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On the Theory of Continued Fractions.

By HARIPADA DATTA, Research Student, Edinburgh University.

(Bead and Received Hth January 1916).

An analytic function is generally given either directly as a
power-series, or at anyrate in some form which can readily be
converted into a power-series. The power-series is not an
altogether satisfactory method of representing the function, on
account of the failure of its convergence outside its circle of
convergence; in this respect it is decidedly inferior to the method
of representing the function by a continued fraction, as this latter
expression in many cases converges over the whole plane, except on
certain curves. But it is not so easy to express the function as a
continued fraction in the first place, and many of the known repre-
sentations of functions as continued fractions are obtained by
indirect artifices. In the present paper it is shown that for a large
class of cases, including many of the important known functions,
the continued-fraction-expression can be obtained directly and
practically from the power series by using a known transformation
which involves determinants, and evaluating these determinants.
By this method a considerable number of known isolated results are
connected together and exhibited as parts of a systematic theory :
and some new results are obtained.

PART I.

In Part I. we shall deal with cases in which a function defined
by a series of the form

^ * i l i 't _i_ j _ n * _i_

x x ar x
is to be converted into a continued fraction of the form

a, a, a, a.
x + bj -t- x + bt
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That this problem reduces in all cases to a problem in deter-
minants was shown first by Heilermann-* ; if the nih convergent to
the continued fraction be denoted by <£„_, (as) //„ (x), we have

where

Jn \X) ~ X j r X + rr X — . . . + ( 1 )

• * " „ + ! = «.„ ()(.„_, (X.^2 . . .

"•n+l

°-ln-l

«-2n-2

and A'n is obtained by deleting the first column and last row of
this determinant, lKn is obtained by deleting the second column
and last row, and so on.

Now the ordinary recurrence-formula between three successive
convergents to a continued fraction gives in this case

/„ (x) = (x + ba) /„_, (x) + <!„/„_, (x).

Equating to zero the coefficient of a;""1 and the constant term in
this equation, we find

and

or

The numerator of the nih convergent may be written

where the y's also can be expressed as determinants.

In what follows we shall transform into continued fractions the
following series by evaluating the determinants which arise in the
application of Heilermann's method. I t will be shown that most

' Journal fur Math. 33 (1845), p. 174.
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of the known representations of analytic functions as continued
fractions are particular cases of the formulae thus derived.

' ' a ~x~+a + d'xr2 + a + 2d~x~3+'"a
1 1 1 1 1 1

1_ L ,

ax a(a + d) x* a(a + d)(a + 2d) x3

D 1 D{D + d) 1 D(D + d)(D + 2d) 1
* ' a a: a(a + d) a? a (a + d) (a + 2d) 3?

o a(a + d) a(a + d)(a-r2d)

1 1 + 1 ±+
n(o, a + (r-l)d) x IL(a + d, a + rd) xl

1 1
~x~3+ ""

(E)

where II (a, a + (r - 1) d) denotes the product of r factors beginning
with the factor a and ending with the factor a + (r- l)d, and the
common difference between two consecutive factors is d.

1 1 1 1 1 1
' ' o + g° ~x + a. + qa+d ~x2 + ~+

M ) ^ + g 1 ( a + g ) ( c + g + ) 1
V ' a + qa x (a. + q*) (<x + 9°+") a?

(L) l

. + q"+"-1)li) x + II (a. + qa+d, a. + q"+"<) 3? +'"

(N) qx + q'x^ + q" x*+ ...+qn* x"+...

The determinants will be denoted according to the titles of the
sections to which they belong, so that An denotes the principal
determinant in case (A).

By the operation p row, + q row, = r row,', we shall imply that
the elements of the «th row multiplied by p, added to the elements
of the tlh row multiplied by q, form the elements of the new sth row,
when a common factor r has been taken out.
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(A).

