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BIRATIONAL CLASSIFICATION OF CURVES ON
RATIONAL SURFACES

ALBERTO CALABRI and CIRO CILIBERTO

Abstract. In this paper we consider the birational classification of pairs (S, L),
with S a rational surface and L a linear system on S. We give a classification

theorem for such pairs, and we determine, for each irreducible plane curve B, its

Cremona minimal models, that is, those plane curves which are equivalent to B
via a Cremona transformation and have minimal degree under this condition.

Introduction

Let B be an irreducible curve in the complex projective plane P2. A nat-
ural question is to ask about its Cremona minimal models, that is, for those
curves which are equivalent to B via a Cremona transformation of P2 and
have minimal degree under this condition. More generally, the same question
can be asked for positive dimensional linear systems L of plane curves.

This is a classical problem, which goes back to the very beginnings of bira-
tional geometry in the second half of the nineteenth century, the main char-
acters being Cremona and his school and Noether. This question was later
considered by several algebraic geometers for many decades until the 1940s.
Indeed, a long series of papers by various classical authors was devoted to
trying to solve this problem at least for planar linear systems of curves of
low genera. Giving here a full account, with complete references, of all these
attempts, some of them affected by serious gaps, would turn these few lines
into a historical work rather than an introduction. So we direct the inter-
ested reader to Coolidge’s book [Coo], whose first edition appeared in 1931,
which contains an exposition of the classical results and a detailed bibli-
ography on the subject. Another beautiful classical reference is the book
[Con], which contains the most advanced classical treatment of the subject,
as well as interesting historical notes. We cannot resist, however, mention-
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44 ALBERTO CALABRI AND CIRO CILIBERTO

ing, among all the others, Castelnuovo’s contributions ([Ca1], [Ca2], [Ca3];
see also [K1], [K2], [No]), where adjunction theory is fully exploited in a
form that, after Mori’s epochal work, we call “running a minimal model
program” driven by a given divisor on a surface, that is, a �-minimal model
program in M. Reid’s terminology [R].

In modern times, the question has been considered again starting from
the 1960s by a few authors, among which, in chronological order, we mention
Nagata ([Na1], [Na2]), Kumar and Murthy [KM], Reid [R], Dicks [D], Iitaka
([I1], [I2]), and Matsuda [M].

In a nutshell, the problem boils down to considering the birational clas-
sification of pairs (S, L), with S a rational surface and L a linear system
on it. Taking this viewpoint, the most appropriate tool available today for
attacking the question consists in using the machinery of Mori’s program, in
its log version. This is essentially Dick’s [D] and Reid’s [R] viewpoint, and
this is basically what we also do here, though we use Iitaka’s terminology
([I1], [I2]) and the more classical approach via adjunction theory á la Castel-
nuovo. Part of our main results is stated in the following two theorems (for
more detailed statements, see Theorems 9.4 and 9.7).

Theorem 0.1. Let (S,C) be a pair, with S rational and C smooth and
irreducible, which is not birationally equivalent to (P2,L), where L is a line.
Let m be the maximum integer such that |C +mKS | is not empty, and let α

be the dimension of this system. Then (S,C) is birationally equivalent to
one of the following pairs.

(i) (P2,D), where D is a plane curve of degree d � 3 with points of
multiplicity strictly smaller than m − 1, where m = [d/3].

(ii) (Fn,D), where Fn = P(OP1 ⊕ OP1(−n));

D ∈
∣∣∣(2m + ε)E +

(
(2 + n)m +

α + ε(n − 1)
1 + ε

)
F

∣∣∣,

with ε ∈ {0,1}, E a curve with E2 = −n, and F a ruling of Fn; and
• D is irreducible with points of multiplicity at most m, and
• if ε = 0 and n > 0, the singular points of D of multiplicity m lie on E

and n is minimal under this condition.
These pairs may be birationally equivalent only if

• n = ε = 0 and D has at least two points of multiplicity m; and
• n = ε = 1, α = 0 (resp., α = 2), and D has at least three (resp., two)

points of multiplicity m.
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Theorem 0.2. Let C be an irreducible plane curve. Then a Cremona
minimal model B of C is one of the following types:

(i) B is a line;
(ii) if B has degree d and points of multiplicities m1, . . . ,mr with m1 �

· · · � mr, then d � m1 + m2 + m3;
(iii) B is a curve of degree d with a point p of maximal multiplicity m0,

and all points of multiplicity μ � (d − m0)/2 are infinitely near to p.

The structure of the Cremona minimal curves in (iii) can be well speci-
fied, as in the statement of Theorem 9.7. They are obtained from the pairs
(Fn,D) in Theorem 0.1 with a suitable process which is explained in detail
in Section 8. The curves in (ii) may be birationally, and not projectively,
equivalent only if d = m1 + m2 + m3. This is a consequence of a result,
asserted by several classical authors and proved by G. Jung [J], to the effect
that a linear system of plane curves of degree d with points of multiplicities
m1 � m2 � m3 � · · · is Cremona minimal as soon as d � m1 +m2 +m3, and
if d > m1 + m2 + m3, any Cremona minimal linear system birational to it
is projectively equivalent to it. We give a short and easy proof of this in
Section 2. As for type (iii), it is possible to have several different Cremona
minimal, nonprojectively equivalent models, with different multiplicities.

In our view, these results completely solve the classification problem,
though the difficulty remains, given a specific curve B, of resolving its sin-
gularities and determining the structure of its subsequent adjoint linear
systems.

The paper is organized as follows. In Section 1 we fix notation and recall
a few facts about infinitely near points and linear systems. In Section 2 we
prove some basic results on Cremona minimality and the aforementioned
theorem of Jung. In Section 3 we recall a few properties of (−1)-cycles, that
is, those effective divisors C on a smooth surface S which are contracted
to a smooth point by a birational morphism, which is an isomorphism on
the complement of C on S. This is used in Section 4, where we prove some
essential nefness results on effective adjoint linear systems which boil down
to computing their Zariski decomposition, and we recall how adjoint systems
behave under birational maps. In Section 5 we introduce Iitaka’s �-models
and define the equally useful �-models and �-models. We devote Section 6
to briefly recalling the birational classification of pairs (S, L), with L a
nef linear system of positive dimension of curves of arithmetic genus 0, and,
accordingly, the Cremona classification of planar positive dimensional linear
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systems of rational curves: this is the foundation stone of our classification.
Sections 7 and 8 are devoted to introducing and constructing planar linear
systems that have the Cremona minimality property. As indicated in the
statement of Theorem 0.2, their main feature is that the maximal singulari-
ties of their general curve are nestled in a rather complicated way infinitely
near to the point of highest multiplicity. In Section 9 we prove the announced
classification results for pairs (S,C) (and for plane curves B), by subdivid-
ing them into four main classes: the line, del Pezzo, ruled, and big cases,
according to the behavior of the last effective adjoint system |C + mKS |.
An Appendix is devoted to quickly proving the famous Noether-Castelnuovo
theorem on the generation of the Cremona group via linear and quadratic
transformations, by exploiting the concept of simplicity of a curve (see [Al1],
[Ch], [C]), which we effectively use in Sections 7 and 8 to prove our Cremona
minimality results.

In Section 10 we present a few applications, the most relevant of which is
the proof of Proposition 10.10, originally stated by de Franchis [DF], which
classifies, up to Cremona transformations, planar linear systems of positive
dimension of curves of genus 2. De Franchis’s original proof is affected, as
well as all papers on the subject that appeared before 1901, by a criticism
raised by C. Segre [S] to Noether’s original proof of Noether-Castelnuovo’s
theorem.

When the present research was completed, M. Mella kindly brought to
our attention his preprint [MP2] in collaboration with E. Polastri, which
contains, among other interesting things, similar results, though the classi-
fication there is less fine than the one we produce here (see also [MP1]).

§1. Preliminaries

1.1. Notation and conventions
In this paper we will work over C.
Let S be a smooth, irreducible, projective surface, simply called a surface

in the sequel. We will use standard notation in surface theory; that is,
K = KS will denote a canonical divisor, q = q(S) will denote the irregularity
of S, κ = κ(S) will denote the Kodaira dimension, and so on. The linear
equivalence of divisors will be denoted by ≡.

Let D be a divisor on S. As usual, OS(D) will be the related invertible
sheaf. We will denote by 0 the zero divisor. If D is effective, it will be called
a curve, and pa(D) will denote its arithmetic genus.
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If A and B are divisors on S, we will use the notation A � B if A − B

is effective, or A > B if A � B and A �= B. Recall that a divisor D > 0 is
said to be numerically connected if D = A + B, with A,B > 0, implies that
A · B > 0. A divisor D is nef if for any curve C one has D · C � 0. We may
sometimes consider Q-divisors.

If C is a smooth, irreducible curve with pa(C) = 0 and C2 = −k < 0, we
will say that C is a (−k)-curve. By Castelnuovo’s theorem, a (−1)-curve is
the exceptional divisor of a blowup.

If f : S → S′ is a morphism and if D,D′ are divisors on S,S′, respectively,
it makes sense to consider the image f∗(D) of D on S′, the total transform
f ∗(D′), and the strict or proper transform of D′ on S (see [H, pp. 110, 425]
and [Ma, page 121]).

1.2. Infinitely near points
Here we briefly recall some basic facts and terminology about infin-

itely near points, which will be commonly used in the sequel (cf., e.g., [A]
and [EC]).

Let S and S′ be surfaces. Any birational morphism σ : S′ → S is the
composition of a certain number, say n, of blowing-ups σi : Si → Si−1 at a
point pi ∈ Si−1, i = 1, . . . , n:

(1) σ : S′ = Sn
σn−→ Sn−1

σn−1−−−→ · · · σ2−→ S1
σ1−→ S0 = S.

