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RINGS WITH FINITE MAXIMAL INVARIANT SUBRINGS 

CHARLES LANSKI 

ABSTRACT. We prove that if ip is an (anti-) automorphism of a ring R with finite 
orbits on R, or integral over the integers, and ifR contains a finite maximal (/^-invariant 
subring, then R must be finite. Special cases are when ip has finite order or is an invo
lution. Two corollaries are that R must be finite when R contains only finitely many 
^-invariant subrings or has both ascending and descending chain conditions on ip-
invariant subrings. These generalize results in the literature for the special case when 
<P = id/?. 

This paper is motivated by an interesting result of T. J. Laffey [8], obtained also by 
A. A. Klein [7], which proves that a ring with a finite maximal subring must be finite. 
Special cases of this result had been proven for commutative rings [2; Theorem 8, p. 542] 
and for rings satisfying a polynomial identity [3]. Also, Laffey's result implies related 
ones on finite subrings appearing in the literature ([5] and [13]). Our purpose here is to 
extend [8] to rings with a fixed (anti-) automorphism. The main theorem of the paper 
is that if (p is an (anti-) automorphism of a ring R having finite orbits on /?, and if R 
contains a finite maximal (^-invariant subring, then R must be finite. We do not use [8], 
so Laffey's result is a consequence of ours, as is the case when ip is an involution. Results 
for invariant subrings corresponding to those in [5] and [13] are also consequences of 
our main theorem, so these papers are special cases of our result as well. 

Throughout the paper/? will be an associative ring, Z(R) — Z is the center of/?, Aut(/?) 
is the group of automorphisms of/?, and Aut*(/?) is the set of anti-automorphisms of/?. 
Recall that (p G Aut*(/?) means that ip G Aut((/?, +)) and that cp(xy) = <p(y)(p(x) for 
all x,y G /?. Observe that G = Aut(/?) U Aut*(/?) is a group under composition and fix 
ip E G. For any nonempty subset B C /?, let (B) be the subring generated by B, and 
call B ^-invariant if <p(B) — B. Finally, S will henceforth denote a finite and maximal 
ip -invariant subring of/?. 

Our general approach, like that in [8] is to study the structure of S and /?. We aim 
for a situation where S = F or S = Mn{F) for F a finite field, and try to find an element 
x G R—Swith (p(x) = xandwithx G CR(S), thecentralizerofS. Then, whencp G Aut(/?), 
/? = S[x] has no invariant subring properly containing S, and it follows that x must 
be algebraic over F, so S[x] = R is finite. In order to solve the problem we need to 
assume that every orbit of (p on /? is finite, and until near the end of the paper, we will 
usually assume the special case that <p has finite order. As expected, our proofs are more 
involved than would be the case when <p = id/?, the identity map on /?. One result which 
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is easy when ip = id# is that R must have nonzero proper (invariant) subrings unless 
card(7?) = p, a prime, and either R = Fp a field, or R2 = 0. This is a basic but important 
observation which is needed in considering rings with a finite maximal subring. Our first 
step is to see that the corresponding statement that R must contain nontrivial invariant 
subrings or be finite, is true for (anti-) automorphisms of finite order, but this is not so 
obvious. Our first theorem does this for a generalization of the finite order case. We 
use an argument which has probably appeared in the literature, but we are unaware of 
a reference. The computation in the middle of our proof can be essentially eliminated 
when if has finite order by applying a well known and seminal result of G. Bergman and 
M. Isaacs [4, Proposition 2.4, p. 76] on fixed points of finite group actions. We note that 
our first theorem, and some of our later results are complicated a bit by the possibility 
that ip G Aut*(K), since when B C R is (^-invariant we cannot assume that BR is also, 
which would be true if ip G Aut(R). Also, our proof does not extend to the general case 
when (p has infinite order. Finally, we let J denote the ring of integers and Q the rational 
numbers. If one considers ip G G to be in Homj(/?,Z?), then it makes sense to consider 
polynomials in ip with coefficients in J. 

THEOREM 1. Let ip G G be integral over J. IfR has no nonzero proper ip-invariant 
subring, then R is finite. 

PROOF. For any prime/?, both/?/? and {r G R \ pr = 0} are (^-invariant subrings 
of R, so either pR = 0 for some prime, or pR = R has no /?-torsion for any prime. 
Consequently, R is an algebra over F, for F = ¥p the field of/? elements, or F = Q. 
Consider ip G HomF(R9R) and let A1" +am-iXm~l + • • • +aiX+a0 G F[X] be the minimal 
polynomial for (p over F, where #o i1 0, and if F = Q then at = bi/a for bt, a G J 
and set bo = b. Note that ip~l is a polynomial in ip of degree m — 1, and if F = Q 
then ip~l = -((a/b)ipm-1 + {bm-\/b)ipm~2 + • • • + (bi/b)idR). Thus if F = Q and 
A = J[l /ab] = J(ab), the localization at the powers of ab, then for ally G J we have 
(pf G Aipm~l + • • • + Aip + A id/?. We claim that R is finite or is not nilpotent. If R is 
nilpotent then R2 ^ R, and since R2 is <^-invariant, we must have R2 = 0. But now, for 
any nonzero* G R, ifB = ¥p orB = J ^ as appropriate, then (Bx,Bip(x),... ,Bipm~l(x)) 
is (^-invariant, which means that (R, +) = Bx+Bip(x)+• • • +B<pm~l(x). Clearly, R is finite 
when B = Fp.lfB = J ^ , then R is a finitely generated torsion free module over the 
PID B ^ QF(B) = Q, so as is well known and easy to see, R cannot be a Q algebra. 
Therefore, if R is nilpotent it must be finite, so we may assume that R is not nilpotent. 

