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Abstract. In this paper, we put forward a cross-constrained variational method to
study the non-linear Klein–Gordon equations with an inverse square potential in three
space dimensions. By constructing a type of cross-constrained variational problem
and establishing so-called cross-invariant manifolds of the evolution flow, we establish
some new types of invariant sets for the equation and derive a sharp threshold of
blowup and global existence for its solution. Finally, we give an answer to the question
how small the initial data are for the global solution to exist.
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1. Introduction. In this paper, we put forward a cross-constrained variational
method to study the non-linear Klein–Gordon equations with an inverse square
potential in three space dimensions

φtt − �φ + φ + a|x|−2φ = |φ|p−1φ, t ≥ 0, x ∈ R3, (1.1)

which is a representative of the class of equations of interest [17]. Here φ = φ(t, x) is
an unknown complex-valued function of (t, x) ∈ R+ × R3, � is the Laplace operator
on R3, a > 0 and 3 < p < 5.

When a = 0, equation (1.1) is a classical non-linear model in field theory and there
are many works on the study of it [1, 2, 9, 10, 13, 16, 21, 22, 24]. From the viewpoint
of Physics, the following problems are very important: (i) Under what conditions, will
the solutions of equation (1.1) become unstable to collapse (blowup)? (ii) Under what
conditions, will the solutions of equation (1.1) exist for all time (global existence)?
Especially the sharp criteria for blowup and global existence is pursued strongly.

Meanwhile, as a class of non-linear Klein–Gordon equations with an inverse
square potential, the study of equation (1.1) has its special significance [17]. In the
theory of non-linear waves, the sharp criteria for blowup and global existence is also
very interesting and extensively open [3, 11, 19], especially to the equation with a
real-valued potential. Moreover, it is also important to investigate the sufficient and
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necessary condition of blowup for solution to the Cauchy problem of equation (1.1)
from a mathematical viewpoint.

In this paper, by introducing a cross-constrained variational method, we study the
sharp threshold of global existence and blowup for (1.1) with Cauchy data,

φ(0, x) = φ0(x), φt(0, x) = φ1(x), x ∈ R3. (1.2)

The approach used in this paper is motivated by the context of study of a class
of non-linear Schrödinger equations and non-linear wave equations [2, 8, 9, 14, 15,
18, 19, 23]. In [24], the sharp criterion for blowup and global existence of the solution
to the non-linear Klein–Gordon equation without any potential was got. For the
non-linear Klein–Gordon equation with a non-negative potential, Gan and Zhang [5]
obtained a sharp threshold of blowup and global existence for its solution by using
the method proposed in [24]. For the study of the non-linear Schrödinger equation
with a harmonic potential, Zhang [25] derived a sharp threshold of blowup and global
existence for its solution by introducing a type of cross-constrained variational method.
Own to the natural relation between the Klein–Gordon equation and the Schrödinger
equation, it is interesting to apply the method given in [25] to obtain a sharp threshold
of blowup and global existence for the non-linear Klein–Gordon equation with a
potential. Unfortunately, as far as our knowledge is concerned, the method in [25]
cannot apply to the Klein–Gordon equation with a general potential except the inverse
square potential |x|−2. In this paper, we mainly clarify the idea that how to utilize the
method to study (1.1), and thus obtain a sharp threshold of blowup and global existence
for the solution to (1.1) in three space dimensions.

It should be pointed out that the optimal range on p is 7
3 ≤ p < 5 for the sharp

threshold of blowup and global existence of the solution to the non-linear Schrödinger
equation with a potential, and in this paper we can only discuss the range p ∈ (3, 5).
For p ∈ [ 7

3 , 3], whether the similar result to this paper holds or not remains open. But
to our knowledge, this is the first result in this direction for the Klein–Gordon equation
with a potential by using the cross-constrained variational method, which seems new
even for the non-linear Klein–Gordon equation without a potential.

For simplicity, throughout the paper we denote
∫

R3 · dx by
∫ · dx and we denote

by c a universal positive constant which depends only on a and p.

2. Preliminaries. In this paper, as in refs. [6, 7], we do not study the local well-
posedness of the Cauchy problem (1.1), (1.2).

