WHEN IS A MATRIX POSITIVE

BY
DANIEL BRAND

Throughout this note we shall use the following conventions and notations: All matrices have entries in the field of complex numbers. I denotes the identity matrix with compatible dimensions. A^{*} is the conjugate transpose of a matrix A. A being self adjoint means $A=A^{*} . A \geq 0$ (A is positive) means: $v^{*} A v \geq 0$ for all vectors $v . A>0$ means: $A \geq 0$ and A is invertible. For an $n \times m$ matrix A, whose (i, j)-the entry is a $a_{i, j}$, we write $A=\left(a_{i, j}\right)_{i=1 ; n}^{j=1 ; m}$. For an $n \times n$ matrix $S=\left(s_{i, j}\right)_{i=1 ; n}^{j=1 ; n}$ with $n \geq 2$ we let

$$
\begin{array}{ll}
S_{1}=\left(s_{i, j}\right)_{i=1 ; n-1}^{j=1 ; n-1} & S_{2}=\left(s_{i, n}\right)_{i=1 ; n-1} \\
S_{3}=\left(s_{n, j}\right)^{j=1 ; n-1} & S_{4}=s_{n, n}
\end{array}
$$

i.e.

$$
S=\left(\left.\frac{S_{1}}{S_{3}} \right\rvert\, \frac{S_{2}}{S_{4}}\right)
$$

Definition. For an $n \times n$ matrix S, with $n \geq 2$, we define

$$
D(S)=S_{1} S_{4}-S_{2} S_{3}
$$

($S_{1} S_{4}$ is a matrix times a scalar, $S_{2} S_{3}$ is an ordinary matrix product.)
Note that $D(S)$ is an $(n-1) \times(n-1)$ matrix, and it becomes $\operatorname{det} S$ in the case $n=2$.

Theorem 1. Let S be a self adjoint $n \times n$ matrix, with $n \geq 2$. Then $S \geq 0$ if and only if $S_{1} \geq 0, S_{4} \geq 0$, and $D(S) \geq 0$.

Proof. The relation

$$
\left(\begin{array}{cc}
I & -S_{2} / S_{4} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
S_{1} & S_{2} \\
S_{3} & S_{4}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-S_{2}^{*} / S_{4} & 1
\end{array}\right)=\left(\begin{array}{cc}
D(S) / S_{4} & 0 \\
S_{3}-S_{2}^{*} & S_{4}
\end{array}\right)
$$

shows that if $S_{4} \neq 0$ then $\operatorname{det} D(S)=S_{4}^{n-2} \operatorname{det} S$. It is also true if $S_{4}=0$ with the convention that $0^{0}=1$. But this fact is not necessary in the proof. Replacing S by $S-a I$ we find

$$
\begin{equation*}
\operatorname{det} D(S-a I)=\left(S_{4}-a\right)^{n-2} \operatorname{det}(S-a I) \tag{1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
D(S-a I)=a^{2} I-a\left(S_{1}+S_{4} I\right)+D(S) \tag{2}
\end{equation*}
$$

which is an analogue of the characteristic polynomial.
(I) Assume that $S_{1} \geq 0, S_{4} \geq 0, D(S) \geq 0$. Suppose that S would have a negative characteristic value a. Then (1) gives

$$
\begin{equation*}
\operatorname{det} D(S-a I)=0 \tag{3}
\end{equation*}
$$

By hypothesis, $a^{2} I>0,-a\left(S_{1}+S_{4} I\right)+D(S) \geq 0$. So from (2), $D(S-a I)$ is invertible, contradicting (3). Hence $S \geq 0$.
(II) Assume $S \geq 0$. Then immediately $S_{1} \geq 0$ and $S_{4} \geq 0$. Suppose that $D(S)$ is not positive. We will show that then S must have a negative characteristic value.

Since S is self adjoint, so is $D(S-x I)$ for any real x. Let f be the real valued function $f(x)=$ least characteristic value of $D(S-x I)$ for real x. Characteristic values of $D(S-x I)$ are roots of the corresponding characteristic polynomial. Coefficients of this polynomial are continuous functions of x, hence so are the roots, so f is continuous.

From the assumption that $D(S)$ is not positive, $f(0)<0$. From (2), $f(x) \geq 0$ for some negative x, sufficiently large in magnitude. Hence for some $a<0, f(a)=0$. So $D(S-a I)$ is not invertible, so by (1) a is a characteristic value of S, which is a contradiction. Therefore $D(S) \geq 0$. Q.E.D.

We can now give an alternative proof of the following theorem (see [1]).
Theorem 2. Let $A=\left(a_{i, j}\right)_{i=1 ; n, n}^{j=1 ; n}, B=\left(b_{i, j}\right)_{i=1 ; n}^{j=1 ; n}$ be positive matrices. Then their Hadamard product $H=\left(a_{i, j} b_{i, j}\right)_{i=1 ; n}^{j=1 ; n}$ is positive.

Proof. By induction on n.
(I) $n=1$ Obvious.
(II) Suppose true for all matrices of dimension less than $n, n \geq 2$.
H is self adjoint, and by induction hypothesis $H_{1} \geq 0, H_{4} \geq 0$. So we need to show $D(H) \geq 0$.

From Theorem 1, $0 \leq D(A)=\left(a_{i, j} a_{n, n}-a_{i, n} a_{n, j}\right)_{i=1 ; n-1}^{j=1 ; n-1}$. Applying induction hypothesis to $D(A)$ and B_{1}, and then multiplying by $B_{4} \geq 0$, gives an inequality, which when added to the analogous inequality with A and B interchanged, yields

$$
\begin{equation*}
2\left(a_{i, j} b_{i, j} a_{n, n} b_{n, n}\right)_{i=1 ; n-1}^{j=1 ; n-1} \geq\left(a_{i, n} a_{n, j} b_{i, j} b_{n, n}+a_{i, j} a_{n, n} b_{i, n} b_{n, j}\right)_{i=1 ; n-1}^{j=1 ; n-1} \tag{4}
\end{equation*}
$$

We show that
(4) $\geq 2\left(a_{i, n} b_{i, n} a_{n, j} b_{n, j}\right)_{\substack{j=1 ; n-n-1 \\ i=1 ;}}$.

Apply induction hypothesis to $D(B)$ and $A_{2} A_{3}=A_{2} A_{2}^{*} \geq 0$ to get one inequality, and an analogous one with roles of A and B interchanged. Adding these two establishes (5), from which follows $D(H) \geq 0$. Whence $H \geq 0$. Q.E.D.

Acknowledgement. The author is grateful to the referee of the Bulletin for suggesting relation (1), which greatly simplifies the proof of theorem 1.

Reference

1. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston (1964).

Department of Computer Science
University of Toronto
Toronto, Ontario