Let p ∈ S be a point. One says that q is an infinitely near point to p of
order n, and we write q >n p, if there exists a birational morphism σ : S′ → S

as in (1), such that p1 = p; σi(pi+1) = pi, i = 1, . . . , n − 1; and q ∈ Zn =
σ−1

n (pn−1). For each i = 1, . . . , n, let Ei = σ−1
i (pi) ⊂ Si be the exceptional

curve of σi, and let E′
i be the strict transform of Ei on S′. If i > j, let

σi,j be the morphism Si → Sj . For each i = 1, . . . , n − 1, set Zi = σ∗
n,i+1(Ei).

According to the terminology introduced in Section 3, Z1, . . . ,Zn−1,Zn = En

are (−1)-cycles generating Pic(S′) over Pic(S).
One says that q is proximate to p, and we write q → p, if either q >1 p

or q >n p with n > 1 and q lies on the strict transform E′
1 of E1 on S′. In

the latter case, one says that q is satellite to p, and we write q � p. This
may happen only if pi lies on the strict transform of E1 on Si−1, for each
i = 2, . . . , n.

Also, E′
1, . . . ,E

′
n−1,E

′
n = En generate Pic(S′) over Pic(S), and E′

i = Zi −∑
j qijZj , where qij = 1 if pj → pi and qij = 0 otherwise.

https://doi.org/10.1215/00277630-2010-003 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-003


48 ALBERTO CALABRI AND CIRO CILIBERTO

In this paper, we will usually refer to points on a surface S, including
infinitely near ones. We will say that a point p is proper, and we will write
p ∈ S, if p is not infinitely near to any point of S. An infinitely near point
is called free if it is not satellite (to any point).

Let now C ′ be a curve on S′, and let C = σ∗(C ′). Then C ′ = σ∗(C) −∑n
i=1 miZi, where m1, . . . ,mn are integers. If C is a curve, that is, if C ′ is not

contracted by σ, one says that mi, i = 1, . . . , n, is the (virtual) multiplicity
of C at the point pi. If no component of C ′ is contracted by σ, then, for
each i = 1, . . . , n, one has C ′ · E′

i � 0, which is equivalent to

(2) mi �
∑

j : pj →pi

mj ,

which is classically known as the proximity inequality at pi.
In any case, we may uniquely write C ′ = D′ +

∑n
i=0 hiE

′
i, with D′ effective

and D′ · E′
i � 0 (i.e., the proximity inequality at pi holds for D′), for all

i = 1, . . . , n. We say that D′ is pure. One has σ∗(D′) = σ∗(C ′) = C. Then
D′ ≡ σ∗(C) −

∑n
i=1 m̃iZi, where m̃1, . . . , m̃n are nonnegative integers, called

the effective multiplicities of C at p1, . . . , pn. One may compute the m̃i from
the mi by a well-known algorithm called Enriques’s unloading principle
(see [EC]).

1.3. Linear systems
Let S be a surface, and let D be a divisor on it. As usual, we denote by

|D| the complete linear system associated to D, that is, P(H0(S, OS(D))).
A linear system L ⊂ |D| corresponds to a vector subspace V ⊂ H0(S,

OS(D)). Recall that L determines a rational map φL : S ��� Pr = P(V ∗), r =
dim(L). Two linear systems define the same map if they differ by divisorial
fixed components. If L has no divisorial fixed component, then φL is a
morphism off the base locus of L. A linear system L will be called irreducible
if its general curve is irreducible.

If L ⊂ |D| and L ′ ⊂ |D′ | are linear systems, corresponding to V ⊂ H0(S,

OS(D)) and V ′ ⊂ H0(S, OS(D′)), we will denote by L · L′ the intersection
number C · C ′, where C ∈ L and C ′ ∈ L ′, and by L + L ′ the linear system
corresponding to the image of V ⊗ V ′ ⊂ H0(S, OS(D)) ⊗ H0(S, OS(D′)) in
H0(S, OS(D + D′)) via the natural multiplication map. Thus we may con-
sider the multiple linear system iL for all integers i � 1.

Let φ : S ��� S′ be a dominant rational map, let L be a linear system
on S, and let C ∈ L be its general curve. We will denote by φ∗(L) the
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proper image of L, which is the linear system on S′ whose general curve is
the closure of the images of φ(x), where x varies among the general points
of all irreducible components of C.

One also defines the total transform φ!(L) of L via φ, which is defined as
follows. There is a commutative diagram

X
f f ′

S
φ

S′

where X is a surface and f, f ′ are birational morphisms. Then φ!(L) =
f ′

∗(f ∗(L)). Note that φ∗(L) is a subsystem of φ!(L) and that the two differ
for base components which are images, via f ′, of exceptional divisors of f .

Consider a sequence of blowing-ups as in (1), and let L′ be a linear system
on S′. One can define, as in Section 1.2, virtual and effective multiplicities
of L at the points p1, . . . , pn which one blows up.

Given p1, . . . , pn proper or infinitely near points of P2, and given positive
integers m1, . . . ,mr for each one of them, we denote by

L(d;m1,m2, . . . ,mr)

the linear system L ⊆ |OP2(d)| of curves of degree deg(L) = d with assigned
base points p1, . . . , pn and with assigned, or virtual, multiplicities m1, . . . ,

mn. It may happen that the system L has further base points, fixed com-
ponents, and higher multiplicities than the assigned ones. The last phenom-
enon means exceptional divisors as fixed components, if one looks at the
system on the blowup of P2 at the assigned base points.

We will usually assume that m1 � m2 � · · · � mr. We will use the expo-
nential notation mei

i in case of ei points of multiplicity mi.
In cases where we want to specify that ei points of multiplicity mi, i =

1, . . . , l, are infinitely near (resp., proximate) to a point of multiplicity m,
we will write

L
(
. . . , (m, {me1

1 ,me2
2 , . . . ,mel

l }), . . .
)

[resp., L(. . . , (m, [me1
1 ,me2

2 , . . . ,mel
l ]), . . .)].

Recall that the virtual dimension of the linear system L = L(d;m1, . . . ,

mr) is v(L) = d(d + 3)/2 −
∑r

i=1 mi(mi + 1)/2. One has dim(L) �
max{v(L), −1}, and if the equality holds, the system is called nonspecial.
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1.4. Cremona transformations
A linear system L of plane curves, with no divisorial fixed components,

is called a net if dim(L) = 2. If, in addition, the map φL : P2 ��� P2 is a
Cremona transformation, that is, it is birational, the net is called homaloidal.
In that case, the general curve C of L is irreducible and rational. If d is the
degree of L, one says that φL has degree d. Cremona transformations of
degree 1 are projective or linear transformations.

An irreducible net Λ of type L(δ; δ − 1,12δ−2), δ � 2, is homaloidal, and
the corresponding birational map φΛ : P2 ��� P2 is called a de Jonquières
transformation of degree δ centered at the base points of Λ. If δ = 2, the
map φΛ is a quadratic transformation.

Any homaloidal net L(δ;α0, α1, . . . , αr) is such that

(3) δ2 − 1 =
r∑

i=0

α2
i , 3(δ − 1) =

r∑
i=0

αi.

Recall the following famous theorem.

Theorem 1.1 (Noether-Castenuovo). Every Cremona transformation of
the plane is the composition of finitely many linear and quadratic transfor-
mations.

In Appendix A we give a proof of this theorem by induction on the
simplicity of homaloidal nets, which we now introduce and will use later.

Let L = L(d;m0,m1, . . . ,mr) be a planar linear system with d � m0 �
m1 � · · · � mr � 1, and let pi be the point of multiplicity mi of L. (If there
is no mi, set r = −1.) We set mr+1 = 0 and m−1 = ∞. The simplicity of L
is the triplet (kL, hL, sL) of integers defined as follows:

kL = d − m0, mhL >
kL
2

� mhL+1,

(4)
sL = �{pi | 1 � i � h and pi � p0}.

One says that L ′ is simpler than L if the simplicity of L′ is lexicographically
smaller than the one of L. The simplicity of a Cremona transformation
φ : P2 ��� P2 is the one of the homaloidal net defining φ. A de Jonquières
transformation of degree δ has simplicity (1,2δ − 2, s), with s � δ − 1.
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§2. Birational equivalence of pairs and Cremona minimality

Let (S, L) be a pair with S a surface and L a linear system on it. If (S, L),
(S′, L ′) are two such pairs, we say that they are birationally equivalent, and
we write (S, L) ∼ (S′, L ′), if there is a birational map φ : S ��� S′ such that
L ′ = φ∗(L), L = φ−1

∗ (L ′), and φ is not constant on each irreducible compo-
nent of the divisorial part of the base locus of L. If, moreover, φ : S → S′ is
an isomorphism, the pairs (S, L), (S′, L ′) are called isomorphic. Birational
equivalence is an equivalence relation. Any pair in a class is called a model
of the class.

If (S, L) ∼ (S′, L ′), then dim(L) = dim(L′). If dim(L) = 0, we have the
notion of birational equivalence of pairs (S,C), where C is a curve on S.

If (S, L) ∼ (S′, L ′), then the images of φL and φL ′ are projectively equiv-
alent. The converse is also true, provided φL and φL ′ are birational to their
images.

Given a pair (S, L), with S rational, one can consider all models of (S, L)
of the form (P2, L ′). Those with minimal deg(L′) will be called Cremona
minimal, and those with deg(L′) will be called the Cremona degree cdeg(L)
of L. This definition includes the one of Cremona degree and Cremona
minimality for curves. It is clear that cdeg(L) � cdeg(C), where C is the
general member of L. As we shall see, it may happen that strict inequality
holds.

If (S, L) is birationally equivalent to (P2, L(d;me1
1 , . . . ,mer

r )), we say that
L is of Cremona type (d;me1

1 , . . . ,mer
r ). If d = cdeg(L), we say that L is of

minimal Cremona type (d;me1
1 , . . . ,mer

r ).
Consider a linear system L = L(d;m1, . . . ,mr) and a Cremona transfor-

mation φΛ : P2 ��� P2 determined by the homaloidal net Λ = L(δ;α1, . . . ,

αs). At the cost of taking some αi = 0, we may assume that s � r. More-
over, we assume that the assigned base points of L coincide with the points
of multiplicities α1, . . . , αr of Λ. One has

(5) deg
(
φ∗(L)

)
� dδ −

r∑
i=1

αimi,

and the equality holds if L has no base points off the assigned ones and if
its effective multiplicities equal the assigned ones. We denote by vdegφ(L)
the right-hand side of (5) and call it the virtual degree of φ∗(L).

