Canad. Math. Bull. Vol. 16 (2), 1973.

ON CHARACTERIZATIONS OF CONDITIONAL EXPECTATION

BY

A. N. AL-HUSSAINI(¹)

In the following (Ω, α, μ) is a totally σ -finite measure space except where noted. For a sub- σ -algebra $\beta \subset \alpha$, the conditional expectation $E\{f \mid \beta\}$ of f given β is a function measurable relative to β , such that

$$\int_{B} E\{f \mid \beta\} d\mu = \int_{B} f d\mu, \text{ all } B \in \beta.$$

In [5] R. G. Douglas proved, among other things the following, in the finite case:

THEOREM 1. Suppose $\mu(\Omega)=1$. Then a linear operator T on $L_1(\Omega, \alpha, \mu)$ is a conditional expection if and only if

 $(1.1) ||T|| \le 1$

$$(1.2) T^2 = T$$

(1.3)
$$T1 = 1.$$

The point of this note is to characterize conditional expectation in the σ -finite case (Theorems 2, 3).

As will be shown below we reduce Theorem 2 to Theorem 1. However to prove Theorem 3 we make use of the identification of the limit of the Chacon-Ornstein ergodic theorem ([1], [2], [4], [6]). Finally we prove Theorem 1 as a Corollary to Theorem 3.

THEOREM 2. A linear operator T on $L_1(\Omega, \alpha, \mu)$ is a conditional expectation relative to some σ -finite sub- σ -algebra $\beta \subset \alpha$ if and only if,

 $(2.1) ||T|| \le 1$

(2.2)
$$T^2 = T$$

- (2.3) $T \ge 0$ i.e. $Tf \ge 0$ if $f \ge 0$
- (2.4) There is $g \in L_1(\Omega, \alpha, \mu)$ such that Tg > 0 almost everywhere and $T(Tg \cdot Tg) = Tg \cdot Tg$.

Received by the editors May 18, 1971 and, in revised form, September 23, 1971. (¹) Supported by National Research Council Grant A-7253.

THEOREM 3. A linear operator T on $L_1(\Omega, \alpha, \mu)$ is a conditional expectation relative to some σ -finite sub- σ -algebra $\beta \subset \alpha$ if and only if:

(3.1) $||T|| \leq 1$ (3.2) $T^2 = T$ (3.3) $T \geq 0$ i.e. $Tf \geq 0$ if $f \geq 0$ (3.4) There is $g \in L_1(\Omega, \alpha, \mu)$ such that Tg > 0 almost everywhere and $T^*Tg = Tg$.

Here T^* denotes the adjoint of T i.e.

$$\int Tf \cdot h \ d\mu = \int f \cdot T^*h \ d\mu, \qquad f \in L_1(\Omega, \alpha, \mu), \qquad h \in L_{\infty}(\Omega, \alpha, \mu).$$

We give the if parts of the proofs only. The only if parts are rather trivial.

Proof of Theorem 2. Let $\nu(A) = \int_A Tg \cdot d\mu$. For $f \in L_1(\Omega, \alpha, \nu)$ we define

$$Pf = \frac{T(f \cdot Tg)}{Tg} \, .$$

Clearly

$$||P|| \le 1$$

$$(2) P^2 = P$$

(3)
$$P1 = 1$$

Thus by Theorem 1, there exists β ,

$$Pf = E\{f \mid \beta\} \cdots (.$$

Now let $f \in L_1(\Omega, \alpha, \mu)$, then by substitution $(f/Tg) \in L_1(\Omega, \alpha, \nu)$. Hence

$$P\left(\frac{f}{Tg}\right) = E\left\{\frac{f}{Tg} \middle| \beta\right\} \cdots (\nu)$$

and consequently

$$\frac{Tf}{Tg} = E\left\{\frac{f}{Tg} \mid \beta\right\} \cdots (\nu)$$

But Tg is a β -measurable function by virtue of assumption (2.4) of the hypothesis. Therefore Tf is β -measurable. This together with the above equation, and definition of ν implies

$$Tf = E\{f \mid \beta\} \cdots (\mu).$$

Finally σ -finiteness of β follows from the positivity of Tg.

Proof of Theorem 3. By B([1], [2]), ([4, pp. 26–29] and [6, pp. 194–211]) T is a conservative operator, and satisfies:

$$\lim_{N \to \infty} \frac{\sum_{0}^{N} T^{n} f}{\sum_{0}^{N} T^{n+1} g} = \frac{Tf}{Tg} = \frac{E\{f \mid \beta\}}{E\{Tg \mid \beta\}}$$

Where β is the σ -finite, σ -algebra of sets invariant under T^* . Since Tg is β -measurable by assumption (3.4) of the hypothesis, $Tf = E\{f \mid \beta\}$.

Proof of Theorem 1. Trivially ||T|| = 1, $T^*1 = 1$, and T1 satisfies assumption (3.4) of the hypothesis of Theorem 3. We shall show that $T \ge 0$.

By [3], it is easy to show that there is a linear operator |T| the modulus of T satisfying:

- (a) $||| |T| || \le 1$
- (b) $|Tf| \leq |T| |f| f \in L_1(\Omega, \alpha, \mu)$
- (c) $|T|f(\omega) = \sup_{|g| \le f} |Tg|(\omega)$, where $f \ge 0$,

|T| 1=1 follows from (a) and (c), which together with (b) imply that |T|=T i.e. $T \ge 0$. Theorem 3 completes the proof.

References

1. R. V. Chacon, *Identification of the limit of operator averages*, J. Math. and Mech. (1962), 961–968.

2. R. V. Chacon and D. Ornstein, A general ergodic theorem, Illinois, J. Math. (1960), 153-160.

3. R. V. Chacon and U. Krengel, *Linear modulus of linear operators*, Proc. Amer. Math. Soc. (1964), 553-559.

4. S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand, Princeton, N.J., 1969.

5. R. G. Douglas, Contractive projections on an L₁ space, Pacific J. Math. (1965), 443-462.

6. J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, Calif., 1965.

UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA