
Appendix B

Dispersion relations, analyticity, and unitarity of the
scattering amplitude

Our analysis of high energy scattering amplitudes cannot be complete, since the problem
of quark (and gluon) confinement in QCD has not been solved. It is clear that the solution
of this problem lies beyond the realm of perturbative QCD. At the same time, nonperturba-
tive physics may affect the scattering amplitudes (though maybe to a lesser extent than one
would naively expect, since the saturation dynamics described in this book tends to suppress
nonperturbative effects). Therefore, it would be very instructive to summarize the properties
of the scattering amplitudes in the perturbative and nonperturbative approaches to any field
theory.

First, any scattering amplitude should be a relativistic invariant (a scalar with respect to
Lorenz transformations) and, because of this, it can depend only on variables that are relativistic
invariants, namely on quantities such as (pi − pj )2, where p

μ
i and p

μ
j are the four-momenta of

external lines labeled i and j . In the case of a 2 → 2 scattering amplitude we have three such
invariants, given by the Mandelstam variables (Mandelstam 1958)

s = (pA + pB )2 = m2
A + m2

B + 2pB · pA,

u = (pC − pB )2 = m2
C + m2

B − 2pC · pB, (B.1)

t = (pA − pC)2 = m2
C + m2

A − 2pC · pA,

with

s + u + t = m2
A + m2

B + m2
C + m2

D. (B.2)

The process is illustrated in the left-hand panel of Fig. B.1, where the notation is explained as
well.

The second basic principle is the unitarity of the S-matrix: S†S = I where I is the
identity operator. This translates into the following equation for the T -matrix, defined by
S = I + iT :

i(T † − T ) = T †T . (B.3)

Below we will rewrite Eq. (B.3) as a condition on scattering amplitudes.
The presentation of the material in this appendix is based mainly on the books Chew (1961,

1966), Roman (1969), Schweber (1961), and Weinberg (1996), vol. 1.

B.1 Crossing symmetry and dispersion relations

It turns out that when calculating any amplitude using Feynman diagrams in a field theory one
always obtains a function that is analytic in its Lorentz-invariant arguments. In the case of a
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Fig. B.1. Scattering amplitude for a 2 → 2 process and tree-level diagrams for the process
in the φ3 theory in three different channels, s, u, and t , corresponding respectively to parts
a, b, and c of the figure.

2 → 2 scattering amplitude these arguments are the Mandelstam variables s, t, u. The singu-
larities of the scattering amplitude are located only at the real values of these Lorentz-invariant
variables. These singularities are closely related to the physical processes: they correspond to
the production thresholds for physical particles (this is known as the Landau principle (Landau
1959, 1960)).

Relations between the scattering amplitudes for different processes may be obtained using
crossing symmetry. This symmetry allows one to use only one function (say A (s, t)) to describe
three different processes: A + B → C + D, in the kinematic region where s > 0 and t < 0;
C̄ + B → Ā + D, for u > 0 and t < 0; and A + C̄ → B + D̄, for t > 0 and s < 0. (Here
C̄, D̄, and Ā denote antiparticles in complex-field theories and particles in real-field theories:
in both cases the four-momenta are inverted under crossing symmetry transformations, e.g.,
p

μ

Ā
= −p

μ
A.)

The crossing symmetry can be illustrated using the example of simple tree-level graphs in φ3

theory with the Lagrangian of Eq. (1.71). In Figs. B.1 a, b, c we plot the diagrams for the s-, t- and
u-channel contributions respectively, all corresponding to the same process A + B → C + D.
Indeed, the diagrams of Fig. B.1 lead to the following expressions for the scattering amplitudes:

A(s, t ; Fig. B1a) = λ2

m2 − (pA + pB )2 − iε
= λ2

m2 − s − iε

A(u, t ; Fig. B1b) = λ2

m2 − (−pC + pB )2 − iε
= λ2

m2 − u − iε
(B.4)

A(t, s; Fig. B1c) = λ2

m2 − (pA + −pC)2 − iε
= λ2

m2 − t − iε
.