Observe that j] — ip2£ Aut(i?) and is still algebraic over F. If R1 — {r G R \ t](r) — 
r} then R1 is a (^-invariant subring of/?, so either R71 — 0 or R11 = R. Assuming that 
R71 = 0 we will show that R is nilpotent, a contradiction. We start by showing that we 
may extend F to an algebraic closure, and to this end consider RK — R®FK for K an 
algebraic closure of F. We may assume that 77 G AXX\{RK) via r](r ®k) = rj(r) ® &, and 
of course, 77 is algebraic over K. Since R embeds in RK by r —> r <g> 1, and 7? is not 
nilpotent, neither is RK- Finally, ify = £77 <g) &, G (RK)V with {£/} independent over F, 
then E r, ® kt = r/(y) = £ 77(77) ® £/, so each n G JP* = 0 forcing >> = 0 and (RK)71 = 0. 
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Therefore, since it suffices to show that RK is nilpotent, there is no loss of generality in 
replacing R with RK, SO in assuming that R is an algebra over the algebraically closed 
field K, and that 77 is a A^-algebra automorphism. 

Now that K is algebraically closed, the minimal polynomial for 77 splits over K and/? is 
the direct sum of its eigenspaces R(Xt) — {r G R \ (77 — A,)'r = 0 for some / > 1}, where 
Aj , . . . , \s are all the distinct eigenvalues of 77. Note that all A/ ^ 0 since 77 is invertible. 
Since 77 satisfies a polynomial of degree m, for each 1 <y < s, (77 — Xj)mR(Xj) = 0. Using 
the identity (77 - A/Ay)(xy) = A,*((T/ - Xj)y) + ((77 - A,>)Xjy + ((77 - A,-)x) ((77 - Xj)y) and 
induction, it follows that (77 - XiXj)2m (R(Xi)R(Xj)) = 0, forcing R(Xi)R(Xj) C i?(A,A/). If 
/? is not nilpotent i^+1 7̂  0, so for some choice of \ij G {Ai,. . . , A5},i?(//i)- • - R(fis+\) 7̂  
0. Now since {A/} has s elements and M1/X2 • • • /i* £ {A/} for all 1 < k < s + 1, we must 
have //!•••//£ — î i • • • M&+r for some k > 1 and r > 1. Consequently //£+i • • * M£+r — 
1 G {A/}, contracting Z?̂  = 0. This shows that R*1 = 0 forces 7? to be nilpotent, and so 
we may now assume that R*1 = R. 

From R71 = R it follows that (f2 = id/?. Should ip = id/?, then 7? is finite or contains 
nonzero proper (invariant) subrings, as we mentioned earlier. Therefore, we may assume 
that <p ^ id/?. For any JC G R, (x + <p(x)) is <^?-invariant, so if some x + (f(x) ^ 0 then 
/? = (x + </?(oc)) contradicting (p ^ id/?. We are left with the assumption that x + <£>(x) = 0 
for all JC E i?, so <p(x) = —x and it follows that x<p(x) = —x2 = (/?(X(^(JCH. Now if 
some x2 ^ 0, then (x(f(x)) = R, and again (p ^ id/? is contradicted. Thus x2 — 0 for 
all x G R, and since (/?(x) = —x, (x) is (^-invariant so R — (JC), resulting in R2 = 0. 
This contradiction forces us to conclude that R is finite and the proof of the theorem is 
complete. 

The special case when (p has finite order and R has no (^-invariant subring is now 
done by Theorem 1, and it would be interesting to know if this result holds for any 
(p G G. Our next result puts together two useful observations. The first is a consequence 
of Theorem 1, and the second is essentially [3; Lemma 2ii, p. 352]. Note that the proof 
is the same for either cp G Aut(R) or (p G Aut*(R). Recall that S denotes a finite maximal 
(p- invariant subring ofR. 

LEMMA 1. Let <p G G be integral over J. Either R is finite or S contains no nonzero 
ideal ofR and card(5)7? = 0. 