For equation (1.1), we define the energy space in the course of nature as

H :=
{
ϕ ∈ H1(R3);

∫
|x|−2|ϕ|2 dx < ∞

}
. (2.1)

By the definition of H, H becomes a Hilbert space, continuously embedded in H1(R3),
when endowed with the inner product

(ϕ, φ)H :=
∫

[∇ϕ∇φ̄ + ϕφ̄ + a|x|−2ϕφ̄] dx, (2.2)
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whose associated norm we denote by ‖ · ‖H . Moreover, we define the energy functional
in H as follows:

E(φ) := 1
2

∫
|φt|2 dx + 1

2

∫
|∇φ|2 dx + 1

2

∫
|φ|2 dx

+ 1
2

a
∫

|x|−2|φ|2 dx − 1
p + 1

∫
|φ|p+1 dx. (2.3)

From the view-point of Hamiltonian systems, E is the generating Hamiltonian of
equation (1.1). For ∀t ∈ [0, T), φ(t, x) satisfies conservation of energy,

E(φ) = E(φ0). (2.4)

Furthermore, from the conservation law (2.4), the Gagliardo–Nirenberg inequality
and the Sobolev inequality, for global existence of the Cauchy problem (1.1), (1.2), we
have

PROPOSITION 2.1. Let (φ0, φ1) ∈ H × L2(R3). Then for 3 < p < 5, when ‖φ0‖H +
‖φ1‖L2(R3) is sufficiently small, the Cauchy problem (1.1), (1.2) has a unique bounded
global solution.

Moreover, by a direct calculation we have

PROPOSITION 2.2. Let (φ0, φ1) ∈ H × L2(R3) and φ be a solution of the Cauchy
problem (1.1), (1.2) on [0, T). We put

F(t) =
∫

|φ|2 dx. (2.5)

Then one has

F ′(t) =
∫

(φtφ̄ + φφ̄t) dx = 2Re
∫

φtφ̄ dx, (2.6)

and

F ′′(t) = 2
∫

|φt|2 dx − 2
∫

|∇φ|2 dx − 2
∫

|φ|2 dx

− 2a
∫

|x|−2|φ|2 dx + 2
∫

|φ|p+1 dx

= (p + 3)
∫

|φt|2 dx + (p − 1)
∫

(|∇φ|2 + |φ|2 + a|x|−2|φ|2) dx

− 2(p + 1)E. (2.7)

Thus one has

PROPOSITION 2.3. Let (φ0, φ1) ∈ H × L2(R3). For 1 ≤ p < 5, when E(0) < 0, the
solution φ(t, x) of the Cauchy problem (1.1), (1.2) blows up in a finite time.

https://doi.org/10.1017/S0017089508004345 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004345


470 ZAIHUI GAN AND JIAN ZHANG

3. The cross-constrained variational problem and invariant manifolds. For u ∈ H
and 3 < p < 5, we define the following functionals and manifolds:

J(u) := 1
2

∫
|∇u|2 dx + a

2

∫
|x|−2|u|2 dx + 1

2

∫
|u|2 dx − 1

p + 1

∫
|u|p+1 dx, (3.1)

K(u) := 1
2

∫
|∇u|2 dx + a

2

∫
|x|−2|u|2 dx + 3

2

∫
|u|2 dx − 3

p + 1

∫
|u|p+1 dx, (3.2)

I(u) := 1
2

∫
|∇u|2 dx + a

2

∫
|x|−2|u|2 dx − 1

2

∫
|u|2 dx − p − 2

p + 1

∫
|u|p+1 dx, (3.3)

H(u) :=
∫

|∇u|2 dx + a
∫

|x|−2|u|2 dx +
∫

|u|2 dx −
∫

|u|p+1 dx, (3.4)

B := {u ∈ H\{0}, K(u) = 0}, (3.5)

M := {u ∈ H\{0}, K(u) < 0, I(u) = 0}. (3.6)

Thus, we define two constrained variational problems:

dB := inf
B

J(u), (3.7)

dM := inf
M

J(u). (3.8)

From (3.7), we have the result.

LEMMA 3.1. dB > 0 provided 3 < p < 5.