It is clear that Fig. B.1a describes the process A + B → C + D, while the diagram of Fig. B.1b
can be viewed either as describing the same process as the diagram of Fig. B.1a but with s
replaced by u = 4m2 − s − t or it can be viewed as the tree-level diagram for the process
C̄ + B → Ā + D, with the invariant s defined now as s = (pC̄ + pB )2 if we assume that
p

μ

C̄
= −p

μ
C . Defining

A(s, t) = AA+B→C+D (pA, pB, pC, pD) (B.5)

we see that the relation between the amplitudes in diagrams Figs. B.1a, b that describes their
crossing symmetry is

AC̄+B→Ā+D (pC̄, pB, pĀ, pD) = AA+B→C+D (−pC, pB,−pA, pD) = A(u, t). (B.6)
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Fig. B.2. The singularities of the scattering amplitude A(s, t), shown in the complex plane of
the variable s. They are mainly given by branch cuts that start at the production thresholds
for two, three, and more particles. For the sake of simplicity we do not show the pole
contributions of Fig. B.1.

Similarly, for the amplitude resulting from the diagram Fig. B.1c we have

AA+C̄→B+D̄ (pA, pC̄, pB, pD̄) = AA+B→C+D (pA,−pC,−pB, pD) = A(t, s). (B.7)

Therefore, the scattering amplitude A(s, t) as a function of the variables s and t is able to
describe all three processes.

The analyticity of the scattering amplitude gives more detailed information about the ampli-
tude. Indeed, owing to Cauchy’s theorem the amplitude, being an analytical function, can be
written in the form (see Fig. B.2)

A(s, t) = 1

2πi

∮
C1

ds ′ A
(
s ′, t
)

s ′ − s
= 1

2πi

∮
C2

ds ′ A
(
s ′, t
)

s ′ − s
. (B.8)

The contours C1 and C2 are shown in Fig. B.2, and s is taken somewhere in the complex plane
away from the real axis. The singularities of A (s, t) are also shown in Fig. B.2: as mentioned
before, they are confined to the real s-axis, and are typically branch cuts starting at the particle
production thresholds. Since the amplitude does not have singularities at complex values of s,
we can stretch the contour of integration C1 to C2 without modifying the value of the integral,
as is reflected in Eq. (B.8). One can see that the integration over contour C2 in Eq. (B.8) can be
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rewritten in the form

A(s, t) = 1

2πi

⎧⎨
⎩

∞∫
smin

ds ′ Discs A
(
s ′, t
)

s ′ − s
+

∞∫
umin

du′ Discu A
(
u′, t
)

u′ − u

⎫⎬
⎭

+ 1

2πi

∮
large circle

ds ′ A
(
s ′, t
)

s ′ − s
, (B.9)

where

DiscsA
(
s ′, t
) = lim

ε→0

[
A
(
s ′ + iε, t

)− A
(
s ′ − iε, t

)]
(B.10)

and

DiscuA
(
u′, t
) = lim

ε→0

[
A
(
u′ + iε, t

)− A
(
u′ − iε, t

)]
. (B.11)

In the second term on the right-hand side of Eq. (B.9) we have changed the integration variable
to u′ = 4m2 − t − s ′; note that A(u, t) is no longer equal to A (s, t) with s replaced by u:
rather A(u, t) = A(s = 4m2 − t − u, t). Typically the limits of integration in Eq. (B.9) would
be smin = 4m2 and umin = 4m2 − t , and we are keeping t fixed and real. (If the amplitude has
poles on the real axis for 0 < s < 4m2, as is the case for the φ3-theory amplitudes given by
Eq. (B.4), the contributions of such poles has to be included in the right-hand side of Eq. (B.9)
by appropriately lowering smin.)

The amplitude A(s, t) has no imaginary part (no branch cuts corresponding to particle
production) along the real axis between s = 0 (corresponding to u = 4m2, t = 0) and s = 4m2.
Therefore it is a real function of s and t in this interval and, as can be shown, is in fact a real
function of s and t in the whole region of its analyticity. We thus conclude that A(s ′ − iε, t) =
A∗(s ′ + iε, t), such that

Discs A
(
s ′, t
) = 2iIm A(s, t) . (B.12)

Similarly,

Discu A
(
u′, t
) = 2iIm A(u, t) . (B.13)

(It should be stressed that, owing to the optical theorem, which follows from Eq. (B.3), Im A(u, t)
and Im A(s, t) are directly related to physical processes.)