The following lemma gives useful criteria for Cremona minimality.
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Lemma 2.1. Planar linear systems L of the following types are Cremona
minimal:

(i) L(d;n,m), with d � n + m and n � m � 0;
(ii) L(d; (m, [m1, . . . ,mh])), where h � 1, m1 � m2 � · · · � mh � 1, m �

m1 + · · · +mh, d � m+m1, and the point pi, i = 1, . . . , h, of multiplicity mi

is infinitely near of order 1 to the point p of multiplicity m.

Moreover, a Cremona transformation φ : P2 ��� P2 such that L ′ = φ∗(L) has
degree d is linear except:

• in case (i), d = n+m, in which φ may be a de Jonquières transformation
of degree δ � 2 centered at the base points of L, and δ = 2 unless m = 0,
that is, unless L is composed of a pencil of lines;

• in case (ii), in which φ may be a de Jonquières transformation of degree
δ � h′ + 1, where h′ is the maximum such that d − m = m1 = · · · = mh′ ,
and φ is centered at p and at δ − 1 points among p1, . . . , ph′ .

In all cases L ′ is of the same Cremona type as L.

Proof. (i) One sees that L has no unassigned base point. Suppose that
the homaloidal net corresponding to φ has degree δ and multiplicities α,β

at the points of multiplicities n,m of L. We may assume that δ > 1, α � β

and δ � α+β, and δ − 1 � α. Then φ maps L to a linear system L′ of degree

δd − αn − βm � δd − α(n + m) � (δ − α)d � d.

If the equality holds, then either β = m = 0, n = d, and α = δ − 1, or α =
β = δ − 1 = 1 and d = n + m, proving the assertion in case (i).

(ii) By blowing up p, working on F1, and applying Bertini’s theorem,
one sees that L has no unassigned base point and that its general curve
is irreducible, with multiplicities at the base points equal to the assigned
ones. Suppose that the homaloidal net corresponding to φ has degree δ > 1
and multiplicities α and αi, respectively, at p and at pi, i = 1, . . . , h. Then
δ − 1 � α �

∑h
i=1 αi, by (2), and αi � 0 for each i. Thus φ maps L to a

linear system L ′ of degree

δd − αm −
h∑

i=1

αimi � δd − αm − (d − m)
h∑

i=1

αi

� δd − αm − (d − m)α = (δ − α)d � d.
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If equality holds, then α = δ − 1, αi � 1 for each i, d = m + mi whenever
αi = 1, and there are exactly δ − 1 indexes i such that αi = 1. This proves
the assertion in case (ii).

If L is a linear system of plane curves with no multiple fixed com-
ponents, then there is a birational morphism f : S → P2 such that the
proper transform of the general curve C of L is smooth. Let L′ be the
linear system on S such that (S, L′) ∼ (P2, L) via f −1. We say that L is
complete if L ′ is complete. We will denote by adm(L) the linear system
f∗(|C + mKS |), and we call it the m-adjoint linear system of L. This sys-
tem is independent on f . If L = {C} has dimension zero, we write adm(C).
In case m = 1, we write ad(L) and call it the adjoint linear system of L.
Note that deg(adm(L)) = deg(L) − 3m. One similarly defines m-adjoint lin-
ear systems of L for a linear system L with no multiple fixed components,
on any surface.

Remark 2.2. Whenever adm(L) and L are not empty and adm(L) is
without fixed component and Cremona minimal, then also L is Cremona
minimal (cf. Proposition 4.4).

Using adjoints, one may easily prove a very useful, classical result due to
Jung [J] (cf. [Coo, pages 402–403]).

Theorem 2.3 (Jung [J]). A linear system L = L(d;m1,m2,m3, . . .), with-
out multiple fixed components, with m1 � m2 � m3 � · · · and d � m1 +m2 +
m3, is Cremona minimal.

Proof. By Lemma 2.1, we may assume that m3 > 0. Then adm3(L) =
L(d − 3m3;m1 − m3,m2 − m3) is Cremona minimal, again by Lemma 2.1,
and so is L (see Remark 2.2).

Furthermore, Lemma 2.1 implies the following.

Corollary 2.4. Let L be as in Theorem 2.3. If d > m1 + m2 + m3 and
if φ : P2 ��� P2 is a Cremona transformation such that φ∗(L) has degree d,
then φ is linear.

A linear system L satisfying the hypotheses of Theorem 2.3 will be called
of Noether type.

§3. Properties of (−1)-cycles

Let S be a surface, and let Z > 0 be a divisor on S. We will say that Z is
a (−1)-cycle if there is a surface S′ and a birational morphism f : S → S′
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such that f(Z) is a point p ∈ S′; Z is the scheme theoretical fiber of f over p,
that is, OS(−Z)  f ∗(Ip|S′ ); and f : S′ − Z → S − {p} is an isomorphism.
In this case we will say that f blows down Z.

The structure of a (−1)-cycle has been classically studied by Barber and
Zariski [BZ] and Franchetta [F1]. We will not need it here.

If Z is irreducible, then it is the exceptional divisor of a blowup. Other-
wise, f is the composition of blowups

(6) f : S = S0 → S1 → · · · → Sn−1 → Sn = S′.

If j > i, denote by fi,j the morphism Si → Sj , and denote by Zi,j the cor-
responding (−1)-cycle on Si. Then Z is the total transform of Zi,n via the
map f0,i, for all i = 1, . . . , n − 1. We will say that each Z0,j is f -exceptional.

The proof of the following lemma is trivial.

Lemma 3.1. In the above setting, if 0 � i < h < j � n, one has
(fi,h)∗(Zi,j) = Zh,j and Zi,j · Zi,h = 0.

The following lemmas are classical (see [BZ], [F1]).

Lemma 3.2. Let Z be a (−1)-cycle on a surface S, and let f : S → S′ be
the birational morphism blowing down Z. Then

(7) KS ≡ f ∗(KS′ ) +
n∑

i=1

Z0,i.

Proof. Proceed by induction on the number n of blowups appearing in
the sequence (6).

Lemma 3.3. If Z is a (−1)-cycle on a surface S, then

(8) KS · Z = Z2 = −1; thus pa(Z) = 0.

Proof. Since Z is the total transform of the exceptional curve Zn−1,n,
one has Z2 = −1. By intersecting both sides of (7) with Z and taking into
account Lemma 3.1, one finds KS · Z = −1.

By Zariski’s main theorem, a (−1)-cycle is topologically connected. More
precisely (see [F2], [F3]), we have the following.

Lemma 3.4. A (−1)-cycle is numerically connected.
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Proof. Let Z be a (−1)-cycle, and let Z = A + B with A,B > 0. Sup-
pose that A · B < 0. By Grauert’s criterion (see [B, Corollary 2.7]), the
intersection matrix of Z is negative definite. Thus we have −1 = Z2 =
A2 + B2 + 2A · B � −4, a contradiction.

Franchetta [F2] proved that any numerically connected curve Z on a
surface S with Kodaira dimension κ(S) � 0 verifying (8) is a (−1)-cycle. As
noted by Nagata [Na2, page 282], the assertion is no longer true if κ(S) =
−∞. Nagata, however, misunderstands Franchetta’s statement.

In what follows we will need the following technical lemmas.

Lemma 3.5. Let Z,Z ′ be distinct (−1)-cycles on the surface S, and
assume that the intersection matrix of the components of Z + Z ′ is neg-
ative definite. Then

(i) Z · Z ′ � 0;
(ii) if Z · Z ′ = 0 and if f : S → S′ is the birational morphism blowing

down Z, then either f∗(Z ′) = 0, which happens if and only if Z > Z ′, or
f∗(Z ′) is a (−1)-cycle on S′.

Proof. Assertion (i) is clear if Z,Z ′ have no common component. Let us
proceed by induction on the number of common components of Z and Z ′.

Consider the map f : S → S′ blowing down Z, and suppose that it is a
sequence as in (6). By Lemma 3.1, we have Z · Z0,1 = 0.

Assume first that Z0,1 � Z ′. If Z0,1 = Z ′, then Z · Z ′ = 0. Otherwise,
Z ′

1 := (f0,1)∗(Z ′) is a (−1)-cycle Z ′
1 on S1 and Z ′ = f ∗

0,1(Z
′
1). By induction,

we have
Z · Z ′ = f ∗

0,1(Z1,n) · f ∗
0,1(Z

′
1) = Z1,n · Z ′

1 � 0.

Assume now that Z0,1 is not contained in Z ′. One has Z0,1 · Z ′ = 0; other-
wise, (Z ′ +Z0,1)2 � 0, against the negativity assumption on the intersection
matrix of the components of Z + Z ′. Then Z0,1 and Z ′ have no points in
common; therefore, (f0,1)∗(Z ′) is a (−1)-cycle on S1, and we can repeat the
argument. After a finite number of steps, we accomplish the proof of (i).
The proof of (ii) is analogous and may be left to the reader.

Lemma 3.6. Let Z,Z ′ be distinct (−1)-cycles on the surface S. If Z · Z ′ >

0, then

(i) if q(S) = 0, there is some divisor D � Z +Z ′ which moves in a linear
system of positive dimension on S;
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(ii) if q(S) > 0, then the Albanese map of S maps S to a curve, and
Z + Z ′ is a rational multiple of a fiber.

Proof. If q = 0, by the Riemann-Roch theorem we have h0(S, OS(Z +
Z ′)) � 1 + Z · Z ′ � 2, and the assertion follows.

If q > 0, then the Albanese map contracts Z + Z ′ to a point. Hence, the
intersection matrix of the components of Z + Z ′ is negative semidefinite
(see [B, Corollaries 2.6 and 2.7]). Since (Z + Z ′)2 = 2(Z · Z ′ − 1), we have
Z · Z ′ = 1 and (Z +Z ′)2 = 0, and the assertion follows from Zariski’s lemma
(see [B, Corollary 2.6]).