Proof. From (3.1), (3.2), (3.5) and (3.7), one has

J(u) = 1
3

∫
|∇u|2 dx + 1

3
a
∫

|x|−2|u|2 dx = 2
p + 1

∫
|u|p+1 dx −

∫
|u|2 dx, (3.9)

that is, J(u) > 0 on B. Thus by (3.7), we get dB ≥ 0. Here, we prove dB �= 0 by
contradiction. If dB = 0, then from (3.7), there would be a sequence un ⊂ B such
that K(un) = 0 and J(un) → 0 as n → ∞. So (3.9) implies that as n → ∞,

1
3

∫
|∇un|2 dx + 1

3
a
∫

|x|−2|un|2 dx → 0, (3.10)

and

2
p + 1

∫
|un|p+1 dx −

∫
|un|2 dx → 0. (3.11)

That is, as n → ∞, ∫
|x|−2|un|2 dx → 0 and

∫
|∇un|2 dx → 0. (3.12)

From the Gagliado–Nirenberg inequality

‖v‖p+1
Lp+1(RN ) ≤ c‖∇v‖

3
2 (p−1)
L2(RN )‖v‖p+1− 3

2 (p−1)
L2(RN ) , v ∈ H1(RN),
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for un we have

1
3

∫
|∇un|2 dx + 1

3
a
∫

|x|−2|un|2 dx

= 2
p + 1

∫
|un|p+1 dx −

∫
|un|2 dx

≤ 2
p + 1

c‖∇un‖
3
2 (p−1)
L2(R3) ‖un‖p+1− 3

2 (p−1)
L2(R3) −

∫
|un|2 dx

< c2‖∇un‖
3
2 (p−1)
L2(R3) ‖un‖p+1− 3

2 (p−1)
L2(R3) −

∫
|un|2 dx,

where c2 > 1
p + 1 c. Thus from (3.10)–(3.12), it follows that as n → ∞, 0 < − ∫ |un|2 dx.

This is impossible. Since we have showed dB �= 0, we get dB > 0 for 3 < p < 5. �

Moreover, we give the following lemmas.

LEMMA 3.2. There exists u ∈ H\{0} such that K(u) = 0 and I(u) = 0.

Proof. According to [4, 12, 15, 20], there exists u ∈ H\{0} such that u is a solution
of the following elliptic equation:

−�u + u + a|x|−2u − |u|p−1u = 0. (3.13)

Thus H(u) = 0. From (3.13), we have

1
2

∫
|∇u|2 dx + a

2

∫
|x|−2|u|2 dx + 3

2

∫
|u|2 dx − 3

p + 1

∫
|u|p+1 dx = 0,

which is obtained from multiplying (3.13) by x · ∇u and then integrating, that is,
K(u) = 0. Thus I(u) = 0 from H(u) = K(u) + I(u). �

LEMMA 3.3. M is not empty provided 3 < p < 5.

Proof. From Lemma 3.2, there exists u ∈ H\{0} such that both K(u) = 0 and
I(u) = 0. For arbitrary β > 1, put u∗(x) = u(x/β). Then u∗ ∈ H. From (3.2) and (3.3)
it follows that

K(u∗) = 1
2

∫
|∇u∗|2 dx + a

2

∫
|x|−2|u∗|2 dx + 3

2

∫
|u∗|2 dx − 3

p + 1

∫
|u∗|p+1 dx

= β

2

∫
(|∇u|2 + a|x|−2|u|2) dx + 3β3

2

∫
|u|2 dx − 3β3

p + 1

∫
|u|p+1 dx

< 0,

I(u∗) = β

2

∫
(|∇u|2 + a|x|−2|u|2) dx − β3

2

∫
|u|2 dx − p − 2

p + 1
β3

∫
|u|p+1 dx

< 0.
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Now we let u∗
λ = λ

2
p−1 u∗(λx), λ > 1. Put α = 5 − p

p − 1 , γ = 7 − 3p
p − 1 , it follows from 3 < p < 5

that α > 0, γ < 0 and α = γ + 2. Then

K(u∗
λ) = 1

2
λα

∫
|∇u∗|2 dx + a

2
λα

∫
|x|−2|u∗|2 dx

+ 3
2
λγ

∫
|u∗|2 dx − 3

p + 1
λα

∫
|u∗|p+1 dx, (3.14)

I(u∗
λ) = 1

2
λα

∫
|∇u∗|2 dx + a

2
λα

∫
|x|−2|u∗|2 dx

− 1
2
λγ

∫
|u∗|2 dx − p − 2

p + 1
λα

∫
|u∗|p+1 dx. (3.15)

Thus I(u∗) < 0 implies that there exists λ∗ > 1 such that I(u∗
λ∗ ) = 0.