In case (A) we shall show that the formulae for the elements of
the continued fraction ate

1
a, = —

a

(n-1) {a + (n-2)d} n
a+(2n-3)d (2n-l) d

«»= - {a + (2n - 2) d} {a + (2n - 3) d\"-{a + (2n - 4) d} '

so that
n a + (n - 1) d n_ n(rt- 1)

! a + (2n -Y)d 2 !

n\ {a + (n- 1) d} ... (a + d)a
+ ( ~ ' ^1 {a + (2n-l)rf} ... (a + ntf) '

The proof in this case is straightforward if we make use of a
theorem due to Sir T. Muir,* namely that

1 1 1 1

a a + d
1 1 1

a + d a + 2d a + 3d

1

a + nd

1
a + (n - 1) d a + 2 (n - 1) d

{(n - 1)! d"-1. (n - 2) ! d"~-... 2 ! d2. 1 ! d}-
" 1...{»+ (2w - 2) d)

From this we readily find
lAn n a + (n-l)d

~X%
 = T\ a + (2n-l)d

"A,, _ ? t ! {a + (n~ 1) d} ... (a + d) a
~Tn ~~n\ {a + (2n- 1) d}...(a + nd) '

Messenger of Maths. 3 6 (1906), p. 85.
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Ex. l.—h ~2 ""

— s 2 (2a;)2 (Zxf

Ex. 2.-2, ooth-1 x = \

2̂  1 / 2 y 1 / 2 \>
a;-l 2 \x-\) 3 VK-1/ ""

.?_ _L ^1 ̂ . •
a; —'ix-hx-lx-

Ex, S.-i tanh-' * = log (J±f) = log (l + I^L

2a; _af ( 3 ^ (4K);2

1 - 3 - 7 - 9 -

(B).

In case (B) we shall show that the elements of the continued
fraction are given by the formulae

1

a
1

a + d

d - a

d(n-l){a + (n-
{a + (2n - 4) d}{a + (In - 3) rf}2 {a + (2n -2)d}

l ! a + ( 2 n - l ) d 2! •

... (a + nd)
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Proof :—

We have

a..

a..

a...

.(a + 3d)

1

.(a + 4d)

1
.(a + 5d)

1

a .

a..

a..

1

1

. (a + id)

1

d (d -f- of)

1

1
a...(a + 3d)

1

a

1
a (a + d)

1
a...(a + 2d)

1
3d)

Performing on this determinant the operations

(1) a* row,, - r o w 3 = - row4'

Id row4' - row2 = — row4"

3d row4" - row, = — row4'"

(2) d row3 — row2 = — row3'

2c? row3' — row, = - row3"

(3) d rowj - row, = - row3",

we get

(-1)"

1

1

1

a + 5d

1

1

1
a + 3d

1

1

1
a + d

1
a + 2d

1
a + 3d

1

1
a

1
a + d

1
a + id

1

a + 6d a + 5d a + id a + 3d

The last determinant is At.
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Similarly we get

"l£p!l ( n - l ) ! ( n - 2 ) ! . . . 2 ! 1!

1

n(n-l)
lBn-(-d-*)~

1

(w-1)! (n -2 ) ! . . . 2 ! 1 !
1
))d} {a + (n- 3)d}2...a"

n(n-l)

{a + (n - 2)
"An.

2x_ X* x* x2

This oontinued fraction for the exponential funotion was discovered by
Lagrange. *

(C).
In case (C) the formulae will be shown to be
D

D + d
bl-"^d

i - l )d} n(D + nd)

a + (2n-3)d a + (2n-l)d
d (n _ i ){g + (w - 2) d} {D + (w - 1) d} {D - a - (n - 2) d)

a"= {a + (2n - 2)d} {a + (2« - 3)d}2 {a + (2w - 4) rf}

2 !

a + (2n-2)d)
(D + nd){D + {n-\)d}...(D + d)

"• K ' {a + (2n-l)d} (a + nd) '

* Works of LagraDge, 4, p. 319,
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Proof :—
We have

D...(D + 3d) D...(D + 2d) D(D + d)
a...(a + 3d) a...(a + 2d) a(a + d)

D...(D + id) D...(D + 3d) B D{D + d)
a\a + d)

3d) a...

a...(a + 3d)

Let us perform on this determinant the operations

(1) row4 - row3 =(2)-o)row4'
rows — row2 = (Z> - a) row3'
row2 - row, = (D - a) row2'

(2) row4' - row3' = (£> - a - d) row4"
row3' - row2' = (Z> - a - d) row3"

(3) row4" - row3" = (D - a - 2d) row4'".