§4. Basic properties of adjoint linear systems

4.1. Nefness property of m-adjoint linear systems
The following results are essentially known to the experts. Since we have

not found a proper reference, we quickly present them here.

Proposition 4.1. Let C be a divisor on a surface S such that either

(i) C is nef; or
(ii) C is effective, irreducible, and not a (−k)-curve, with 1 � k � 3.

Let m > 0 be an integer. Suppose that |C + mKS | �= ∅ and that m � 2 if we
are in case (ii) and C is rational.

Then there is a surface S′ and a birational morphism f : S → S′ such that
|C ′ + mKS′ | is nef, where C ′ = f∗(C), and

(9) h0
(
S, OS(C + mKS)

)
= h0

(
S′, OS′ (C ′ + mKS′ )

)
.

Proof. If C + mKS is nef, the assertion is clear. Suppose that there are
irreducible curves Θ > 0 such that Θ · (C + mKS) < 0. Since C + mKS � 0,
there are only finitely many such curves, and each of them has Θ2 < 0.
We claim that they are (−1)-curves. Indeed, if (i) holds, then 0 > Θ · (C +
mKS) = Θ · C + m(Θ · KS) � m(Θ · KS); hence, Θ · KS < 0, and therefore
Θ2 = −1 and pa(Θ) = 0. If (ii) holds, one has C · Θ � 0, and therefore the
same conclusion holds. Indeed, if C · Θ < 0, then C = Θ and 0 > Θ · (C +
mKS) = 2m(pa(C) − 1) − C2(m − 1). This implies that pa(C) = 0; hence,
m � 2 and C2 > −2 − 2/(m − 1), and thus C2 � −3, a contradiction.

Let Θ be a (−1)-curve such that Θ · (C + mKS) < 0. Set Θ · C = i � 0,
and note that i < mKS · Θ = m. We have a birational morphism π : S → S1

blowing down Θ to a smooth point p. Set C1 = π∗(C). Then C = π∗(C1) −
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iΘ, and KS ≡ π∗(KS1) + Θ; hence,

C + mKS ≡ π∗(C1 + mKS1) + (m − i)Θ,

and
h0

(
S1, OS1(C1 + mKS1)

)
= h0

(
S, OS(C + mKS)

)
.

So C1 + mKS1 is effective. By repeating this argument, we see that there
is a sequence of blowdowns as in (6), such that C ′ + mKS′ is nef, where
C ′ = f∗(C) and (9) holds.

Consider all f exceptional (−1)-cycles. We may index them with two
indices as Θi,j , where i = C · Θi,j and j = 1, . . . , hi. Then

(10) C = f ∗(C ′) −
∑

i

hi∑
j=1

iΘi,j and KS = KS′ +
∑

i

hi∑
j=1

Θi,j .

The following proposition specifies the Zariski decomposition of the
adjoint systems we are interested in.

Proposition 4.2. Assume the same hypotheses of Proposition 4.1. Then
we have a unique expression

(11) C + mKS ≡ P +
m−1∑
i=0

hi∑
j=1

(m − i)Θi,j ,

where P is nef and the Θi,j are (−1)-cycles such that

(i) P · Θi,j = 0, for each (i, j);
(ii) Θi,j · Θh,k = 0, for (h,k) �= (i, j);
(iii) the intersection matrix of the irreducible components of

N =
m−1∑
i=0

hi∑
j=1

(m − i)Θi,j

is negative definite;
(iv) C · Θi,j = i, for each (i, j); and
(v) h0(S, OS(C + mKS)) = h0(S, OS(P )).
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Proof. It follows from Proposition 4.1 and from (10). Note that P =
f ∗(C ′ +mKS′ ) is nef. Then (i) is clear, (ii) follows from Lemma 3.1, (iii) fol-
lows from [B, Corollary 2.7], (iv) holds by definition, and (v) follows from
Proposition 4.1. Since i − m = Θi,j · (C + mKS) < 0, we have i < m.

As announced, (11) is nothing else than the Zariski decomposition of
C + mKS (see [B, Chapter 14]). As such, it is unique.

The divisors N,P appearing in Proposition 4.2(iii) are the negative part
and the nef part, respectively, of C + mKS .

Remark 4.3. The decomposition (11) is stable under birational mor-
phisms, in the following sense. Let X be a surface, let f : X → S be a bira-
tional morphism, and let Γ be the proper transform on X of the curve C

on S.
Let Θi,j be the f -exceptional (−1)-cycles on X , indexed in such a way

that Θi,j · Γ = i, j = 1, . . . , ki. Then

Γ = f ∗(C) −
∑

i

ki∑
j=1

iΘi,j and KX ≡ f ∗(KS) +
∑

i

ki∑
j=1

Θi,j ,

so that

Γ + mKX ≡ f ∗(C + mKS) +
∑

i

ki∑
j=1

(m − i)Θi,j .

From this we deduce that

h0
(
S, OS(C + mKS)

)
� h0

(
X, OX(Γ + mKX)

)
,

and equality holds if each i is at most m. Assume that this is true. This is
the case if C has points of multiplicity at most m. Then, substituting for
C +mKS the expression given by (11), we find the analogous decomposition
for Γ + mKX .

More generally, if n � 1 is an integer, we have

nΓ + mKX ≡ f ∗(nC + mKS) +
∑

i

ki∑
j=1

(m − ni)Θi,j

and
h0

(
S, OS(nC + mKS)

)
� h0

(
X, OX(nΓ + mKX)

)
,

with equality if m � ni for all i.
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4.2. Adjoint systems and birational transformations
Suppose that (S,C) ∼ (S′,C ′) via the birational map φ : S ��� S′. Then

there is a commutative diagram

X
f f ′

S
φ

S′

where X is a surface, f, f ′ are birational morphisms, and there is a curve Γ
on X such that f∗(Γ) = C, f ′

∗(Γ) = C ′.
As we saw,

Γ + mKX ≡ f ∗(C + mKS) +
∑

i

hi∑
j=1

(m − i)Θi,j

(12)

≡ f ′ ∗(C ′ + mKS′ ) +
∑

u

h′
u∑

v=1

(m − u)Θ′
u,v,

and therefore

(13) C ′ + mKS′ ≡ φ!(C + mKS) +
∑

i

hi∑
j=1

(m − i)f ′
∗(Θi,j).

Proposition 4.4. In the above setting, assume that C,C ′ verify the
hypotheses of Proposition 4.1 and have points of multiplicity at most m.
Then

h0
(
S, OS(C + mKS)

)
= h0

(
S′, OS′ (C ′ + mKS′ )

)
.

If, in addition, C and C ′ have points of multiplicity at most m − 1, then

C ′ + mKS′ ≡ φ!(C + mKS) +
m−1∑
i=1

ki∑
�=1

(m − i)θi,�,

where θi,j are (−1)-cycles on S′ such that C ′ · θi,� = i, which are the images
of f -exceptional (−1)-cycles.

Proof. The first assertion follows from Remark 4.3.
As for the second assertion, from (12) we see that all the f ′-exceptional

(−1)-cycles Θ′
u,v sit in the negative part of Γ + mKX . Then Θi,j · Θ′

u,v = 0.
By Lemma 3.5(ii), we see that θi,j := f ′

∗(Θi,j) are either zero or (−1)-cycles.
Moreover, θi,j · φ!(C + mKS) = 0, which proves that C ′ · θi,� = i.
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In the hypotheses of Proposition 4.4, we set

am(C) := h0
(
S, OS(C + mKS)

)
,

which is a birational invariant of the pair (S,C).

Remark 4.5. Let n � 1 be an integer. Assume that C,C ′ verify the
hypotheses of Proposition 4.1, from which we keep the notation, and have
points of multiplicity at most [m/n]. In particular, m � n. Assume that
h0(S, OS(nC + mKS)) > 0. Then

nC ′ + mKS′ ≡ φ!(nC + mKS) +
[m/n]∑
i=1

ki∑
�=1

(m − ni)θi,�

and
h0

(
S, OS(nC + mKS)

)
= h0

(
S′, OS′ (nC ′ + mKS′ )

)
,

so that
am(nC) := h0

(
S, OS(nC + mKS)

)

is also a birational invariant of the pair (S,C) (see [I2]).
More specifically, the projective isomorphism class of the image of S via

φ|nC+mKS | is a birational invariant.

Remark 4.6. All of the above results hold for pairs (S, L) with L a linear
system as well.

Let (S,C) be a pair as usual, with S smooth and C with points of mul-
tiplicity at most m. The expert reader in higher dimensional birational
geometry will commonly express this by saying that the pair (S,C/m) has
canonical singularities, and actually terminal singularities if C has points
of multiplicity at most m − 1 (see [Ma]). Though most fashionable today,
we will not use this terminology here, since we feel that in the surface case
the classical one is equally appropriate.

Then one defines the Kodaira dimension κ(S,C/m) of the pair (S,C/m)
to be −∞ if amn(nC) = 0 for all n > 0; otherwise, one defines κ(S,C/m) to
be the dimension of the image of φ|n(C+mKS)|, for n � 0. As we saw, this is
a birational invariant.

If L is a complete planar linear system with no multiple fixed components,
and if f : S → P2 is a birational morphism such that the general member C

of proper transform L′ of L on S is smooth, we can consider κ(S,C). This is
an invariant of L by Cremona transformations, which is called the Kodaira
dimension of L. We will denote it by κ(L).
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§5. Curves on rational ruled surfaces

5.1. Minimal rational surfaces and elementary transformations
The minimal rational surfaces are P2 and Fn = P(OP1 ⊕ OP1(n)), n � 0

and n �= 1. The surface Fn is a P1-bundle on P1. We denote by fn : Fn → P1

the structure morphism, by Fn its general fiber, and by Fp the fiber through
a point p ∈ Fn. There is a section En with E2

n = −n, which is uniquely
determined if n > 0. If n = 0, then |E0| is a pencil. We will drop the index n

if there is no danger of confusion. Recall that Pic(Fn) is generated by the
classes of E and F .