On the other hand, from λ∗ > 1, K(u∗) < 0 and (3.14), we still have K(u∗
λ∗ ) < 0.

So u∗
λ∗ ∈ M. This proves M is not empty provided 3 < p < 5. �

LEMMA 3.4. dM > 0 provided 3 < p < 5.

Proof. Let u ∈ M. By K(u) < 0, we have u �= 0. From I(u) = 0, we have

J(u) = p − 3
2(p − 2)

∫
|∇u|2 dx + p − 3

2(p − 2)
a
∫

|x|−2|u|2 dx + p − 1
2(p − 2)

∫
|u|2 dx.

(3.16)
Since 3 < p < 5, (3.16) and u �= 0 imply that J(u) > 0 for all u ∈ M. Thus, from (3.8),
we get dM ≥ 0. By 3 < p < 5, it follows from the Sobolev embedding inequality that

∫
|u|p+1 dx ≤ c

(∫
|∇u|2 dx +

∫
|u|2 dx

) p+1
2

. (3.17)

From K(u) < 0 it follows that

1
2

∫
|∇u|2 dx + a

2

∫
|x|−2|u|2 dx + 3

2

∫
|u|2 dx

<
3

p + 1

∫
|u|p+1 dx

≤ c
(∫

|∇u|2 dx +
∫

|u|2 dx + a
∫

|x|−2|u|2 dx
) p+1

2

,

that is,

(∫
|∇u|2 dx +

∫
|u|2 dx + a

∫
|x|−2|u|2 dx

) p−1
2

≥ 1
c

> 0. (3.18)

Since 3 < p < 5, (3.16) and (3.18) yield

J(u) ≥ c > 0, for all u ∈ M.

Thus (3.8) implies that dM > 0 for 3 < p < 5. �
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Now we define

d := min{dM, dB}. (3.19)

By Lemmas 3.1 and 3.4, the following conclusion is true.

PROPOSITION 3.1. d > 0 when 3 < p < 5.

Now we further define

R := {u ∈ H, J(u) < d, K(u) < 0, I(u) < 0}. (3.20)

Then one has

LEMMA 3.5. R is not empty provided 3 < p < 5.

Proof. By Lemma 3.2, there exists u ∈ H\{0} such that both K(u) = 0 and I(u) = 0.
Let uλ(x) = λu(x), it follows from (3.1), (3.2) and (3.3) that

K(uλ) = 1
2

∫
|∇uλ|2 dx + 1

2

∫
|x|−2|uλ|2 dx + 3

2

∫
|uλ|2 dx − 3

p + 1

∫
|uλ|p+1 dx

= 1
2
λ2

∫
|∇u|2 dx + 1

2
λ2

∫
|x|−2|u|2 dx

+ 3
2
λ2

∫
|u|2 dx − 3

p + 1
λp+1

∫
|u|p+1 dx,

I(uλ) = 1
2

∫
|∇uλ|2 dx + 1

2

∫
|x|−2|uλ|2 dx − 1

2

∫
|uλ|2 dx − p − 2

p + 1

∫
|uλ|p+1 dx

= 1
2
λ2

∫
|∇u|2 dx + 1

2
λ2

∫
|x|−2|u|2 dx

− 1
2
λ2

∫
|u|2 dx − p − 2

p + 1
λp+1

∫
|u|p+1 dx,

J(uλ) = 1
2

∫
|∇uλ|2 dx + 1

2

∫
|x|−2|uλ|2 dx + 1

2

∫
|uλ|2 dx − 1

p + 1

∫
|uλ|p+1 dx

= 1
2
λ2

∫
|∇u|2 dx + 1

2
λ2

∫
|x|−2|u|2 dx

+ 1
2
λ2

∫
|u|2 dx − 1

p + 1
λp+1

∫
|u|p+1 dx.