PROOF. Assume that R is infinite and note that S ^ 0 by Theorem 1. Should / C S 
be a nonzero ideal ofR, then the sum T of all such ideals of R is a finite ^-invariant ideal 
of R contained in S. It is immediate that <p induces an (anti-) automorphism 77 of R/T, 
integral over J, and that S/T is a finite, maximal 77-invariant subring of R/T. If S — T 
then R/T is finite by Theorem 1, and if S ^ T then card(S/T) < card(S), so R/T is 
finite by induction on card(iS). Since T is finite, R must be also, and this contradiction 
shows that S cannot contain a nonzero ideal ofR. For the second statement, observe that 
{r G R I card(S)r = 0} is a (^-invariant ideal of R containing S. We have just seen that S 
is not an ideal of R, so the maximality of S forces card(S)R = 0. 
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It is now easy to show that we may assume that R has no nilpotent ideals. The end of 
the argument uses a computation which will arise again later. Until Theorem 7, we will 
assume the special case when ip has finite order. 

LEMMA 2. IfipEG has finite order m, then R is finite or semi-prime. 

PROOF. If / is a nonzero nilpotent ideal of ft, then T= 1+ (f(I) + • • • + (pm~l(I) is a 
(/̂ -invariant nilpotent ideal ofR, and T+S is a (^-invariant subring ofR containing S. We 
may assume that T (f_ S by Lemma 1, so R = T+S. Since T is nilpotent, there is a maximal 
integer k > 1 with 7* (£ S. Of course N = 7* is (^-invariant, so R = N + S and N2 C S 
by the choice ofk. Choose x G N — S and note that R = (S, x, ip(x),..., (fm~l (x))9 since 
this (^-invariant subring properly contains S. Now for any i,j > 0, <pl(x)ipi(x) G 5 and 
ip\x)Sipi(x) C 5, so we may conclude that/? = S+E,{J^ , '0C)+S^ /(JC)+^ /(JC)IS+5^ /(X)5), 

where J is the ring of integers. By Lemma 1 R is a torsion ring, so J^f(jc) is finite forcing 
7? to be finite and proving the lemma. 

The next step in the argument is to show that S is semi-simple. Let J(S) be the Jacobson 
radical of S; J(S) is the unique maximal nilpotent ideal of S since S is finite. Observe that 
cp(S) = S means that the restriction of <p to S is an (anti-) automorphism of S. In the next 
theorem, the initial computation is based on [2; p. 542]. 

THEOREM 2. IfipEG has finite order m, then R is finite or S is semi-simple. 

PROOF. Assume that J = J(S) ^ 0 and consider the <^-invariant subring JRJ + S. 
Note that this is a subring because J is an ideal of S, and is (^-invariant because J is 
the unique maximal nilpotent ideal of S. If JRJ <£. S, then the maximality of S shows 
that R = JRJ+S, and it follows that R = J(JRJ + S)J + S = J2RJ2 + S. Continuing 
with this substitution for R yields R = JkRJk + S for any k > 1, and so R = S is finite 
since J is nilpotent. Therefore we may assume that JRJ C S. For any integer k > 1, 
(J3R)k = J2((JRJ)j)k~] JR C Jk+2R, using that JRJ C S and J is an ideal of 5. The 
nilpotence of J forces J3R to be nilpotent, and since we may assume that R is semi-prime 
by Lemma 2, J3 = 0 results. It follows that J2R + RJ2 + S is a (^-invariant subring, again 
using Jft/ C 5, so either J2R + RJ2 Q S or R = J2R + RJ2 + S.ln the latter case we have 
R = J2(J2R + RJ2 + S) + (J2R+ RJ2 + S)J2 + S C S, because J2RJ2 C 5, so/? is finite. 
Thus, we may take J2R + ft/2 C S. 

If J2 ^ 0, pick x G J2, define Dx(r) = xr - rx, and use J2R + ft/2 C S to see that 
DX:R ^> S and is an additive map with a finite image. Hence KerDx = CR{X\ the cen-
tralizer of JC in R, has finite index in (R, +). Set K = D{CR(X) \ x £ J2} and observe that 
AT is a subring of R of finite index in (R, +), so K is infinite ifR is. Furthermore, it is clear 
that K = CR(J2), SO K is ^-invariant, since (f([a,b]) = <p(ab — ba) = ±[ip(a)9 <p(b)]. 
Consequently, ifR is infinite, K <£ S, and so, R = (K,S). Consider r = k\S\ • • • k„sn for 
kj G K and 5/ G S, let y G J2, and note thatyr = yk\S\ • • • kns„ — k\{ys\)ki • • • k„sn = 
k\k2(ys\S2)h • • • sn = k\-- kn(ys\S2 "-sn) = (ys\ • • • sn)k\ - -kn. It follows from sim
ilar computations with the other possible forms for r G R that J2R C J2 + y2^, so 
(J2ft)/ C 72' + J2/AT, and the nilpotence of J forces J2R to be nilpotent. As above, by 
Lemma 2, we may assume that/2 = 0. 
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The argument above, that/3 = 0 implies J2R+RJ2 C S, now shows that J2 = 0 leads 
to R finite or JR + RJ C S by considering the (^-invariant subring JR + RJ + S. Using the 
argument of the last paragraph, with J replacing J2 and now considering Dx and CR(X) 
for x E ./, shows that either /? is finite or J = 0, completing the proof of the theorem. 

