WHEN IS A MATRIX POSITIVE

BY

DANIEL BRAND

Throughout this note we shall use the following conventions and notations: All matrices have entries in the field of complex numbers. *I* denotes the identity matrix with compatible dimensions. A^* is the conjugate transpose of a matrix *A*. *A* being self adjoint means $A=A^*$. $A \ge 0$ (*A* is positive) means: $v^*Av \ge 0$ for all vectors v. A>0 means: $A \ge 0$ and *A* is invertible. For an $n \times m$ matrix *A*, whose (i, j)-the entry is a $a_{i,j}$, we write $A=(a_{i,j})_{i=1;n}^{j=1;m}$. For an $n \times n$ matrix $S=(s_{i,j})_{i=1;n}^{j=1;n}$ with $n\ge 2$ we let

$$S_1 = (s_{i,i})_{i=1;n-1}^{j=1;n-1} \qquad S_2 = (s_{i,n})_{i=1;n-1}$$

$$S_3 = (s_{n,i})^{j=1;n-1} \qquad S_4 = s_{n,n}$$

i.e.

$$S = \left(\frac{S_1}{S_3} \middle| \frac{S_2}{S_4}\right)$$

DEFINITION. For an $n \times n$ matrix S, with $n \ge 2$, we define

$$D(S) = S_1 S_4 - S_2 S_3.$$

 $(S_1S_4$ is a matrix times a scalar, S_2S_3 is an ordinary matrix product.)

Note that D(S) is an $(n-1) \times (n-1)$ matrix, and it becomes det S in the case n=2.

THEOREM 1. Let S be a self adjoint $n \times n$ matrix, with $n \ge 2$. Then $S \ge 0$ if and only if $S_1 \ge 0$, $S_4 \ge 0$, and $D(S) \ge 0$.

Proof. The relation

$$\begin{pmatrix} I & -S_2/S_4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S_1 & S_2 \\ S_3 & S_4 \end{pmatrix} \begin{pmatrix} I & 0 \\ -S_2^*/S_4 & 1 \end{pmatrix} = \begin{pmatrix} D(S)/S_4 & 0 \\ S_3 - S_2^* & S_4 \end{pmatrix}$$

shows that if $S_4 \neq 0$ then det $D(S) = S_4^{n-2}$ det S. It is also true if $S_4 = 0$ with the convention that $0^0 = 1$. But this fact is not necessary in the proof. Replacing S by S-aI we find

(1)
$$\det D(S-aI) = (S_4-a)^{n-2} \det (S-aI).$$

Note that

(2)
$$D(S-aI) = a^{2}I - a(S_{1}+S_{4}I) + D(S)$$

which is an analogue of the characteristic polynomial.

(I) Assume that $S_1 \ge 0$, $S_4 \ge 0$, $D(S) \ge 0$. Suppose that S would have a negative characteristic value a. Then (1) gives

$$det D(S-aI) = 0.$$

$$409$$

https://doi.org/10.4153/CMB-1974-076-1 Published online by Cambridge University Press

By hypothesis, $a^2I > 0$, $-a(S_1+S_4I) + D(S) \ge 0$. So from (2), D(S-aI) is invertible, contradicting (3). Hence $S \ge 0$.

(II) Assume $S \ge 0$. Then immediately $S_1 \ge 0$ and $S_4 \ge 0$. Suppose that D(S) is not positive. We will show that then S must have a negative characteristic value.

Since S is self adjoint, so is D(S-xI) for any real x. Let f be the real valued function f(x)=least characteristic value of D(S-xI) for real x. Characteristic values of D(S-xI) are roots of the corresponding characteristic polynomial. Coefficients of this polynomial are continuous functions of x, hence so are the roots, so f is continuous.

From the assumption that D(S) is not positive, f(0) < 0. From (2), $f(x) \ge 0$ for some negative x, sufficiently large in magnitude. Hence for some a < 0, f(a) = 0. So D(S-aI) is not invertible, so by (1) a is a characteristic value of S, which is a contradiction. Therefore $D(S) \ge 0$. Q.E.D.

We can now give an alternative proof of the following theorem (see [1]).

THEOREM 2. Let $A = (a_{i,j})_{i=1;n}^{j=1;n}$, $B = (b_{i,j})_{i=1;n}^{j=1;n}$ be positive matrices. Then their Hadamard product $H = (a_{i,j}b_{i,j})_{i=1;n}^{j=1;n}$ is positive.

Proof. By induction on *n*.

(I) n=1 Obvious.

(II) Suppose true for all matrices of dimension less than $n, n \ge 2$.

H is self adjoint, and by induction hypothesis $H_1 \ge 0$, $H_4 \ge 0$. So we need to show $D(H) \ge 0$.

From Theorem 1, $0 \le D(A) = (a_{i,j}a_{n,n} - a_{i,n}a_{n,j})_{i=1,n-1}^{j=1,n-1}$. Applying induction hypothesis to D(A) and B_1 , and then multiplying by $B_4 \ge 0$, gives an inequality, which when added to the analogous inequality with A and B interchanged, yields

$$(4) \qquad 2(a_{i,j}b_{i,j}a_{n,n}b_{n,n})_{i=1;n-1}^{j=1;n-1} \ge (a_{i,n}a_{n,j}b_{i,j}b_{n,n} + a_{i,j}a_{n,n}b_{i,n}b_{n,j})_{i=1;n-1}^{j=1;n-1}$$

We show that

(5)
$$(4) \ge 2(a_{i,n}b_{i,n}a_{n,j}b_{n,j})_{i=1;n-1}^{j=1;n-1}$$

Apply induction hypothesis to D(B) and $A_2A_3 = A_2A_2^* \ge 0$ to get one inequality, and an analogous one with roles of A and B interchanged. Adding these two establishes (5), from which follows $D(H) \ge 0$. Whence $H \ge 0$. Q.E.D.

ACKNOWLEDGEMENT. The author is grateful to the referee of the Bulletin for suggesting relation (1), which greatly simplifies the proof of theorem 1.

REFERENCE

1. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston (1964).

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TORONTO TORONTO, ONTARIO

410