Now the determinant
is the same as 7J4.

A"
Dl"

Thus we get

C4 = [D*(D + d)\D + 2d)\D + 3d)](£> - af(D -a- df(D - a

Similarly, we get

Cn = [B"(D + dy~l (D + 2d)"-\..{D + (n-l)d}]
x[(D- a)—1 (D-a- d)"-\..{D -a-{n-2) d}] Bn

'Cn=[D" (D + d)n-1...{D + (n - 2) d}* {D + (n

x^D-a)"-1 {D-a-{n-l)d}]xlBn

«Cn = [D" {D + df (D + 2rf)"-1.. .{D + nd)]
x [(Z> - a)—\..{D -a-(n- 2)d}] x "Bn .
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j V1-8/ X-S

)r(-g) r - 5 l-m - g ( - g + l) / l -m\2

1 L 1 ! *-» 2! W-a:/
/ ;-O T\3 ... ~l
XTTx) + J

4 x 1 x 3 4 x 3 x 5
J_ l-x
2 + l-m

l-m\t

= 1 + Z *

If m= - 1 and l=\

1q
X-q + 3x H

Ex. 3.—{l + xy<i=l+qx + ^-^Z-
£ !

3(a; + 2)

x_ 1.2x8 1.2a;2 3.4a;2 3.4a:8

1 - 3 - 5 - 7 - 9 _ '

3? 2.3a:2 2 .
= a: - 3 - 5 - 7 - 9 - 11 -

* Laguerre, Bull, de la Societi Math, de France, 8 (1879-80).

t Works of Lagrange, 4, p. 318.
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(D).

In case (D) the formulae for the elements of the continued
fraction will be shown to be
a, = 1
i ,= - a

an= -(n- n-2)d}d.

x {a + (n-2)d}xn-2-

Proof :—
We have Dn = {a (a + d) (a + 2d)}{a (a + d)} a

1
a + 3d

1
2d

1
a

i) a(a + d)
(a + 3d)...(a + 5d) (a + 2d)...(a + id) (a + d)...(a + 3d) a...(a + 2d)

On this determinant let us perform the operations :—
(1) row4 -2rfrow3 =row4'

row3 - d row, = row3'
(2) row/ - drow.' = row4".

Hence we get Z>4 = a?(a + df (a + 2d)
1 1 1 1

a + 3d a + 2d a + d a
(a±3df (a + 2df (a + df a2

(a -t 3df (a + 2df (a + d):i a'

This last determinant is a case of Vandermonde's.
Similarly we get

n(n—1)

\ ( « -
(n - 3)d}2{a+(n - 2)d}{a+(n-l)d}

x ( w - l ) ! ( » - 2 ) ! . . . 2 ! 1.
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a 2{a + l) 3(a + 2)
x + a - x + a + 2 - x + a + 4 -

2 2(2x3) 2 (3 x 5) 2(5x7)

Ex. 8.—

" x ' + l - — - * * + 3 - — _ x * + 5 - — _ " •
P P />

Ex.4.— \ ds = ̂ - »_ . d< (where « = « , y = a; )
J x »a /3 J y ^ i £ i

]_ -xP 1-a a + P-1 2(a + 2j8-l)
3 » »
P a+P-1 § o + 3^J-l P a + 5/3-1

X -{ • ~ X -\ ~ X -I

p ft p

r(a) a 2(a
z + o - Z + O + 2 - Z + 0 + 4 - " '

(E).

In case (E) the formulae for the elements of the C.F. will be
shown to be

1

a + (r+2n-i)d a + (r + 2n -2) d

2n-5)d} {a + (r+ 2« - 4)ri}2 {a + (r + 2n - 3)d}

• This is the contracted form of Laplace's C.F.
tStieltjes, contracted form, Ann. Toulouse, 9 (1895).
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r-2)d'
n (n - 1) {a + (n-2)d}

2! {a + (2n + r-2)d} {a + (2n + r-3)d}

... + ( - l)nff7^—/•> "tolrf '/ —

Proof :—
Performing on the determinant Et the operations

(1) row4 - row3 = -re? row/
row3 - row2 = —rdrow/
row2 - rowj = -rdrow/

(2) row/ - row/ = - (r + 1) d row/'
row3' - row./ = - (r + 1) d row/'

(3) row/' - row/' = - (r + 2) rf row/"

(4) - rf row/" + row/' = row/'
- 2rf row/' + row/ = row/
- 3c? row/ + row,

(5) - d row/'+ row/ = row/"

se- - 2 - . . .