Since d > 0, from (3.1), (3.2) and (3.3), for λ > 1 large enough, we can get K(uλ) < 0,
I(uλ) < 0 and J(uλ) < d. Thus uλ(x) = λu(x) ∈ R and R is not empty. �

Moreover, we have the following theorem.

PROPOSITION 3.2. If 3 < p < 5 and E(0) < d, then R is an invariant manifold of (1.1)
and (1.2). More precisely, from φ0 ∈ R, it follows that the solution φ(t, x) of the Cauchy
problem (1.1), (1.2) satisfies φ(t, x) ∈ R for any t ∈ [0, T).
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Proof. Let φ0 ∈ R. From (2.4), we have

J(φ) < E(t) = E(0) < d.

Now we show that K(φ) < 0 for t ∈ [0, T). Otherwise, from continuity, there would
be a t0 ∈ (0, T) such that K(φ(t0, .)) = 0 and φ(t0, .) �= 0. From (3.7) and (3.19), it
follows that J(φ(t0, .)) ≥ dB ≥ d. This is contradictory with J(φ(t)) < d for t ∈ [0, T).
Therefore for all t ∈ [0, T), K(φ(t, .)) < 0.

At last, we show I(φ(t, .)) < 0 for t ∈ [0, T). Otherwise, from continuity, there
would be a t1 ∈ (0, T) such that I(φ(t1, .)) = 0. Because we have showed K(φ(t1, .)) < 0,
it follows that φ(t1, .) ∈ M. Thus (3.8) and (3.19) imply that J(φ(t1, .)) ≥ dM ≥ d. This is
contradictory with J(φ(t1)) < d for t ∈ [0, T). Therefore I(φ(t, .)) < 0 for all t ∈ [0, T).

So φ(t, .) ∈ R for any t ∈ [0, T). Thus we complete the proof of Proposi-
tion 3.2. �

By the same argument in Proposition 3.2, we get

PROPOSITION 3.3. Let 3 < p < 5 and E(0) < d. Define

R+ := {u ∈ H, J(u) < d, K(u) < 0, I(u) > 0},
K− := {u ∈ H, J(u) < d, K(u) < 0},
K+ := {u ∈ H, J(u) < d, K(u) > 0}.

Then R+, K− and K+ are all invariant manifolds of (1.1) and (1.2).

In the course of nature, we call R and R+ cross-invariant manifolds of (1.1) and
(1.2).

By the definitions of R, R+ and K+ as well as by (3.7), (3.8) and (3.19), we can get
the following result:

PROPOSITION 3.4. Let 3 < p < 5 and E(0) < d. Then

{u ∈ H\{0}, J(u) < d} = R
⋃

R+
⋃

K+.

4. Sharp threshold for blowup and global existence. In this section, we first
establish a sharp sufficient condition of blowup and global existence. Next, by using
the former result, we obtain a sufficient and necessary condition of blowup and a small
data criterion for the solution to the Cauchy problem (1.1), (1.2). Firstly, we have

THEOREM 4.1. Let 3 < p < 5. Assume that (φ0, φ1) ∈ H × L2(R3) and E(0) < d.

Then if φ0 ∈ R, the solution φ(t, x) of the Cauchy problem (1.1), (1.2) blows up in finite
time.

Proof. From φ0 ∈ R, Proposition 3.2 implies that φ(t, x) ∈ R for t ∈ [0, T). Put

F(t) =
∫

|φ(t, x)|2 dx. (4.1)

Proposition 2.2 implies that

F ′′(t) = 2
∫

|φt|2 dx − 2K(φ) − 2I(φ). (4.2)
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By (4.2) and φ ∈ R, F(t) is a convex function of t. On the other hand, from (2.3) and
(2.4), one has

F ′′(t) = (p + 3)
∫

|φt|2 dx

+ (p − 1)
∫

[|∇φ|2 + (1 + a|x|−2)|φ|2] dx − 2(p + 1)E(0). (4.3)

It follows that if there exists a time t1 such that F ′(t)|t=t1 > 0, then F(t) is increasing
for all t > t1 (within the interval of existence). In that case, the quantity