In view of Theorem 2, if R is infinite we may assume that S is the direct sum of 
finite simple rings by Wedderburn's Theorems, with each simple component either a fi
nite field F, or Mn{F). We will show that S is in fact a simple ring, and to do so we 
need to consider idempotents e2 = e E S. Recall that for any e2 = e E R, one has 
the Pierce decomposition of (R, +) into a direct sum of subgroups, (R, +) = eRe 0 
eR(l - e) 0 (1 - e)Re 0 (1 - e)R{\ - e\ where R(\ - e) = {r - re \ r e R}9 

(1 - e)R = {r - er \ r E i?}, and (1 - e)R(\ - e) = {r - er - re + ere \ re R}. 
It is immediate that Re(\ — e)R = R(l — e)eR = 0. Finally, for any x E R one has the 
corresponding representation x = exe + ex(l — e) + (1 — e)xe + (1 — e)x(l — e). 

THEOREM 3. Let tp E G have finite order m.Ife2 = e= (f(e) E Z(S), then either 
e E Z(R) or R is finite. 

PROOF. Assume thati? is infinite. Using (p(e) = e E Z(5), it is clear that ei?(l —e)Re+ 
S is a </? -invariant subring of/?, so the maximality of S shows that either eR{\ — e)Re C S 
or else /? = eR(\ — e)Re + *S. If the second possibility holds, R = eR{\ — e)Re + eS + 
(1 — e)S, so eR{\ —e) = 0 and /? = S is finite, a contradiction. Thus we may assume that 
eR{\ - e)Re C 5. Should both e7?(l - e), (1 - e)Re C 5, then tf = eRe + eR(\ - e) + (\ -
e)/te + (1 - e)#(l - e) = eite + (1 - e)R{\ -e) + S, and it follows easily that e E Z(R). 
We may proceed with the assumption that eR(\ — e) (fi 5, the case that (1 — e)Re (£_ S 
being similar. 

Choose x E eR{\ - e) - S and observe that R = B = (S,x, <p(x),..., <pm~l(x)) 
since B is a (£-invariant subring of /? which properly contains S. We argue that R is 
finite much as we did in Lemma 2. If x = er(\ — e), then (/>(x) = e(f(r)(l — e) if 
(f E Aut(ft) and (̂ (x) = (1 — e)(f(r)e if </? E Aut*(i?). In the first case, since e E 
Z(5), ( '̂(x)(/y(x) = (pl(x)S(pf(x) = 0, and in the second case <p2l(x) E eR{\ — e) and 
(f2J+l(x) E (1 — e)Re. From e/?(l — e)Re C S, it now follows that any product of three 
elements from {<pl(x)} and elements of S is equal to a product involving only one cpl(x) 
and S. For example, <p2i+l(x)s(p2J(x)t(pk(x) E <p2l"+1(jc)S since (p2J(x)ttpk(x) = 0 if A: is 
even, and is in eR{\ — e)Re C 5 if A: is odd. Consequently, for J the rings of integers, 
R = S + ££=0(05 + W0O0S + J) + (^ + WOOCS + W(x)(S + J)). But by Lemma 1 
we may assume that every element of R is a torsion element, so R is finite. With this 
contradiction, the proof of the theorem is complete. 

COROLLARY. If if E G has finite order, then either R is finite or Is E Sand \s = 1/?. 

PROOF. By Theorem 2 we may assume that S is semi-simple, so S has an identity 
element I5. Certainly l | = \s = <^(ls), so Is £ Z(R) by Theorem 3, unless/? is finite. 
Now IsR is an ideal ofR, is </?-invariant, and \sR 2 lsS = S. Using Lemma 1 we may 
assume that \SR ^ S, so \sR = R = Rls- A straightforward computation shows that 
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Our next theorem is a key result which restricts further the structure of S. 

THEOREM 4. If(f£G has finite order m, then either R is finite or S is a simple ring. 

PROOF. Assume that R is infinite, so S is semi-simple by Theorem 2, and S = S\ 0 
• • • © 5fo the direct sum of its simple components, which are the minimal ideals in S. 
Clearly, ipl(S\) is a minimal ideal of S, so ipl(S\) = Sj for some/ It is straightforward and 
easy to show that {Si, <p(S\),..., ipm~\S\)} = {Si, ip(Sx),..., (pl~l(S\)} has t distinct 
elements where t > 1 is minimal with </>'(Si) = S\. By re-ordering {Sj} we may assume 
that Si = ^ - 1 (S i ) if 1 < i < t. Met = <^,""1(ei) for 1 < i < t is the identity element of 
St, then e = e\ + • • • + et is the identity of S\ + • • • + St = eS, and e2 = e — ip(e) G Z(5). 
By Theorem 3 , e G Z(K), so eR and (1 — e)i? are (^-invariant ideals and R = eR + 
(1 — e)i? is their direct sum. Should eR = eS C S, then £ contains a nonzero ideal of R 
in contradiction to Lemma 1, so eS ^ eft. Hence i? ^ eS+ (1 — e)i? = B, a (^-invariant 
subring of/? with 5 2 r f + ( l - e ) S = iJ. The maximality of S forces (1 — e)i? C S, so 
again S would contain an ideal of R unless (1 — e)R — 0. Therefore we may conclude 
that e — IR — I5. Since any ideal of S is a direct sum of a subcollection of {S,} and 
S* = (pl~~l(S\), ^ n a s n o nonzero proper (^-invariant ideal. 