(6) d row/ + row,,

we get

Ji 3\2\\\ Il(a,a + (r-2)d)Il(a + d, a + (r - l)d)...Tl (a + 3d, a + (r +

1

+ 2)d a + (r+\)d a + rd
1 1 1

(r-l)d

1
_

+ 3)d a + (r + 2)d a + (r+\)d a + rd
1 1 1 1

1

(r+2)d

1 1

If we put a for a + [r - 1) d in this determinant, it becomes At.
This determinant is to be denoted by At'.
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By a precisely similar process it can be shown that

r - 1 (r + I)"-2 (r + 2)"-°...(r + n - 2)
( n - 1 ) ! ( n - 2 ) ! ( n -3 ) ! . . . 2 !

xTf7 1 TTJ

II (a, a + (r- 2) d),

(n-1)! (n-2)!... 2!

1
' II (o, a + (r - 2) d)...II (a + (n - 2) d, a + (r + w - 4) d) U. (a + nd, a + (r + n - 2) d )

(n-1)! (n-2)!...2!

* U(a + d, a + (r-l)d) ... U(a + nd, a + (r + n-2)d) "A"'

(F).

In case (F) wo shall show that

1
a, =

q*-l a. + q"M-

" qd- 1 t z l i i ^ + "+|i"-1)<i

i—'I-.*
q »- (a.

• / l r

9 Vol. 34
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Proof:—In Ft, subtracting the last row from each of the rows
above it and taking out common factors, and then subtracting the
first column from each of the other columns, we get

- 1) (q" - 1)}° g*«-
(a. + ?«+<*) («. + f+idf (a. + q°+4ay- («. + q'+3df

<x {(g - 1) (g - 1) (q - 1)} g q
4 (a + ?«+<*) (« + f + i d f (a + q°+4ay- (« + q'+3df 3'

In a similar way we get

« * - l c n

a,

(G).

In case (G) we shall show that

1

6- =

(c + q"

qd-l nJ!=}>d «.

(n-g) (n+I>

q—~'

...+(- 1)" (a. + qaM°-"^l)d)...(a. + qnd)
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Proof :—
Performing on the determinant G4 the operations

(1) «. (qd - 1) rowrj + row3 = g'* row/
a. (g2'1 - 1) row/ + row,, = q°u row4"
<x (q™ - 1) row/' + row, = q3* row/" ;

(2) u. (qd - 1) row3 +rowi = qd row3'
a. (q-d - 1) row3' + row, = q^ row3" ;

(3) «. (qa - 1) row2 + row, = qd row/
we get

i qda+w)

q''+'M) oJ'(qd -

<f p
l)°{qdl) 4-

In a similar way we can show that

01. 2

(a. + q11)—1.. .(a.

(H).

In case (H) we shall show that

bn = T—
< * - l qd-\

- 1) (a + 9«+i»-2)") ( a + ?

(a.

q 2

(n-1)n
g -
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Proof :—

Performing on H\ the operations

(1) row4 - r o w , = (q° - q") row4'

- qa row4' + row3 = a. row4"

(2) row3 - row, = (qD - qa) row,'

- q" row,' + row2 = a. row,"

(3) row2 - rowx = (qD - q") rows'

- q" row2' - row, = a. row2"

(4) row4" - row," = (qv - qa+d) row/"

- q*+" row/" + row3" = a. row4
iv

(5) row," - row2" = (qD - ?«+«) row3'"

- qa+d rovrj" + row2" = a. row3
iv

(6) row4" - row3" = (qD - ?«+M) row4
lv

- qa+%t row4
T + row3

iv = a. row4
vl,

we get

Et = (a. + q0)1 («• + qD+d)s (a. + gZ)+M)2 (a + qD+3d)
Ow4

)

(L).