(p − 1)
∫

(1 + a|x|−2)|φ|2 dx − 2(p + 1)E(0)

≥ (p − 1)
∫

|φ|2 dx − 2(p + 1)E(0)

= (p − 1)F(t) − 2(p + 1)E(0)

will eventually become positive, and will remain positive thereafter. Thus for t large
enough from (4.3) and J(φ) < d(φ ∈ R), we would have

F ′′(t) ≥ (p + 3)
∫

|φt|2 dx. (4.4)

In view of (2.5), (2.6) and (4.4), using the Hölder’s inequality, one has

F(t)F ′′(t) ≥ (p + 3)
∫

|φt|2 dx ·
∫

|φ|2 dx

= (p + 3)
∫

|φt|2 dx ·
∫

|φ̄|2 dx

≥ (p + 3)
(∫

|φtφ̄|dx
)2

≥ (p + 3)
(

Re
∫

φtφ̄ dx
)2

= (p + 3)
(∫

1
2

(φtφ̄ + φ̄tφ) dx
)2

= (p + 3)
(

1
2

d
dt

∫
|φ|2 dx

)2

= p + 3
4

(F ′(t))2. (4.5)

Since

[
F− p−1

4 (t)
]′′

= −p − 1
4

F− p+1
4 (t)

[
F(t)F ′′(t) − p + 3

4
(F ′(t))2

]
,

we see that [
F− p−1

4 (t)
]′′

≤ 0.
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Therefore F− p−1
4 (t) is concave for sufficiently large t, and there exists a finite time T∗

such that

lim
t→T∗ F− p−1

4 (t) = 0.

In other words,

lim
t→T∗ F(t) = ∞.

Thus one has T < ∞ and limt→T− ‖φ‖H = ∞.
The proof of Theorem 4.1 will be complete once we show that for some t1,

F ′(t)|t=t1 > 0. We prove it by contradiction. Suppose that for all t,

F ′(t) ≤ 0. (4.6)

Then since F(t) > 0 and is convex, F(t) must tend to a finite, non-negative limit A as
t → ∞. By Proposition 3.2, we assert that A > 0. Therefore one has, as t → ∞,

F(t) → A > 0, F ′(t) → 0, F ′′(t) → 0.

Thus from (4.2), we get

lim
t→∞

∫
|φt|2 dx = 0, (4.7)

and

K(φ) → 0 and I(φ) → 0 as t → ∞. (4.8)

Now for any fixed t > 0, let φλ = φ(x/λ). Because K(φ) < 0 and I(φ) < 0, we have

K(φλ) = 1
2
λ

∫
|∇φ|2 dx + a

2
λ

∫
|x|−2|φ|2 dx

+ 3
2
λ3

∫
|φ|2 dx − 3

p + 1
λ3

∫
|φ|p+1 dx, (4.9)

I(φλ) = 1
2
λ

∫
|∇φ|2 dx + a

2
λ

∫
|x|−2|φ|2 dx

− 1
2
λ3

∫
|φ|2 dx − p − 2

p + 1
λ3

∫
|φ|p+1 dx. (4.10)

Since I(φ) < 0, it yields that there exists λ∗ ∈ [0, 1) such that I(φλ∗) = 0, and when
λ ∈ (λ∗, 1), I(φλ) < 0. For λ ∈ [λ∗, 1], since K(φ) < 0, K(φλ) has the following two
possibilities:

(i) K(φλ) < 0 for λ ∈ (λ∗, 1].
(ii) There exists μ ∈ [λ∗, 1) such that K(φμ) = 0.