One can show that the contribution to the right-hand side of Eq. (B.9) coming from the
integral over the large circle vanishes as we stretch the radius of the circle to infinity (see e.g.
Weinberg (1996), vol. 1):

1

2πi

∮
large circle

ds ′ A
(
s ′, t
)

s ′ − s
−→ 0. (B.14)

Neglecting this last term on the right of Eq. (B.9) and employing Eqs. (B.12) and (B.13) we
finally obtain the following dispersion relation:

A(s, t) = 1

π

⎧⎨
⎩

∞∫
smin

ds ′ Ims A
(
s ′, t
)

s ′ − s
+

∞∫
umin

du′ Imu A
(
u′, t
)

u′ − u

⎫⎬
⎭ . (B.15)

Equation (B.15) allows one to reconstruct the full amplitude if its imaginary part is known.
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For example, the tree-level diagrams in Fig. B.1 yield

Ims A
(
s ′, t ; Fig. B1a

) = πλ2δ
(
m2 − s ′) , (B.16a)

Imu A
(
u′, t ; Fig. B1b

) = πλ2δ
(
m2 − u′) . (B.16b)

Substituting each of these imaginary parts into the right-hand side of Eq. (B.15) yields the
appropriate amplitude after straightforward integration over the delta functions.

Note that a dispersion relation in the form Eq. (B.15) cannot be used in QCD since we know
that QCD amplitudes grow as the energy s at large s (see e.g. Eq. (3.17)), making the integrals
in Eq. (B.15) divergent. Therefore, we have to alter Eq. (B.15) by subtracting, for example,
the amplitude A(s = 0, t) obtained by putting s = 0 in Eq. (B.15). Doing this, we obtain the
subtracted dispersion relation

A(s, t) = A(s = 0, t) + 1

π

{
s

∫ +∞

smin

ds ′ Ims A
(
s ′, t
)

s ′(s ′ − s)

+ [u − u(s = 0)]
∫ +∞

umin

du′ Imu A
(
u′, t
)

[u′ − u(s = 0)](u′ − u)

}
. (B.17)

Finally, subtracting s∂sA(s = 0, t) from Eq. (B.17) (with A(s, t) again given by Eq. (B.15)) we
obtain the double-subtracted dispersion relation

A(s, t) = A(s = 0, t) + s∂sA(s = 0, t) + 1

π

{
s2
∫ +∞

smin

ds ′ Ims A
(
s ′, t
)

s ′2(s ′ − s)

+ [u − u(s = 0)]2
∫ +∞

umin

du′ Imu A
(
u′, t
)

[u′ − u(s = 0)]2(u′ − u)

}
. (B.18)

This is exactly the dispersion relation used in Eq. (3.43). Note that in perturbative QCD
A(s = 0, t) = 0.

B.2 Unitarity and the Froissart–Martin bound

The unitarity constraint (B.3) can be written in terms of scattering amplitudes as (see e.g. Peskin
and Schroeder (1995))

M(k1, k2 → k1, k2) − M∗(k1, k2 → k1, k2)

= i

∞∑
n=2

∫ n∏
i=1

d3qi

(2π )32Eqi

|M(k1, k2 → q1, . . . , qn)|2(2π)4δ4

⎛
⎝k1 + k2 −

n∑
j=1

qj

⎞
⎠ , (B.19)

where M(k1, k2 → q1, . . . , qn) is the 2 → n scattering amplitude for the scattering of two
particles with momenta k1, k2 into n particles with momenta q1, . . . , qn, and M(k1, k2 → k1, k2)
is the forward scattering amplitude; Eqi

is the energy of a particle with momentum qi .
Let us consider the case of high energy scattering, where k+

1 and k−
2 are very large and

so are q+
1 ≈ k+

1 and q−
2 ≈ k−

2 . Separating the elastic 2 → 2 contribution from the inelastic
contributions (2 → 3, 2 → 4, etc.) on the right-hand side of Eq. (B.19), and integrating over the
delta-function in that contribution, yields

2 Im A(k1, k2 → k1, k2) =
∫

d2q⊥
(2π )2

|A(k1, k2 → q1, q2)|2 + inelastic terms, (B.20)
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where q is the momentum transfer four-vector, defined by

q = q1 − k1 = k2 − q2, (B.21)

and we also define a new rescaled scattering amplitude

A(k1, k2 → q1, q2) ≡ M(k1, k2 → q1, q2)

2
√

2Ek1 2Ek2 2Eq1 2Eq2

≈ M(k1, k2 → q1, q2)

2k+
1 k−

2

. (B.22)

Since both the incoming and outgoing particles are on mass shell the momentum transfer q has
only two free components, which we choose to be transverse and over which we integrated in
Eq. (B.20).

The optical theorem then states that the total scattering cross section is given by (again, see
e.g. Peskin and Schroeder (1995))

σtot = 2 Im A(k1, k2 → k1, k2) (B.23)

so that Eq. (B.20) simply implies that

σtot = σel + σinel, (B.24)

where σel is the elastic 2 → 2 cross section and σinel is the total inelastic cross section.
As we have seen above, in general the elastic amplitude A(k1, k2 → q1, q2) can be written

as a function of the Mandelstam variables s and t . However, for our purposes it is convenient to
go to impact parameter (�b⊥) space, using

A(k1, k2 → q1, q2) =
∫

d2b e−i �q⊥·�b⊥A(s, �b⊥), (B.25)

which, when applied in Eq. (B.20) yields

2 Im A(s, �b⊥) = |A(s, �b⊥)|2 + inelastic terms. (B.26)

In arriving at Eq. (B.26) we have used the fact that the forward amplitude corresponds to the
case of zero momentum transfer, t = 0, or, equivalently, q⊥ = 0, such that

A(k1, k2 → k1, k2) =
∫

d2b A(s, �b⊥). (B.27)

Note that the total cross section in impact parameter space is

σtot = 2
∫

d2b Im A(s, �b⊥). (B.28)

We also see immediately from Eq. (B.26) that the elastic cross section is given by

σel =
∫

d2b |A(s, �b⊥)|2. (B.29)

Relating the inelastic terms in Eq. (B.26) to the corresponding cross section yields

2ImA(s, �b⊥) = |A(s, �b⊥)|2 + dσinel

d2b
. (B.30)

The simple nonnegativity condition

dσinel

d2b
≥ 0 (B.31)

used in Eq. (B.30) yields

Im A(s, �b⊥) ≤ 2. (B.32)
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This is an important condition, which follows from unitarity. When used in Eq. (B.28) it yields
an upper bound for the total cross section:

σtot = 2
∫

d2b ImA(s, �b⊥) ≤ 4
∫

d2b = 4πR2, (B.33)

where R is the radius of the region in b⊥-space where the interactions are sufficiently strong
(the radius of the “black disk”).

Parametrizing the forward scattering amplitude by (as follows from S = I + iT )

A(s, �b⊥) = i
[
1 − S(s, �b⊥)

]
, (B.34)

with S(s, �b⊥) the forward matrix element of the S-matrix, we see that the constraint (B.32) and
the nonnegativity of the total cross section σtot together lead to |ReS(s, �b⊥)| ≤ 1.

Using Eq. (B.34) in Eqs. (B.28), (B.29), and (B.30) yields

σtot = 2
∫

d2b
[
1 − Re S(s, �b⊥)

]
, (B.35a)

σel =
∫

d2b
∣∣∣1 − S(s, �b⊥)

∣∣∣2 , (B.35b)

σinel =
∫

d2b
[
1 − |S(s, �b⊥)|2

]
. (B.35c)

In high energy scattering the bound on the total cross section is even stronger than Eq. (B.33).
At very high energies inelastic processes dominate, so that σinel ≥ σel, which leads to

Re S(s, �b⊥) ≥ 0. (B.36)

With the help of Eq. (B.34) we obtain

ImA(s, �b⊥) ≤ 1, (B.37)

which is a stronger constraint than (B.32). Equation (B.37) leads to

σtot = 2
∫

d2b Im A(s, �b⊥) ≤ 2πR2. (B.38)

This is the bound used in the text in Eq. (3.112). (For a derivation of this result in nonrelativistic
quantum mechanics see Landau and Lifshitz (1958), vol. 3, Chapter 131.) Using the estimate
(3.115) for the typical interaction range, i.e.,

R = b∗ ∼ �

2mπ

ln s, (B.39)

in Eq. (B.38) yields the Froissart–Martin bound (3.116)

σtot ≤ π�2

2m2
π

ln2 s (B.40)

(Froissart 1961, Martin 1969, Lukaszuk and Martin 1967).
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