains the bicomplete graph $K_{4 r-1,4 r-1}$.

Figure 7
Klein bottle. A construction will be given to show that the graph G_{1} in which each pair of vertices u_{i} and $u_{2 r+i}$ (for $i=1,2, \ldots, 2 r$) are adjacent to the four vertices $v_{2 i-1}, v_{2 i}, v_{2 i+1}, v_{2 i+2}$ (with all sums modulo $4 r$) is embeddable in the Klein bottle. Then by taking r isomorphic graphs G_{k} relabeled from G_{1} by changing each $u_{i+2 k-2}$ to u_{i} but keeping each v_{j} fixed, one has $r S^{\prime \prime}$-embeddable graphs whose union is $K_{4 r, 4 r}$.

The construction is made in the model $\alpha \alpha \beta \beta$ in the following way. Along α (not at corners) place $v_{1}, v_{3}, \ldots, v_{4 r-1}$ and along β place $v_{4 r}, v_{4 r-2}, \ldots, v_{2}$. Along the diagonal joining the corners where α and β meet, put $u_{4 r}, u_{1}, u_{2}, \ldots, u_{4 r-1}, u_{4 r}$. The joins required to form G_{1} can now be made without intersections. Figure 6 illustrates the construction for $r=2$.

For the non-orientable surfaces with three and four crosscuts, the S-thicknesses of $K_{n, n}$ are also determined by this construction since the same lower bound applies. That is,

$$
r \geqq t^{\prime \prime}\left(K_{4 r, 4 r}\right) \geqq t^{\prime \prime \prime}\left(K_{4 r, 4 r}\right) \geqq t^{[4]}\left(K_{4 r, 4 r}\right) \geqq r
$$

Torus and double-torus. The same graph G_{1} defined above is embeddable in
the torus as follows. Take the model $\alpha \beta \alpha^{-1} \beta^{-1}$ and place $v_{1}, v_{3}, \ldots, v_{4 r-1}, v_{1}$ along α. Place $v_{2}, v_{4}, \ldots, v_{4_{r}}, v_{2}$ on the segment parallel to α joining the midpoints of β. Put $u_{1}, u_{2}, \ldots, u_{2 r}$ in the upper half and $u_{2 r+1}, \ldots, u_{4 r}$ in the lower half. The necessary joins are easily made. The case of $r=2$ is shown in Figure 7. Since the S_{1}-thickness is at least as large as the S_{2}-thickness, this determines both.

This construction can also be used to determine the result for the tripletorus. By appropriately adding two handles and two vertices $u_{4 r+1}$ and $v_{4 r+1}$ to each of the r toroidal graphs, one can form $r S_{3}$-embeddable graphs whose union is $K_{4 r+1,4 r+1}$. That the S_{3}-thickness of this graph is at least r follows from (2). Further details of this result will not be given here.

The S-thickness results for bicomplete graphs are summarized in the following theorem.

Theorem 4. For various surfaces, the S-thickness of the regular bicomplete graph $K_{n, n}$ is the following:

Plane:

$$
t_{0}\left(K_{n, n}\right)=\left[\frac{n+5}{4}\right],
$$

Torus:

$$
t_{1}\left(K_{n, n}\right)=\left[\frac{n+3}{4}\right]
$$

Double-torus:

$$
t_{2}\left(K_{n, n}\right)=\left[\frac{n+3}{4}\right]
$$

Triple-torus:

$$
t_{3}\left(K_{n, n}\right)=\left[\frac{n+2}{4}\right],
$$

Projective plane:

$$
t^{\prime}\left(K_{n, n}\right)=\left[\frac{n+4}{4}\right]
$$

Klein bottle:

$$
t^{\prime \prime}\left(K_{n, n}\right)=\left[\frac{n+3}{4}\right] .
$$

References

1. L. W. Beineke and F. Harary, The thickness of the complete graph, Can. J. Math. 17 (1965), 850-859.
2. L. W. Beineke, F. Harary, and J. W. Moon, On the thickness of the complete bipartite graph Proc. Cambridge Philos. Soc. 60 (1964), 1-5.
3. P. Franklin, A six-color problem, J. Math. Phys. 13 (1934), 363-369.
4. G. Ringel, Die toroidale Dicke des vollständigen Graphen, Math. Z. 87 (1965), 19-26.

Purdue University,

Fort Wayne, Indiana