For case (i), we have I(φλ∗ ) = 0 and K(φλ∗) < 0. From (3.8) and (3.19), it follows that

J(φλ∗ ) ≥ dM ≥ d.
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Moreover, from K(φλ∗) < 0, we have

J(φ) − J(φλ∗ ) = 1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx

− 1
p + 1

∫
|φ|p+1 dx − 1

2
λ∗

∫
|∇φ|2 dx − a

2
λ∗

∫
|x|−2|φ|2 dx

− 1
2
λ∗3

∫
|φ|2 dx + 1

p + 1
λ∗3

∫
|φ|p+1 dx

≥ 1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx

− 1
p + 1

∫
|φ|p+1 dx − 1

2
λ∗

∫
|∇φ|2 dx − a

2
λ∗

∫
|x|−2|φ|2 dx

= − 1
2
λ∗3

∫
|φ|2 dx + 1

6
λ∗

∫
|∇φ|2 dx + a

6
λ∗

∫
|x|−2|φ|2 dx

+ 1
2
λ∗3

∫
|φ|2 dx

= 1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx

− 1
p + 1

∫
|φ|p+1 dx − 1

3
λ∗

∫
|∇φ|2 dx − a

3
λ∗

∫
|x|−2|φ|2 dx

≥ 1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx

− 1
p + 1

∫
|φ|p+1 dx − 1

3

∫
|∇φ|2 dx − a

3

∫
|x|−2|φ|2 dx

= 1
6

∫
|∇φ|2 dx + a

6

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx − 1

p + 1

∫
|φ|p+1 dx

= 1
3

K(φ). (4.11)

For case (ii), we have J(φμ) ≥ dB ≥ d. Referring to (4.11) and

I(φ) − I(φλ∗) = 1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx − 1

2

∫
|φ|2 dx

− p − 2
p + 1

∫
|φ|p+1 dx − 1

2
λ∗

∫
|∇φ|2 dx − a

2
λ∗

∫
|x|−2|φ|2 dx

+ 1
2
λ∗3

∫
|φ|2 dx + p − 2

p + 1
λ∗3

∫
|φ|p+1 dx, (4.12)

we have

J(φ) − J(φμ) ≥ 1
3

K(φ). (4.13)

Since J(φλ∗) ≥ d, J(φμ) ≥ d, from (4.11) and (4.13), we have

K(φ) < J(φ) < E(0) < d. (4.14)
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From (4.8), (4.11), (4.13), (3.7) and (3.19), we have

J(φ) ≥ J(φμ) ≥ d as t → ∞. (4.15)

This is impossible from Proposition 3.2. So the supposition (4.6) is false. That is, there
exists a t1 such that F ′(t)|t=t1 > 0.

Thus we complete the proof of Theorem 4.1. �
THEOREM 4.2. Let 3 < p < 5 and E(0) < d. If φ0 ∈ K+

⋃
R+, then the solution

φ(t, x) of the Cauchy problems (1.1) and (1.2) exists globally in t ∈ [0,∞).

Proof. We prove this theorem through two steps.
Step 1. Let φ0(x) ∈ K+. From Proposition 3.3, it follows that φ(t, x) ∈ K+ for

t ∈ [0, T). Thus for fixed t ∈ [0, T), J(φ) < d and K(φ) > 0, which imply that φ �= 0
and

1
3

∫
|∇φ|2 dx + 1

3

∫
|x|−2|φ|2 dx < J(φ) < d. (4.16)

Let φλ(x) = λφ(x), K(φ) > 0 implies that there exists a λ∗ > 1 such that

K(φλ∗) = 1
2

∫
|∇φλ∗ |2 dx + a

2

∫
|x|−2|φλ∗ |2 dx

+ 3
2

∫
|φλ∗ |2 dx − 3

p + 1

∫
|φλ∗ |p+1 dx

= 1
2
λ∗2

∫
|∇φ|2 dx + a

2
λ∗2

∫
|x|−2|φ|2 dx

+3
2
λ∗2

∫
|φ|2 dx − 3

p + 1
λ∗p+1

∫
|φ|p+1 dx

= 0, (4.17)

and

J(φλ∗) = 1
3
λ∗2

∫
|∇φ|2 dx + a

3
λ∗2

∫
|x|−2|φ|2 dx. (4.18)

By (4.17) and (4.18), we get φλ∗ ∈ N and

J(φλ∗) ≥ dN ≥ d > J(φ). (4.19)

Thus J(φ) − J(φλ∗) < 0, that is,

1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx − 1

p + 1

∫
|φ|p+1 dx

−1
3
λ∗2

∫
|∇φ|2 dx − a

3
λ∗2

∫
|x|−2|φ|2 dx < 0, (4.20)

so

1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx − 1

p + 1

∫
|φ|p+1 dx

−1
2
λ∗2

∫
|∇φ|2 dx − a

2
λ∗2

∫
|x|−2|φ|2 dx < 0. (4.21)
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From (4.17), it follows that