We have \R = I5 = e\ + • • • + e, is a sum of orthogonal idempotents, so S = ®e,-S C 
®e,7te;. Clearly, (Be,7te, is a ^-invariant subring ofR containing S, so either (BetRei = R 
or (BetRet = S. In the latter case, because/? is infinite and/? = £/j7 e,7tey, some etRej ^ 0 
with / 7̂  7. Choose x G etRej, observe that x £ S and that B = (S, x, (p(x), • •, c^m_1(jc)) 
is a (^-invariant subring properly containing S, so B = R. Now (£"(jc)S<^v(jt) = 0 unless 
(fu(x) G edited and (fv(x) G eqRew. Since {e,} has only f distinct subscripts, any word 
y\S\- • -yt-\St-iyt with sy G 5 and j 7 G {x, y>(x), • • •, <£m-1(*)} m u s t be zero or have a 
subwordjc5c • • ->w G eMJffeM C S. It follows that R = B = 5 + £{SyiSy2 • • • SytS | 
1 < / < t — 1 and all yj G {JC, </?(x),..., <pm~l(x)}} is finite. Therefore, we must have 
R = (BeiRei and e, G Z(7?) follows easily, so e,-/te,- = e,i?. 

Recall that f is minimal with ^(eiR) = e\R. By restriction, </>' induces an (anti-) 
automorphism of finite order on e\R. lfA\ is a (//-invariant subring of e\R containing 
e\S = Si,then,4 = E j l o ^ ' ^ i ) l s a ^-invariant subring of R containingS. Consequently, 
if A\ contains S\ properly, then A = R, so A\ — e\R and Si is a finite maximal <//-
invariant subring of e\R. But when £ > 1, card(Si) < card(S) and by induction on 
card(S), e\R is finite forcing R = E^'(^i^) to be finite. This proves that t = 1, so 
5 = Si is a simple ring. 

Our next goal is to show that Z(S) = Z(R). We need two lemmas to do this, the first 
of which is one of the inclusions and the other gives additional structural information on 
R. 

LEMMA 3. Ifcp^G has finite order m, then either R is finite or Z(R) C Z(S). 

PROOF. From Theorem 4 we may assume that S = Mn(F) for F a finite field and 
n > 1. Suppose that there is z G Z(R) — Z(S), in which case B = (S, z, (p(z),..., (fm~l (z)) 
is a (p-invariant subring ofR properly containing S. Since S is maximal and z G Z(R) = 
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<p(Z(RJ) we may write R = (S,z,(p(z),.. .,<pm-l(z)) = S[z,<p(z),.. .,(fm-l(z)]. Let 
q(X) = n ^ 1 ( ^ - ^'(z)) E Z(R)[X], and note that the coefficients ofq(X) are symmetric 
functions in {z, y?(z),..., (^w_1(z)}, so each is fixed by (p. If any of these coefficients, 
say y, is not in S, then R = (S,y) = S[y], by the maximality of S. Set A — Sly2], 
a ^-invariant subring of R containing S, so A = S or A = R. Should A = S then 
y2 e S, so R = S\y] = S + Sy is finite. If A = R, then j ; E 502] , so y = T.sty21 

with St eS = M„(F). Now /* = % ] = Af„(F)|>] = M„(F]y])9 so if {*?#} are the usual 
matrix units we may regardy — £ euy as a diagonal matrix. Therefore, using the diagonal 
entries of the equation v = E^/jy2' shows that each euy, soy, is algebraic over F. Hence 
F\y] is finite and it follows that R — Mn(F\y]) is finite. Consequently, we may assume 
that all the coefficients of q{X) are in S. But this implies that each < '̂(z) is integral over S, 
so R = 5[z, (^(z),..., (^w_1 (z)] is a finitely generated S module, so is finite, proving the 
lemma. 

LEMMA 4. Let (f E G have finite order m. Then R is finite or every proper ideal I of 
R satisfies ID S = 0 and either: 

i) R is a simple ring with 1; 
ii) R is a sum of proper ideals; or 

in) R contains a proper (f-invariant ideal I, R = I + S, and I properly contains a 
prime ideal P ofR. 

PROOF. By Theorem 4 we may assume that S is a simple ring, by the Corollary to 
Theorem 3 that 1 ^ = 1 ^ = 1 , by Lemma 1 that S contains no ideal of R, and by Lemma 2 
that R is semi-prime. If/ ^ 0 is any ideal ofR, then ID S is an ideal of S so in S = 0 or 
S C /. In the latter case 1 E S C / so / = R, and indeed / D S = 0 for any proper ideal / 
of R. Assume next that R is not a simple ring and has no proper (^-invariant ideal. Then 
since 1 E R, there is a proper maximal ideal / of R and / 5̂ (f(I). But now R = / + (̂ (T), 
so R is a sum of these proper ideals. 