On Fn, we denote by

(14) Ln(k,h; [με1
1 , με2

2 , . . . , μεs
s ],me1

1 , . . . ,mer
r )

the linear system of curves in |kE + hF | having εi (proper or infinitely
near) points of multiplicity at least μi, i = 1, . . . , s, on E (or on its proper
transform) and further ej points of multiplicity at least mj , i = 0, . . . , r.

If L(d;m0, . . . ,mr) with m0 � · · · � mr, we may blow up the base points p0

of multiplicity m0 and take the proper transform of the system to F1, thus
getting the system L1(d − m0, d;m1, . . . ,mr). In this way we will look at
planar linear systems as linear systems on F1.

The surfaces Fn can be realized in a projective space as surfaces of min-
imal degree (see [dP], [Con], and [EH]). Consider on Fn the base point free
linear system |E +hF |, with h � n. If h = n = 0, then |E| is a pencil. Other-
wise, it determines a morphism φ = φ|E+hF | : Fn → Pr, with r = 2h − n + 1,
whose image is a possibly singular surface Σ of degree r − 1 = 2h − n. In fact
φ : Fn → Σ is an isomorphism as soon as h > n. In case h = n > 0, Σ is the
cone over a rational normal curve of degree r − 1, and φ is an isomorphism
off the negative curve E, which is contracted to the vertex of the cone. The
surface Σ is denoted as S(h − n,h), since it is the scroll described by the
lines joining corresponding points on two rational normal curves of degree
h − n and h in independent spaces. This applies also in the degenerate case
h = n.

An elementary transformation elmp centered at a point p ∈ Fn is the
composition of the blowing up of Fn at p and the blowing down of the
proper transform of the fiber through p, which is a (−1)-curve. If p /∈ E,
then elmp : Fn ��� Fn−1; otherwise, elmp : Fn ��� Fn+1.
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The composition elmpr ◦ · · · ◦ elmp2 ◦ elmp1 of r elementary transforma-
tions centered at points p1, p2, . . . , pr will be denoted by elmp1,...,pr . Only
the point p1 belongs to Fn, whereas pi ∈ elmp1,...,pi−1(Fn), for all i = 2, . . . , r.

A birational map φ : Fn ��� Fn′ sending the pencil |Fn| to the pencil |Fn′ |,
that is, making the following diagram commutative,

(15)
Fn

fn

φ

Fn′

fn′

P1
id

P1

is called a fibered birational map. For example, de Jonquières transforma-
tions can be regarded as fibered birational maps F1 ��� F1.

Any fibered birational map is a composition of elementary transforma-
tions. This is an aspect of Sarkisov’s program in dimension 2 (see [Ma]).

5.2. Iitaka’s �-models (sharp models)
Consider a pair (Fn, L), with L as in (14), and call m1 the maximum

multiplicity of singular base points of L. We will assume in the sequel that
h � kn, so that the curve En does not split off from the system L. Following
Iitaka ([I1], [I2]), we say that the pair (Fn, L) is �-minimal or a �-model
(resp., ��-minimal, or a ��-model) when

• k � 2m1 (resp., k > 2m1) if n � 2;
• k � 2m1 (resp., k > 2m1) and h − k � m1 if n = 1;
• h,k � 2m1 (resp., h,k > 2m1) if n = 0.

This is essentially the same as saying that the pair (Fn,2C/k) has canon-
ical (resp., terminal) singularities.

If a pair (Fn, L) is not �-minimal, one may get a �-model by performing
elementary transformations based at points of multiplicity μ with 2μ > k.

In [I1] and [I2], Iitaka described many interesting properties of �-models
and ��-models. In particular, the following result will be useful for us.

Theorem 5.1 ([I2, Theorem 4, page 316]). One has the following:
(i) if (Fn, L) ∼ (Fn′ , L ′), (Fn, L) is a ��-model, and (Fn′ , L ′) is a �-model,

then (Fn, L) and (Fn′ , L ′) are isomorphic;
(ii) if (Fn, L), with L ⊂ Ln(k,h), and (Fn′ , L ′) are both �-models and are

birationally equivalent via a map φ fitting in a diagram (15), then
either φ is an isomorphism, or k = 2m is even and (Fn′ , L ′) is obtained
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from (Fn, L) with a sequence of elementary transformations based at
points of multiplicity m. If L = Ln(k,h;m1, . . . ,mr), then m1, . . . ,mr

are birational invariants of �-models birationally equivalent to (Fn, L).

Proof. Part (i) is the uniqueness of terminal models. In any event, set
m = m1. One has adm(L) = Ln(k − 2m,h − m(n + 2)). This system is very
ample on Fn, except for h = kn, in which case it is very ample on S(0, n).
By Remark 4.5, part (i) immediately follows. Part (ii) follows from a similar
argument, left to the reader, applied to adm−1(L).

5.3. Definition of �-models (flat models) and �-models (natural
models)

Given a pair (Fn′ , L ′) as above, there is a minimal n � 0 such that (Fn, L)
is a �-model birational to (Fn′ , L ′). We call it a �-model, and we call n the
�-index of (Fn′ , L ′).

Proposition 5.2. Let (Fn, L) be a �-model with L as in (14). If n > 0,
then

(i) all base points of L of multiplicity m � k/2 lie on En;
(ii) if (Fn, L ′) is a �-model birational to (Fn, L) via a map φ fitting in a

diagram (15), and either k is odd or L does not have infinitely near base
points of multiplicity m on En, then φ is an isomorphism.

Proof. By Theorem 5.1, the assertion is clear if k is odd, since in this case
(Fn, L) is a ��-model. So assume that k is even.

Part (i) follows from the very definition of a �-model, since an elementary
transformation performed at a base point of multiplicity k/2 off En would
drop n and keep sharpness.

As for part (ii), again by Theorem 5.1, the map φ is a composition of
elementary transformations based at points of multiplicity m = k/2. Each of
them preserves sharpness, so this series of maps never involves Fm, with m <

n. On the other hand, by part (i), each elementary transformation creating
a point of multiplicity m off the negative curve has to be compensated by
another elementary transformation at a point of multiplicity m sending this
back on the negative curve. The hypothesis about the points of multiplicity
m on En shows that each of these transformations is the inverse of a previous
one.

Remark 5.3. The assumption that n > 0 and about the points of mul-
tiplicity m on En in Proposition 5.2 is essential, as one sees by consider-
ing linear systems of the form L0(2m,h;me), with h � n and e � 2, and
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Ln(2m,h;m2), with h � mn and the second point of multiplicity m infin-
itely near to the first proper point on En, in a direction which is not tangent
to the one of En.

Let (Fn, L) be a pair with L as in (14). Again we will assume that h � kn.
We say that the pair (Fn, L) is �-minimal, or a �-model, when either n = 0
and the general member of L is smooth, or n > 0 and

• k = 2m + ε, m � 1, ε = 0,1;
• there is no base point of L of multiplicity μ � 2m + ε − 1;
• there is no base point of multiplicity μ � 2 along En.

A �-model certainly exists, and it is obtained, for example, from a �-
model by a sequence of elementary transformations based at the singular
base points of L on E.

Proposition 5.4. If (Fn, L) and (Fn′ , L ′) are both �-models with positive
�-index and are birationally equivalent via a map φ fitting in a diagram (15),
then φ is an isomorphism.

Proof. Let (Fm, L̃) and (Fm′ , L̃ ′) be �-models birational to (Fn, L) and
(Fn′ , L ′) via fibered birational maps. Then, by Proposition 5.2 and the pos-
itivity assumption on the �-index, they are isomorphic. Moreover, (Fn, L)
and (Fn′ , L ′) are obtained by this unique model (Fm, L̃) by performing ele-
mentary transformations based at the singular base points of L̃ along Em.
The assertion follows.

§6. Linear systems of rational curves

In this section we recall some basic results about complete linear systems
of rational curves; in particular, we are interested in a plane birational model
with minimal degree. This goes back to the classical Italian school (see [Con]
for results and references; for a recent reference, see [I2, page 192]).

Proposition 6.1. Let S be a smooth, irreducible, projective surface with
q(S) = 0, and let D be a nonzero nef divisor with h0(S, OS(D + KS)) = 0.
Then S is rational and either

(i) D2 = 0 and |D| is composed with an irreducible base point free pencil
of rational curves; or

(ii) D2 > 0 and |D| is an irreducible base point free linear system of rational
curves of dimension D2 + 1.
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Proof. Assume first that D2 = 0. By the Riemann-Roch theorem, one has

0 = h0
(
S, OS(D + KS)

)
� 1 + D · KS/2,

so D · KS � −2. Again by the Riemann-Roch theorem, one has h0(S,

OS(D)) � 2. Write now |D| = F + |M |, where M is the movable part.
By the nefness property of D, we have F · D = M · D = 0; hence, F 2 =

M2 = −F · M . If F · M > 0, then M2 < 0, a contradiction. Since M is nef,
we have F 2 = M2 = F · M = 0. Then M is composed with a base point free
irreducible pencil |L| with pa(L) = 0. By Noether’s theorem, S is a rational
surface.

We claim that F = 0. Otherwise, since L · F = 0, by Zariski’s lemma
we have two relatively prime positive integers p, q such that qF ≡ pL. Since
K · L = −2 and K · F is even, we have q = 1; hence, F ≡ pL, a contradiction.

Assume now that d = D2 > 0. Since D is nef and big, it is also numeri-
cally connected. Since h0(S, OS(D + KS)) = 0 and q = 0, one has pa(D) =
0. By the Riemann-Roch theorem, one has h0(S, OS(D)) � D2 + 2. Let
p1, p2, . . . , pd be general points on S, and consider the sublinear system D ⊂
|D| consisting of all curves passing through p1, . . . , pd. Blow up p1, . . . , pd,
consider the proper transform D ′ of D on the blowup S′, and take a general
curve C in D ′. Then C2 = 0, and one sees that C is still nef and numerically
connected.