1
2

∫
|∇φ|2 dx + a

2

∫
|x|−2|φ|2 dx + 1

2

∫
|φ|2 dx

− 1

6λ∗p−1

∫
|x|−2|φ|2 dx − 1

2λ∗p−1

∫
|φ|2 dx. (4.22)

By (4.21) and (4.22), we get

− 1
p + 1

∫
|φ|p+1 dx = − 1

6λ∗p−1

∫
|∇φ|2 dx

− 1

6λ∗p−1

∫
|∇φ|2 dx − a

6λ∗p−1

∫
|x|−2|φ|2 dx

− 1

2λ∗p−1

∫
|φ|2 dx − 1

2
λ∗2

∫
|∇φ|2 dx − a

2
λ∗2

∫
|x|−2|φ|2 dx

< 0,

that is, (
1
2

− 1

2λ∗p−1

) ∫
|φ|2 dx

<

(
1

6λ∗p−1 + 1
2
λ∗2 − 1

2

)(∫
|∇φ|2 dx + a

∫
|x|−2|φ|2 dx

)
. (4.23)

Since λ∗ > 1 and 3 < p < 5, (4.16) and (4.23) imply that∫
|∇φ|2 dx + a

∫
|x|−2|φ|2 dx +

∫
|φ|2 dx < C.

It implies that ‖φ‖H is bounded. So it must be T = ∞. Therefore, the solution φ(t, x)
of the Cauchy problem (1.1), (1.2) globally exists in t ∈ [0,∞).

Step 2. Let φ0 ∈ R+. From Proposition 3.3, it follows that the solution φ(t, x)
of the Cauchy problem (1.1), (1.2) satisfies φ(t, x) ∈ R+ for t ∈ [0, T). Thus for fixed
t ∈ [0, T), we have J(φ) < d, I(φ) > 0 and K(φ) < 0. From J(φ) < d and I(φ) > 0, it
follows that(

1
2

− 1
2(p − 2)

)∫
|∇φ|2 dx +

(
1
2

− 1
2(p − 2)

)
a
∫

|x|−2|φ|2 dx

+
(

1
2

+ 1
2(p − 2)

) ∫
|φ|2 dx < d,

which implies that φ(t, x) is bounded in H. So it must be T = ∞. Thus the solution
φ(t, x) of the Cauchy problem (1.1), (1.2) exists globally in t ∈ [0,∞).

From Steps 1 and 2, we complete the proof of Theorem 4.2. �
By Proposition 3.4, Theorems 4.1 and 4.2, we get a necessary and sufficient

condition of blowup for the solution to (1.1) and (1.2).

THEOREM 4.3. Let 3 < p < 5 and E(0) < d. Then the solution φ(t, x) of the Cauchy
problem (1.1), (1.2) blows up in finite time if and only if φ0 ∈ R.
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By Proposition 3.2, we also get another sufficient condition of global existence for
the solution to (1.1) and (1.2).

COROLLARY 4.1 (small data criterion). If (φ0, φ1) ∈ H × L2(R3) and satisfies

‖φ0‖2
H + ‖φ1‖2

L2(R3) < d, (4.24)

then the solution φ(t, x) of the Cauchy problem (1.1), (1.2) exists globally in t ∈ [0,∞).

Proof. From (4.24) we have J(φ0) < d and E(0) < d. Moreover we claim that
K(φ0) > 0. Otherwise, there would be a λ with 0 < λ ≤ 1 such that K(λφ0) = 0. Thus
J(λφ0) ≥ d. On the other hand, from (4.24),

‖λφ0‖2
H + ‖φ1‖2

L2(R3) = λ2‖φ0‖2
H + ‖φ1‖2

L2(R3) < d.

It follows that J(λφ0) < d, which is contradictory with J(λφ0) ≥ d. Therefore, we have
φ0 ∈ K+. Thus Proposition 3.3 and Theorem 4.2 imply this corollary. �
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