Finally assume that R is not simple and is not the sum of proper ideals. If I is the sum 
of all the proper ideals ofR, then / is a proper ^-invariant ideal of R and R = I + S by 
the maximality of S. Since R is a semi-prime ring, the intersection of all its prime ideals 
is zero, so there is a prime ideal P of R with / <£_ P. By definition of /, P is properly 
contained in /. 

We come now to our next to last preliminary result which is essential in proving our 
main theorem. 

THEOREM 5. If^pEG has finite order m, then either R is finite or Z(S) = Z{R). 

PROOF. We may assume that S = Mn(F) for F a finite field of pa elements and 
n > 1 by Theorem 4, that 1 = \R = \s by the Corollary of Theorem 3, and that Z(R) 
is a subfield of Z(S) = F by Lemma 3. Suppose that there is z E F — Z(R) and let 
z* = 1 for & the order of z E F — (0), so of course k \ pa — 1. Consider the expression 
gGY) = zk~lX + ^~2Xz + • • • + Xz*-1 E F *Z(/?) Z(fl)[#], the free product over Z(R). 
It is straightforward to verify that for any r E R, g(r)z = zg(r); that is, g(R) C C(z), 

https://doi.org/10.4153/CJM-1996-031-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-031-8


RINGS WITH FINITE MAXIMAL INVARIANT SUBRINGS 603 

the centralizer of z in R. If some y = g(f) fi S9 then the maximality of S implies that 
R = (s9y, ip(y)9..., </>m_1(y)). Since F = Z(S) and <p(S) = S9 it follows that </? restricts 
to an automorphism of the finite field F over its prime field, so by elementary Galois 
theory <p(z) = zv for v = pb with b > 0. Now the order of z G F - (0) is A: | /?a - 1, so A: 
is relatively prime top and the cyclic subgroups (z), (</?(z)),..., (^m_1(z)) in F— (0) are 
all equal. Consequently, C(z) = C(ip(zj) = • • • = C(ipm~l(z)) and ip((y) G C(<p'(z)) = 
C(z). Since z G Z(5), S C C(z\ so R = (S9y9 ip(y)9..., <pm_100) C C(z), which forces 
the contradiction z G Z(K). Therefore, we may assume that g(R) C 5. 

If / is any proper ideal of R9 then g(I) C 7 Pi £ = 0 by Lemma 4. Since g(.Y): R —> S 
is additive, g(i?) = 0 if R is the sum of proper ideals. But g(z) = k ^ 0 since/? / &, so 
by Lemma 4 again, either R is a simple ring or for some proper ideal I9R = 1 + S and I 
properly contains a prime ideal P ofR. In the latter case, note that (F + P)/P = F, and 
up to isomorphism Z(R) is in Z(R/P), so we may now consider g(X) G (R/P) *z(R/F) 
Z(R/P)[X]. Certainly, g(I/P) = 0 in R/P9 and since 7/F is a nonzero ideal in the prime 
ring R/P we may conclude that g(R/P) = 0 [9; Lemma 1, p. 766]. Once againg(z+P) ^ 
0 shows that this situation cannot occur, so we may assume that R is a simple ring with 
1. 

Recall that Z(R) C Z(S) = F is a finite field and set dimZ(/?) 5 = q. It is well known that 
S satisfies the standard polynomial identity Sq+\[x\9... ,xq+\] = E(—l)^a(i) • * **<r(?+i) 
over all permutations o of {1,2,. . . ,# + 1} [6; Lemma 6.2.2, p. 154]. Setting 
h(x\9...9xq+\) = Sq+\[g(xx)9...9g(xq+i)] G R *z(/?) Z(R){x\9...9xq+\}9 where 
Z(K){JCI, . . . 9xq+\} is the free algebra over Z(R)9 we have that h(x\9... ,Xg+i) is a gen
eralized polynomial identity for R. Should h = 0, then the sum of all its monomi
als with the variables appearing in the same order must be zero as well. In particu
lar, g(x\) • • • g(xq+\) = 0, using the substitution of all xt = z gives the contradiction 
0 = g(z)q+l = k?+l 7̂  0 since char(#) / k. Hence h(x\9... ,Xq+\) is a nontrivial general
ized polynomial identity for R. By Martindale's Theorem [11; Theorem 3, p. 579], since 
1 E R and R is simple, one must have R = soc(R) = Mt(D) for D a division ring finite 
dimensional over Z(R). It follows that R is finite, proving that Z(S) = Z{R\ when R is 
infinite. 

In the proof of our main theorem we will be able to assume that S = Mn(F) and will 
want to choose an element which centralizes S and is fixed by (p. This is possible since 
^ has infinitely many fixed points, which we prove next. Note that </? having infinitely 
many fixed points does not by itself contradict S finite. After all, S finite does not preclude 
the existence of some infinite </?-invariant subring not containing S. 