In the short exact sequence

0 → H0(S′, OS′ )  C → H0
(
S′, OS′ (C)

)

→ H0
(
C, OC(C)

)
→ 0 = H1(S′, OS′ ),

one has h0(S′, OS′ (C)) � 2; hence, h0(C, OC(C)) � 1. By [CFM, Corollary
A.2] one has OC(C)  OC ; therefore, h0(C, OC(C)) = 1, and |C| = D ′ is
a base point free pencil whose general member is irreducible. This implies
that h0(S, OS(D)) = D2 + 2.

Next we recall the description of Cremona minimal birational models of
pairs (S, |D|), with S and D as in Proposition 6.1.

Case D2 = 0. As we saw, |D| is composed with a base point free pencil
|L| of rational curves.

By blowing down all (−1)-cycles Z such that Z · L = 0, we have a bira-
tional morphism f : S → Fn, for some n, which maps |L| to the ruling |F |
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of Fn (one of the rulings if n = 0). By making elementary transformations
at general points, we see that

(S, |L|) ∼ (Fn, |F |) ∼ (F1, |F |).

By contracting the (−1)-section, this in turn is birationally equivalent to
(P2, L(1; 1)).

Case D2 = d > 0. The linear system |D| determines a birational mor-
phism ϕ : S → Σ ⊆ Pd+1, where Σ is a surface of degree d. According to
the del Pezzo classification of minimal degree projective surfaces (see [dP],
[Con], and [EH]), we have the following possibilities.

• Σ  P2 and d = 1 or 4; accordingly, either (S, |D|) ∼ (P2, L(1)) or
(S, |D|) ∼ (P2, L(2)).

• d = a + b, with 0 � a � b, and Σ = S(a, b); the minimal resolution of
singularities of Σ is Fb−a fitting in a diagram

S
f

ϕ

Fb−a

φ

Σ ⊂ Pd+1

where f is a birational morphism and φ is determined by the linear
system |E + bF |, so (S, |D|) ∼ (Fb−a, Lb−a(1, b)).

If b > a, make b − a − 1 elementary transformations based at general
points of Fb−a. In this way,

(S, |D|) ∼
(
Fb−a, Lb−a(1, b)

)
∼

(
F1, L1(1, b; [1b−a−1])

)
,

where the b − a − 1 simple base points are general on E1. By contract-
ing E1, one has

(S, |D|) ∼
(
F1, L1(1, b; [1b−a−1])

)
∼

(
P2, L(b; (b − 1, [1b−a−1]))

)
,

where the b − a − 1 simple base points are general in the first-order
infinitesimal neighborhood of the point of multiplicity b − 1.

If b = a, make one elementary transformation based at a general point
of F0, and then contract the (−1)-section. In this way,

(S, |D|) ∼
(
F0, L(1, b)

)
∼

(
F1, L1(1, b + 1;1)

)
∼

(
P2, L(b + 1; b,1)

)
.
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Now we can state the following result.

Theorem 6.2. Let (S,D) be as in Proposition 6.1. Then (S, |D|) is bira-
tionally equivalent to one and only one of the following:

(a) (F1, L1(0,1));
(b j) (P2, L(j)), j = 1,2;
(cd

1) (F1, L1(1, d)), d � 2;
(cd

0) (F0, L0(1, d − 1)), d � 2; or
(cd

n) (Fn, Ln(1, d)), 2 � n � d.

These, in turn, are birationally equivalent to the following Cremona minimal
pairs (P2, L), where L is one, and only one, of the following:

(i) L(1; 1), of dimension 1, corresponding to case (a);
(ii) L(j), j = 1,2, of dimension 2 and 5, respectively, corresponding to

case (b j);
(iii) L(d;d − 1), d � 2, of dimension 2d, corresponding to case (cd

1);
(iv) L(d;d − 1,1), d � 2, of dimension 2d − 1, corresponding to case (cd

0);
or

(v) L(d; (d − 1, [1n−1])), 2 � n � d, of dimension 2d − n + 1, with the
simple base points infinitely near of order 1 to the point of multiplicity d − 1,
corresponding to case (cd

n).

Proof. Part of the proof is given by [Con], [Na1], and [Na2], with classical
methods (cf. [D], which uses Mori’s theory). Since we could not find a proper
reference for the full statement, we give a proof here.

The birational equivalence to one of the pairs in (a), (b j), (cd
n) has been

proved above (cf. [D]). Pairs (a), (b j), (cd
0), (cd

1), and (cd
n), n � 2, are, respec-

tively, birationally equivalent to pairs (i), (ii), (iii), (iv), and (v). Their Cre-
mona minimality follows from Lemma 2.1.

Finally, we prove that pairs (P2, L), with L as in (i)–(v), are birationally
distinct. To see this, taking into account the Cremona minimality, it suffices
to remark that if these linear systems have the same dimension, then they
have different Cremona degrees.

Remark 6.3. All linear systems in Theorem 6.2, except L(1) and L(1; 1),
are such that cdeg(L) > cdeg(C), where C ∈ L is the general curve, since
clearly cdeg(C) = 1.
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§7. Admissible plane models and Cremona transformations

Let (Fn, L ′) be a pair where n � 2 and L′ = Ln(k,h;m1, . . .) is not empty,
where the indicated multiplicities are the effective ones. By performing n − 1
elementary transformations at general points p1, . . . , pn−1 of Fn, and then by
blowing down the (−1)-section E1 (cf. Case D2 = d > 0 before Theorem 6.2),
one gets a plane model (P2, L) with

L = L
(
h; (h − k, [kn−1]),m1, . . .

)
.

It may happen that some of the points of multiplicity m1, . . . are infinitely
near to the point of multiplicity h − k. This occurs if and only if some of
the base points of L ′ lie on En.

More generally, one can make the following process. We consider a fibered
birational map γ : Fn ��� F1 such that γ(En) = E1. In particular, γ is a
sequence of elementary transformations. By blowing down the (−1)-curve
E1 to a point p, one gets a planar linear system L having multiplicity
deg(L) − k at p.

In general, a pair (P2, L) with

L = L(h;h − k, ν1, . . .)

is said to be admissible if all base points pi of L with multiplicity νi > k/2,
i = 1, . . . , r, are infinitely near to the base point p of multiplicity h − k and
if

h − 3
[k

2

]
>

r∑
i=1

νi − r
[k

2

]
.

This implies that p is the point of maximal multiplicity of L.
Note that L is admissible if and only if all its multiples

L
(
ih; i(h − k), iν1, . . .

)
, i � 1,

are admissible.
If k = 2m, the m-adjoint of L is

(16) adm(L) = L
(
d; (d, {μ1, . . . , μr })

)
,

where μi = νi − m, i = 1, . . . , r, and d = deg(L) − 3m >
∑r

i=1 μi, which is
indeed equivalent to (P2, L) being admissible.

Now we prove the following result.
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Theorem 7.1. Let (P2, L) be an admissible plane model with L irre-
ducible. Let γ : P2 ��� P2 be a Cremona transformation such that
deg(γ∗(L)) � deg(L). Then there exists a de Jonquières transformation φ :
P2 ��� P2 such that deg(φ∗(L)) � deg(γ∗(L)).

Beginning of proof. By the Noether-Castelnuovo theorem (Theorem 1.1),
γ is the composition of finitely many quadratic and linear transformations.
We may and will assume that the number of involved quadratic transfor-
mations is minimal.

Let p be the maximal multiplicity point of L, and let pi, i = 1, . . . , r be
the points of multiplicity

νi > m :=
[deg(L) − multp(L)

2

]
,

so adm(L) is given by (16). We may assume that k = 2m; otherwise, we
replace L with its double.

Let Λ = L(δ;α,α1, . . . , αr, β1, . . . , βs) be the homaloidal net defining γ,
where αi, i = 1, . . . , r (α, resp.) is the multiplicity of Λ at pi (at p, resp.),
and βj , j = 1, . . . , s is the multiplicity at the other base points q1, . . . , qs

of Λ.
The linear system adm(L) has b =

∑r
i=1 μi fixed lines, say, L1, . . . ,Lt,

t � r, each Li counted with multiplicity bi with b =
∑t

j=1 bj . The movable
part L(d − b;d − b) of adm(L) is composed with the pencil L0 = L(1; 1) of
lines through p. Our hypothesis says that deg(adm(γ∗(L))) � adm(L). This
implies that either

(1) γ contracts a fixed line to a point, or
(2) γ does not contract any fixed line, and therefore γ maps L0 to a

pencil of lines, in which case deg(φ∗(L)) = deg(L) and γ is a de Jonquières.
In case (2), there is nothing else to prove. So we may and will assume that
case (1) holds and that γ is not a de Jonquières. We will then argue by
induction on the simplicity of γ. This ends the first part of the proof.

Next we need the following lemma.

Lemma 7.2. In the above setting, there is a fixed line of adm(L), say L1,
contracted by γ, passing through p and an infinitely near point p1 to p, such
that δ = α + α1, with α � α1 � αi, βj , i = 1, . . . , r, j = 1, . . . , s.

Proof. We may and will assume that Li, i = 1, . . . , t is the line passing
through p and that pi >1 p. If there is an i, 1 � i � t, such that αi = δ − α,
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we may assume that i = 1 and the rest of the assertion follows. Suppose, by
contradiction, that αi < δ − α for each i = 1, . . . , t.

The Cremona transformation γ maps the pencil L0 to a pencil of curves
of degree � = deg(γ∗(L0)) = δ − α � 2 and maps the line Li, i = 1, . . . , t, to a
curve of degree �i = deg(γ∗(Li)) � δ − α − αi. Then, either �i > 0 or �i = 0,
which means that there is at least a proper or infinitely near point qji on Li

or on its proper transform. By (13), one has

(17) deg
(
adm(γ∗(L))

)
= deg

(
γ!(adm(L))

)
− dα −

r∑
i=1

μiαi +
s∑

j=1

hjβj ,

where 0 � hj = m − h′
j where h′

j is the multiplicity of L at qj , j = 1, . . . , s
and the total transform γ!(adm(L)) of adm(L) via γ has degree

(18) deg
(
γ!(adm(L))

)
= (d − b)�+

t∑
i=1

bi�i +dα+
t∑

i=1

biαi +
t∑

i=1

∑
qj ∈Li

biβj ,

where the last sum runs over the proper or infinitely near base points qj

of Λ which belong to the proper transform of Li. (There is no pi, i = t +
1, . . . , r, among such points; otherwise, Li should be a fixed component of
L.) Therefore, (17) and (18) imply that

deg
(
adm(φ∗(L))

)
� (d − b)� +

t∑
i=1

bi

(
�i +

∑
qj ∈Li

biβj

)

� 2d − 2b +
t∑

i=1

bi = d + (d − b) > d,

which contradicts the assumption that deg(γ∗(L)) � deg(L).