In ease (L) we shall show that the elements of the C.F. are
given by the equations
ax = l

o(..-l)d _ 1

b ( tM"')d)9

-1)i- Y\

-1 ) (? ' - "*-1) (?'"

x (a. + ?»+<n-3>") (a. - ?«+("-2><i) (a. + gr«+(«-»") ? *

. . . + ( - 1)" (a. + q«) ... (a. + g
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Proof :—

Performing on L4 the operations

(1) row4 + a. (qM - 1) row3 = q"ul row4'

row3 + a. (qd - 1) row3 = qa row3'

(2) row4' + a. (qd - 1) row3' = q" ro\v4",

we get Li = (a. + q-y (a. + q"+y (a. + 9«+2") q™( q"y

1 1

(a.

'-!)•

1

(M)..

In case (M) the formulae will be shown to be

1
o , = U(a

fn = x" -

(n-1) »

X—J + - - 1) (g"-"" - 1 )

("-2) (n

? 2

a;"-2-

(a. + qa+d) ... (q.
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Proof :—
First we are to perform on M^ the operations

(1) row4 -row3 = (1 - qrd) row/
- q"* row4' + row3 = a row/'

(2) row3 - row2 = (1 - if) row3'
- qrd row3' + row2 = a row3"

(3) row2 - row, = (1 - qrd) row2'
- q"1 row/ + rowj = a row/'

(4) row/' - row3" = (1 - ?i'
+I"!) row/"

-7(r+1 |< ' row/" + row3" = a row4
iv

(5) row/' - row/' = (1 - qi'+W) row/"
- qir+vd row/" + row/' = a row3

lv

(6) row4
lv - row3" = (1 - g<'+2)*) row4

v

-qW)'1 row4
v +row3

iv = a row/.

In this way we get

multiplied by another determinant of order 4.

If on this determinant we perform the operations
(1) a ( j d - l ) r o w 4 +row3 = qd row/

a (if* - 1) row/ + row2 = q™ row/'
a (g3* - 1) row4" + rowj = q*1 row/"

(2) a(g* - l ) row 3 +row2 = y* row/
o (y2<i - 1) row/ + rowj = q** row/'

(3) a (g*- l ) row, +row! = 5* row/,

we get another determinant which, on putting a for a + (r-l)d,
becomes F4.

(qnl - I)""1

M"=
(tf- l ) - 1 ^ 2 "- l)-2...^"-""- 1)

(n—1)n (n+11(! f (r-|-n—'2) (r+n—1) (r+n|—(r—1) r ( r+ l ) _ (n—1[ r (»•—1) ij

X U(a + q", a + ?
o+"-5)")...Tl(a
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PART II .

In Part I I . we shall consider cases in which a series of the form

is to be converted into a continued fraction of the form

atx «„£• a3x

The reduction of this problem to a problem in determinants is
effected by the formulae

jr n 1 77"

where the K'a are the determinants previously introduced. These
formulae are due to Heilermann, loc. dt., and are closely connected
with the formulae used in Part I.

(A).

Applying these formulae to case (A), we readily find
1

2" {a + (2n-2)d} {a + (2n-l)d}
(ndf

2"+1 ~{a + (2n - 1) d) {a + 2nd) "

Ex. 1.— The aeries
se2 xl a:6

xarotana; = -j 5- + — — ...

gives Lagrange'e continued fraction *

_x_ •*?_ (2a:)2 (3x)2

arc a n a : - - j - + — + g + ^ + . . .

* (Euvres dt Lagrangt, 4, p. 323.
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*.„ 9 f a:""1 „ / 1 1 1 1 1 1
Ex. t.— \ dx=xai + •

Jx 1+x M-a x 2-o 3? 3-a x3

xa (1-a) ' 1» (2-a)2 2"

~ (l~a)x+ 2 - o + (3-a)x+ 4 - a + (5-o)x +
(a < 1.)