THEOREM 6. Let A be a semi-prime ring pA — Oforp a prime, r\ G Aut(v4)UAut*(^) 
of finite order, A^ = {x G A \ r](x) = x}, and A'71 = {X G A \ T](X) = -JC}. If A is 
infinite, then either A11 or A~n is infinite. 

PROOF. Assume first that 77 G Aut(^) and write the order of 77 as 0(77) = pat with/? / 
t. If a is the/?a-th power of 7/, then o(a) = t and/? / t9 so Aa = {x G A \ a(x) = x} is a 
semi-prime ring [12; Corollary 1.5, p. 9] and is infinite whenv4 is [10; Theorem 3, p. 364]. 
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Now 7] induces an automorphism of Aa, so to prove the theorem when r\ G Aut(^4), it is 
enough to assume that 0(77) = pa > 1. Consider^ to be a vector space over the field F 
of/? elements and 77 G HomF(A,A). Note that A71 = Ker(r/ — id^), so it suffices to let 
T = 77 — id^ and to show that Ker T is infinite. Since 0(77) = /?a and charF = /?, the 
minimal polynomial of T is X°. Using the cyclic decomposition, any finite dimensional 
T-invariant subspace V of A is the direct sum of a finite number of T-cyclic subspaces, 
say «, each of dimension at most c. Clearly, T acting on any T-invariant subspace has a 
nonzero kernel, so card(Ker(7V)) > pn. It follows that if card(Ker T) = q is finite, then 
any finite dimensional /"-invariant subspace M of A satisfies dimM < qc. But if V is 
any finite dimensional T-invariant subspace, say V = Ker 7, then T induces a nilpotent 
transformation Y on A / V, so has a nonzero kernel when ̂ 4 is infinite. If x+ V G Ker Y— (0), 
then Fx + F is a T-invariant subspace properly containing V. Thus there exist T-invariant 
subspaces of arbitrarily large dimension when ,4 is infinite, so Ker T must be infinite and 
A71 is infinite also. 

When 7/ G Aut*(^), then T/2 G Aut(^4), so by the case above its fixed point ring B 
is infinite when A is. Clearly B is 77-invariant, B71 = {b G B \ r]{b) = b} C A71, and 
B~7] C ^ -7?, so it suffices to replace ^ with 5 and assume that T?2 = id^. Thus we may 
assume that 77 is an involution, but cannot assume now that A is semi-prime. If/? > 2, then 
A is the direct sum of the characteristic subspaces Av and A'71, so one of these is infinite 
when A is infinite. Finally, if/? = 2 then A infinite forces^77 to be infinite [10; Lemma 5, 
p. 371]. To see this suppose that A71 is finite and let A = A71 ®MTor Man infinite subspace 
of A. If Y is any basis of M andjy G Y, then y + rj(y) G ^ so the finiteness of A71 shows 
that y + rjiy) = x + T?(JC) for x, j> G 7 and x ^ y. Hence x +y = r](x +y) G MHA71 — 0 
gives a contradiction. Therefore ^ must be infinite, proving the theorem. 

THEOREM 7. If<p€ Aut(R) U Aut*(7?) has finite order, and ifS is a finite maximal 
<p-invariant subring of R, then R is finite. 

PROOF. From Theorem 4 we may assume that S is a simple ring, and from Theorem 5 
that Z(R) — Z(S). First assume that S = Z(S) = F, a finite field, so applying Theorem 6 
yields an element* G R — S so that 9?(x) = =bc, unless i? is finite. Clearly, the maximality 
of S = F shows that R = (S,x) = F[x]. But Fix2] contains F and is (^-invariant, so 
F[x2] = F = S or Fix2] = R = F[x]. Therefore, x is algebraic over F, so R = F[x] 
is finite. Next assume that S = Mn{F) with n > 1 and F = Z(5) = Z(R). Using a 
theorem of Wedderburn [1; Theorem 17, p. 19] shows that R = SA, where A = CR(S), 

the centralizer of S in R. Briefly, if {e,y} are the usual matrix units in S, then forreR 
set rfy = £* e^re^ and note that all r,y G >4 and r = £ e^y. Consequently, since we 
can take i? to be semi-prime by Lemma 2, we may assume that A is also semi-prime 
because for any ideal B of A, SB is an ideal of R. Observe that SB ^ 0 if B ^ 0 since 
1 G 5 by the Corollary of Theorem 3. Finally, since S is (/?-invariant and A = Q?(5), v4 
is also (^-invariant. Now unless R is finite, A is infinite and Theorem 6 shows that there 
is x G A - S with <p(x) = ±x. As above i? = (S,x) = S[x] = Mn(F)[x] = Mn(F[x]), and 
Six2] = M„(F[x2]) is a (^-invariant subring of R containing S. Therefore, x2 G SHF, so 
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x is algebraic over F, or Mn(F[x2]) = R = Mn(F[x]), and as in the proof of Lemma 3, JC 
is algebraic over F. In either case R = Mn(F[x]) is finite. 