Proof of Theorem 7.1 (continued). By Lemma 7.2, the simplicity of γ,
that is, of Λ, is (kΛ, hΛ, sΛ), where kΛ = δ − α = α1 > 1. By the proof of
the Noether-Castelnuovo theorem (Theorem 1.1) in Appendix A, there is
a quadratic transformation ψ : P2 ��� P2 centered at p such that γ = γ′ ◦
ψ, with γ′ simpler than γ. Set L ′ = ψ∗(L). If deg(L ′) � deg(L), then the
minimality assumption on γ implies that γ is quadratic, a contradiction
because we are assuming that γ is not a de Jonquières. Therefore, deg(L′) >

deg(L) � deg(γ∗(L)) = deg(γ′
∗(L ′)). Furthermore, the number of quadratic
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transformations involved in the factorization of γ′ is minimal, as well as the
analogous number for γ.

In Lemma 7.3 below, we prove that we may choose the quadratic trans-
formation ψ in such a way that adm(L ′) = L(d′; (d′, {μ′

1, . . . , μ
′
r })) and that

L ′ has maximal multiplicity at p′; namely, ψ maps the pencil L0 of lines
through p to the pencil of lines through p′. By induction, there is a de Jon-
quières transformation ϕ centered at p′ such that deg(ϕ∗(L ′)) �
deg(γ′

∗(L ′)) = deg(γ∗(L)). Therefore, φ := ϕ ◦ ψ is a de Jonquières transfor-
mation centered at p such that deg(φ∗(L)) � deg(γ∗(L)), which concludes
the proof.

Lemma 7.3. In the above setting, we may choose the quadratic trans-
formation ψ in such a way that (P2, L ′) is admissible; namely, adm(L ′) =
L(d′; (d′, {μ′

1, . . . , μ
′
r })).

Proof. Since p1 is a point of multiplicity α1 > kΛ/2, the proof of Noether-
Castelnuovo’s theorem in Appendix A implies that there is a quadratic
transformation ψ based at p, at q >1 p, and at x, which lowers the simplic-
ity of Λ. Let L ′ = ψ∗(L), which has maximal multiplicity at p′, the point
corresponding to p via ψ. We have to prove that L′ does not have base
points of multiplicity μ > m off p′.

Assume first that x is a proper point; hence, the multiplicity of L at x

is ν � m. Then a point of multiplicity μ > m for L′ off p′ could come only
from a point y >1 q, y �/ p. But in that case, the quadratic transformation
based at p, q, y lowers the degree of L, a contradiction.

The alternative is that x >1 q. As above, the multiplicity of L at x is ν �
m, and therefore ψ cannot produce points of multiplicity μ > m off p′.

§8. Weight of a curve on an Fn and good plane models

Here we introduce the notions needed for finding Cremona minimal pairs.
Let (Fn,C) be a pair where n � 2 and C is a singular, irreducible curve,

and let p /∈ E be a singular point of C. The weighted oriented tree, or briefly
tree, Tp of p ∈ C ⊂ Fn is defined as follows.

Step 1. The root vp of Tp corresponds to p with weight the multiplicity
of C at p.

Step 2. Make elmp, and let q = elmp(Fp) ∈ E. Consider the proper trans-
form C ′ of C and the singular points p1, . . . , pr of C ′ lying on Fq off E;
then Tp has one vertex vpi , with weight the multiplicity of C ′ at pi, and one
arrow vp → vpi , for each i = 1, . . . , r.
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Step 3. Iterate Step 2 for p1, . . . , pr until either no further singular point
of C ′ shows up or the maximal length of oriented chains in the tree is n − 1.

The weighted oriented forest, or briefly forest, G = G(Fn,C) of the pair
(Fn,C) is constructed as follows.

• If Fp is the fiber of the ruling |F | containing a singular point p of C off
E, then G has a vertex vFp , with zero weight.

• For each singular point p /∈ E of C, G then contains the tree Tp of p ∈ C,
connected to vFp with an arrow vFp → vp.

• G has further vertices vpi , with weight 1, and vFpi
, with zero weight,

and an arrow vFpi
→ vpi , for each i = 1, . . . , n − 1, where p1, . . . , pn−1 are

general points of C.

A path P in G is the union of oriented chains in distinct connected com-
ponents of G, each chain starting from a vertex of weight 0. The length of P

is the number of arrows that it contains. Given a path of length n − 1, the
set {p1, . . . , pn−1} of corresponding points is called a cluster for the pair
(Fn,C). The weight of P is the sum of the weights of all vertices where P

is supported. A path P is called good if P has length n − 1 and maximal
weight. Accordingly, the cluster {p1, . . . , pn−1} of corresponding points is
called good. Setting mi, i = 1, . . . , n − 1, the multiplicity of C at the infin-
itely near or proper point pi, which is the weight of G at the corresponding
vertex, we may and will assume that m1 � m2 � · · · � mn−1 � 1, and we say
that m1, . . . ,mn−1 is a good sequence of multiplicities for the pair (Fn,C).
Accordingly, the plane model (P2,B), obtained by performing the elemen-
tary transformations at p1, . . . , pn−1 and then blowing down the (−1)-curve
E1 ⊂ F1, is called good. The weight w(Fn,C) of the pair (Fn,C) is the weight
w(P ) =

∑n−1
i=1 mi of a good path P in the forest G.

Remark 8.1. The number of connected components of G = G(Fn,C)
equals the number of fibers of |F | containing singular points of C off E,
increased by n − 1. On each connected component of G there is a unique
vertex of weight 0.

There exist good paths in G. For example, if n = 2, a good path is just
an arrow vFp → vp where p is a point of maximal multiplicity of C off E2.

Example 8.2. (a) Let (Fn,C) be a pair with n � 2 and C smooth. Then
1n−1 is the unique good sequence of multiplicities of (Fn,C), and any set of
n − 1 general points of C is a good cluster.
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(b) Let (Fn,C) be a pair with n � 2 and C irreducible. Suppose that the
largest n − 1 multiplicities m1 � m2 � · · · � mn−1 of C can be found, respec-
tively, at points p1, . . . , pn−1 on distinct fibers, off En. Then w(Fn,C) =∑n−1

i=1 mi, and m1, . . . ,mn−1 is a good sequence of multiplicities of C. In
particular, if the singularities of C are only at proper points on distinct
fibers, off En, then there is a unique good sequence of multiplicities of C,
but perhaps different good clusters.

(c) Let (F3,C), C ∈ L3(6,18; 3, (2, [2])); that is, C has a triple point p and
a tacnode p′. Suppose that p, p′ lie on the same fiber Fp = Fp′ off E3 and
that the tacnodal tangent at p′ is different from the tangent line to Fp at p′.
Then the weighted oriented forest G = G(F3,C) of (F3,C) is

3

0

2 2

0 1 0 1

that has two different good sequences of multiplicities 2,2 and 3,1, deter-
mined by the different good paths: 0 → 2 → 2 and {0 → 3} ∪ {0 → 1}.

Accordingly, one gets two birationally equivalent different Cremona min-
imal pairs (P2,B1) and (P2,B2) with B1 ∈ L(14; (8, [42]),3) and B2 ∈ L(14;
(8, [5,3]),22), where all singularities of B1,B2 are infinitely near to the point
of multiplicity 8, and their configuration is described, respectively, by the
following two diagrams

8 4

4
2

3

5

8

3 2 2

where m1
r−−→ m2 means that the point of multiplicity m1 is proximate and

infinitely near of order r to the point of multiplicity m2 (no r means r = 1).
This example shows that a good sequence of multiplicities may well be

not unique.

Now we study the properties of good sequences of multiplicities of �-
models obtained from �-models.

Remark 8.3. (i) Let (Fn′ ,C ′) be a �-model where n′ � 1, C ′ ∈ Ln′ (2m,h′;
m1, . . .), and C ′ is irreducible. The �-model (Fn,C) fibered birationally
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equivalent to (Fn′ ,C ′) is such that C has at most n − n′ proper or infinitely
near points of multiplicity μ > m.

(ii) Let m′
1 � · · · � m′

n−1 = m̄ be a good sequence of multiplicities for the
�-model (Fn,C) as above, and let {p1, . . . , pn−1} be the corresponding good
cluster.

The proper transform C2 = (elmp1,...,pn−2)∗(C) ⊂ F2 has multiplicity m̄

at pn−1 /∈ E2. The definition of good cluster implies that C2 has no point
of multiplicity μ > m̄ off E2. If (P2,B) is the good model of (Fn,C) and if
q ∈ P2 is the point of B with the highest multiplicity, it follows that each
point of B with multiplicity μ > m̄, if any, is infinitely near to q.

(iii) If m̄ � m, then C has multiplicity μ � m at each one of the n −
1 points p1, . . . , pn−1 of the good cluster; hence, n′ = 1 by (i), and C1 =
(elmp1,...,pn−1)∗(C) = C ′ on F1. Thus B = σ∗(C1) ∈ L(h′;h′ − 2m,m1, . . .),
with m1 � m, and the good plane model (P2,B) is Cremona minimal by
Theorem 2.3. In particular, if n′ � 2, it follows that m̄ < m.

(iv) Suppose that B has multiplicity m1 > m at a point q1 >1 q, and
let L1 be the line passing through q and q1. If B meets L1 at a proper
or infinitely near point q′, different from q and q1, then B has multiplicity
μ < m at q′, because

deg(B) − multq(B) − multq1(B) = 2m − m1 < m.