V ? f°° iC'1"1 ^ a 1/ * »a «* x*x. 3.— dx = xa~1l h + •
Jo 1+x Vo a+l+a+2 a+3*

_ xa <&x I2* (a + lfx
~ a + a+1 + o + 2 + a + 3 +

(where a is not negative.)

* cia; ,

L ^ ^ (l+il2 W £ (2r+l)8»r

2r+l + 3r+l + 4r+l + 5r+l +•

(B).
Here

{a + (2n-2)d}

nd
"+1 {a + (2n-l)d} {a + 2nd}'

Log a x log a x log a x log a x log a x log a

(C).
Here

(n-\)d

{D-a-(n-\)d}nd
flts"+1 ~ {a + (2n - 1) d} (a + 2nd) '

Works of Lagrange, 4. p. 322.
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p» («-s)fl(S-m)8 (
Jl x-«Jl

£
2) Vj-a; / + J

{n + q)n
2n+1

. r(o) pi'-'g-i)1"^1 x» i)(
T(D)T(a-D)JQ 1-xt a o(

Dx (X> + l)oa; \.(a-D)x (D + 2) (a+\)x
~ a - o+l - a + 2 - a + 3

(a + l)
+\)x

3
2(a+l-D)x

o + 4 - a + 5
Ex. S.—For the series

{D + (r-l)d}(D + rd) .
{a+{p-l)d}{a+pd)

{a- D + (p~r + n-l)d}nd

II (a ,o+p-2) dx dx...\ dx xa-l4x\ 1 ( 1 ~ t ) '
Jo Jo Jo Jo Jo 1 -a*

~o+p-1- o+p - a+p+l - a+p+2
The number of signs of integration is p +1.

(E).
Here

{a + (2w +r - \)d}

Ex. 1.— n(o, a + r-2) dx ... dx dx
Jo J o J o l - *

-l)x l.rx (o + l)(a + r)a; 2(r+l)x
~ajrr-\- a + r - o + r + 1- a + r + 2 - o + r + 3

The number of signs of integration is r.
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rx rx rx
Ex.g.—[r-l)\ dx ... dx - log(I -*) da;

Jo Jo Jo
_x_ 1 .rx l.rx 2(r+\)x 2(r+\)x 3{r + 2)x 3(r + 2)x

r-r+l-r+2- r + 3 - r+4~- r+E~- r+6~-
The number of signs of integration is (r - 1).

Ex. 5 . -{1 .3 .5 . . . (2r -3)} | xdx ... \ xdx \ artan"1 xdx
Jo Jo Jo

_x"~ l 1 • (2r-l)xi 4. \rxl 3(2r+l)a:a

2r+l + 2r + 3 + 2r + 5 + 2r"+7

(F).
Here

(a + qa+<"-V"f

Here

Here

2"

(a + q**-™') (a +

(G).

( a + ?«+(=»-l)«) ( a + ?«+(2n-2)d

( a + q«+M) ( a +

(H)

2n+1

(L).
Here
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(M).

(a + g°+'"-1)") (g + g»+(r+n-2)^

(a + go+

a (qnd -

-s)*) ( a

(a

Here

Proof :—

(N).

«!»= -

1 1 1 1

q q

q1* q™ q* q33

2 2 2
_l+2 +3 +4 /

2 2
.,1 +2

Similarly,

(n_i) +»(s—i) (g2 - 1) (g4 - 1) (g6 - 1)...{g2'""11 - 1}

1 1 1 1
f q' g« g "
g12 g " g20 g24

g12 g16 g20

g21 g27 g33
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^ ^

2 2 2 2 _2
_ g , 2 + 3 + 4 + 8 ^ 2 _ J J / y i _ J ^ ^ 8 _ J \ _ H

I

Similarly,

Thus we get

n
2 n

2 2 2
+J +3

We have therefore
2

ga; + 94a; + 59sc + ... +qH x+ ...

qx q3x q*(l-q2)x q'x q6(l-q4)x qnx q7(l-q')x
= T-T + 1 -T+ 1 -~T+ T -...

a result first given by Eisenstein.

In conclusion, I must thank Professor Whittaker, who intro-
duced me to the subject, and under whose guidance I have been
enabled to prepare this paper.
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