We immediately extend Theorem 7 to <p E G which is locally finite, that is, for all 
x E R, and some / = i(x) > 1, ^'(JC) = x, or which is integral over J. 

THEOREM 8. Let ip E Aut(jR) U Aut*(i?) and S a finite maximal (p-invariant subring 
ofR. If either <p is locally finite or integral over J, then R is finite. 

PROOF. Assume first that ip is locally finite and for / > 1 set R(i) = {x E R \ ip\x) = 
x}. Clearly, each R(i) is a ^-invariant subring and R = UR(i) by the local finiteness of <p. 
Also, (R(i),R(j)) C R(ij), so S C R(n) for some n because S is finite. Thus R = R(n) and 
if has order at most n, or S = R(n). But S = R(n) ^ R implies that some R(f) tf_ R(n), so 
R(tn) is a ip -invariant subring properly containing S. This forces R = R(tn), and <p has 
order at most tn. Consequently, (p must have finite order, and now Theorem 7 shows that 
R is finite. 

When ip is integral over J, we may assume that S ^ 0 by Theorem 1, so c&rd(S)R = 0 
by Lemma 1. Thus R is a torsion ring and so is the direct sum of its/7-torsion components 
R(p) — ir £ R | p^r = 0 for some k > 1}, over those primes with/? | card(S). Now 
each R(p) is (^-invariant, and the restriction <pp of ^ to R(p) is integral over J. Clearly 
R(p) nSisa. finite ^-invariant subring of R(p). If T is a proper ^-invariant subring of 
R(p) properly containing R(p) D S, then R ^ T + S and 7 + S is a (^-invariant subring 
properly containing S, a contradiction. Hence R(p) D S is a finite maximal ^-invariant 
subring of #(p), so either card(R(p) Pi S) < card(5) and #(p) is finite by induction on 
card(S), or 5 C R(p). Since this holds for each R(p\ we may assume that R is finite 
unless R = R(p) is /?-torsion. Let W = {r £ R \ pr = 0}, note that W is a ^-invariant 
ideal of R, and that i? is finite or W <£ S by Lemma 1. Therefore, because W + S is a 
^-invariant subring, # = JF + S and so pR = pS C S, again contradicting Lemma 1 
unless R is finite or pR = 0. But if/?/? = 0, then R is an algebra over F = ¥p the field of 
p elements. It follows that ip is algebraic over F, forcing ip to have finite order. To see this 
let m(X) — ft qt(X)a^ be the prime factorization of the minimal polynomial of (p over F. 
If Ft is the splitting field of n qi(X) over F, then Ft has t — pr elements, and each y E Ft 

satisfies^ -X. Since each qt(X) has a root in F,, it follows that YiqiX) \ (X1'1 - 1). For 
k = max{a(0} and n = pk, clearly m(X) \ (Xt~l - l)n = ^ ( r _ 1 ) - 1, so ip has finite order 
dividing n(t — 1). Consequently, Theorem 7 may be applied to show that R is finite. 

To conclude the paper we give two special cases of Theorem 8 and two other conse
quences which extend results of Gilmer [5] and of Szele [13]. 

COROLLARY 1 (LAFFEY [8]). IfR contains a finite maximal subring, then R is finite. 

COROLLARY 2. IfR is a ring with involution * and S is a finite maximal ^-invariant 
subring, then R is finite. 

COROLLARY 3. If<p€ Aut(R) U Aut*(Z?) is either locally finite or integral over J, 
and ifR has only finitely many (p-invariant subrings, then R is finite. 
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PROOF. Let R = Ro D ^1 2 • *' 2 ^«+i = 0 be a maximal chain of (^-invariant 
subrings, with all inclusions proper. For each / < n, if </?/ is the restriction of </? to Ri9 

then Ri+\ is a maximal (^/-invariant subring of Rj, and of course each </?/ is locally finite 
or integral over J. Thus Rn is finite by Theorem 1, so R„-\ is finite by Theorem 8, and 
using induction together with Theorem 8 shows that R is finite. 

COROLLARY 4. Ifipe Aut(R) U Aut*(R) is either locally finite or integral over J, 
and ifR satisfies the ascending and descending chain conditions on (f-invariant subrings, 
then R is finite. 

PROOF. Using the ascending chain condition there is a proper maximal ^-invariant 
subring S. By Theorem 8, it suffices to show that S is finite. By Zorn's Lemma and the 
descending chain condition there is a finite maximal descending chain of (/^-invariant 
subrings S = So D S\ D • • • D Sn+\ = 0, with all inclusions proper. The argument in 
Corollary 3 now shows that S must be finite. 

We do not know if Theorem 8 holds without any additional condition on if G Aut(R)U 
Aut*(ft). Indeed, as we mentioned earlier, it would be interesting to know even if The
orem 1 holds in this case. That is, when R is infinite, must there always be a nonzero 
proper (^-invariant subring for any given (anti-) automorphism y?? 
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