Theorem 8.4. Let (P2,B) be a good model of a �-model (Fn,C), n � 2,
with �-index at least 2, C irreducible, C ∈ Ln(2m+ε, h;m1, . . .), and ε = 0,1.
Then the pair (P2,B) is Cremona minimal.

Proof. Let p0 be the point of maximal multiplicity of B. Suppose that
there is a Cremona transformation γ such that deg(γ∗(B)) < deg(B) and
deg(γ∗(B)) is minimum. Since (P2,B) is admissible, by Theorem 7.1 there
is a de Jonquières transformation φ centered at p0 such that deg(φ∗(B)) =
deg(γ∗(B)) < deg(B), and, moreover, φ maps the pencil of lines through the
maximal multiplicity point of B to the pencil of lines through the maximal
multiplicity point of B′ = φ∗(B).

The curve B sits in a linear system of the form L(d + 3m; (d + m −
ε, [2m + ε − μ1, . . . ,2m + ε − μn−1],m′

1, . . .)), where d = deg(adm(B)), the
�-model is (Fn,C), and μ1, . . . , μn−1 is a good sequence of multiplicities
of C (not necessarily in decreasing order). Let Λ = L(δ; δ − 1,12δ−2) be
the homaloidal net defining φ. Let � � n − 1 be the number of points among
those of multiplicities 2m+ ε − μ1, . . . ,2m+ ε − μn−1 for B, which are simple
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base points for Λ. By proximity, we have � � δ − 1. Then

deg
(
φ∗(B)

)
= δ(d + 3m) − (δ − 1)(d + m − ε) −

�∑
i=1

(2m + ε − μi) −
2δ−2∑
�+1

μ′
j ,

where μ′
j are the multiplicities of B at the remaining base points of Λ.

Therefore, one has

deg
(
φ∗(B)

)
= 2m(δ − �)+d+m+ ε(δ − 1 − �)+

�∑
i=1

μi −
2�∑

i=�+1

μ′
i −

2δ−2∑
i=2�+1

μ′
i,

where we assume that the μ′
i are ordered in decreasing order for � + 1 � i �

2δ − 2. Note that the general curve of the proper transform of Λ on Fn is a
smooth section. Hence, all the base points of this proper transform are parts
of paths in the relevant forest. Therefore,

∑�
i=1 μi �

∑2�
i=�+1 μ′

i. Moreover,
we have μ′

i � m for 2� + 1 � i � 2δ − 2 as a consequence of the assumption
on the �-index (see Remark 8.3(iii)). Hence, we deduce

deg
(
φ∗(B)

)
� 2m(δ − �) + d + m − 2(δ − � − 1)m = d + 3m,

a contradiction.

Remark 8.5. The above proof shows that one may have deg(φ∗(B)) =
deg(B) for a de Jonquières transformation only if

∑l
i=1 μi =

∑2�
i=�+1 μ′

i,
μ′

i = m for 2� + 1 � i � 2δ − 2 and � = δ − 1 if ε = 1.

§9. The main classification theorem

Let (S,C) be a pair. We will say that it presents the line case if it is
birationally equivalent to (P2,L), where L is a line. For example, if C is
part of a (−1)-cycle on S, then (S,C) presents the line case. Coolidge [Coo]
stated the following theorem, which gives necessary and sufficient conditions
for a pair (S,C) to present the line case.

Theorem 9.1 (Coolidge [Coo]). Let B be an irreducible plane curve.
Then (P2,B) presents the line case if and only if adm(B) = ∅, for all m > 0.

Unfortunately, Coolidge’s proof ([Coo, pages 396–398]; written again in
[KM, pages 772–773]) is incomplete. Kumar and Murthy gave a correct
proof of Theorem 9.1 with different methods. They actually proved more
(see [KM, Theorem 2.1 and Corollary 2.4]).
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Theorem 9.2 (Kumar-Murthy [KM]). Let B be an irreducible plane
curve. Then (P2,B) presents the line case if and only if κ(P2,B) = −∞,
which is equivalent to ad1(B) = ad2(B) = ∅. In particular, if C is the min-
imal desingularization of B on a surface and C2 = −n, then (P2,B) ∼
(Fn,E).

Remark 9.3. In the above setting, if C is rational and C2 � −3, then
|C + KS | = |C + 2KS | = ∅ and (S,C) presents the line case. Hence, if C is
irreducible and the pair (S,C) does not present the line case, then C verifies
the hypothesis of Proposition 4.1(ii).

Next we prove a birational classification theorem for all pairs (S,C),
with S rational, producing for each of them a unique model on a minimal
rational surface or on F1. Moreover, we produce for each pair a plane model
of minimal Cremona degree.

First, we introduce some additional notation. Given a pair (S,C), with S

smooth and rational and C smooth, not presenting the line case, let m :=
m(S,C) be the minimum positive integer m such that |C + mKS | �= ∅ and
|C + (m + 1)KS | = ∅ and

α := α(S,C) = dim(|C + mKS |) = h0
(
S, OS(C + mKS)

)
− 1.

By the results in Section 4.2, m and α are birational invariants of the
pair (S,C). Note that, if C is rational, then m � 2 and, moreover, C is not
part of a (−1)-cycle on S.

Our main results are the following theorems.

Theorem 9.4 (Birational classification of pairs). Let (S,C) be a pair
with S rational and C smooth and irreducible, and suppose that (S,C) does
not present the line case. Let m = m(S,C), and let α = α(S,C). Then (S,C)
is birationally equivalent to one of the following pairs:

(dp1) (P2,D), where D ∈ L(3m;m0, . . .), with m0 � m, and α = 0;
(dp2) (Fn,D), where D ∈ Ln(2m, (2 + n)m;m1, . . .), with m1 < m, n =

0,2, and α = 0;
(r) (Fn,D), 0 � n � 2+[α/m], where D ∈ Ln(2m, (2+n)m+α;m1, . . .)

is �-minimal, that is, m1 � m, α > 0, and, if n � 1, all singular points of
multiplicity m are on En;

(b1) (P2,D), where D ∈ L(3m + [α/2];m0, . . .), with m0 � m, α = 2,5;
(b2) (Fn,D), where D ∈ Ln(2m + 1, (2 + n)m + (α + n − 1)/2;m1, . . .)

is �-minimal, with m1 � m, α + n ≡ 1, (mod 2), and α � 3 + n if 0 � n � 1,
whereas α � 3 + (n − 2)(2m + 1) � 3 if n � 2.
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The above pairs may be birationally equivalent and not isomorphic only
if we are in one of the following cases:

(i) (dp1), with m0 = m1 = m2 = m; or
(ii) (r), with n = 0 and D having at least two points of multiplicity m.

Remark 9.5. By taking into account the proof of Proposition 5.2, one
sees that case (ii) can be improved. Indeed, D may have more points of
multiplicity m, provided that performing elementary transformations there
forces us to make the inverse transformations to go back to the �-model.
This can be expressed in terms of clusters on the �-model, but we do not
dwell on this here.

Remark 9.6. All pairs in the statement of Theorem 9.4 except types
(dp1) and (b1) are �-models (see §5.1). By blowing up a point of multiplicity
m0, one sees that they are, respectively, birationally equivalent to the �-
models:

(F1,D
′), D′ ∈ L1(3m − m0,3m;m1, . . .),

with m1 � m0 � m,(19)

(F1,D
′), D′ ∈ L1(3m − m0 + [α/2],3m + [α/2];m1, . . .),

with m1 � m0 � m.(20)

Pairs (dp2) and (r) if either n = 0 or m > m1, pair (b1), and pair (20) are
��-models. Pair (19) is a ��-model if either m0 < m or m = m0 > m1. Pair
(r) with n � 1 has a positive �-index.

In cases (r) and (b2), with n � 2, since the �-index is positive, we may con-
sider the unique �-model (Fn+v,D�) which is fibered birationally equivalent
to (Fn,D) (see Proposition 5.4). Let q1, . . . , qv be the proper or infinitely
near singular points of D lying on En or on its strict transform, and let
μ1, . . . , μv be the respective multiplicities, where we may assume that μ1 �
· · · � μv � 2. Set γ =

∑v
i=1(2m − μi), and set n′ = n + v. Then (Fn+v,D�)

is obtained by performing elementary transformations at q1, . . . , qv, and
therefore either D� ∈ Ln′ (2m, (2 + n)m + α + γ), in case (r) with n � 1,
or D� ∈ Ln′ (2m + 1, (2 + n)m + (α + n − 1)/2 + γ), in case (b2) with n � 1.

Let m′
1,m

′
2, . . . ,m

′
n′ −1 be a good sequence of multiplicities of the �-model

(Fn′ ,D�), and set β =
∑n′ −1

i=1 m′
i. With this notation, we have the following.
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Theorem 9.7 (Cremona minimal pairs). Let (S,C) be a pair with S

rational and C smooth and irreducible, and suppose that (S,C) does not
present the line case. Then (S,C) is birationally equivalent to a Cremona
minimal pair (P2,B), where B belongs to one of the following planar linear
systems (where m and α are the birational invariants introduced above):

(cdp1) L(3m;m0, . . .), with m0 � m;
(cdp2) L(4m − m1; 2m − m1,2m − m1,m2, . . .), with m2 � m1 < m, m1 >

0;
(cdp3) L(4m − m1; 2m − m1, [2m − m1],m2, . . .), with m2 � m1 < m, m1 >

0;
(cr0) L(4m − m1 +α; 2m − m1 +α,2m − m1,m2, . . .), with m2 � m1 < m,

m1 > 0, and α > 0;
(cr1) L(3m + α;m + α,m1, . . .), with m1 � m and α > 0;
(cr2) L((2+n)m − β +α+γ; (nm − β +α+γ, [2m − m′

n′ −1,2m − m′
n′ −2,

. . . ,2m − m′
1]),mn′+1, . . .), with 2 � n � 2 + [α/m], α > 0, m � mn′+1 � · · ·

and n′, γ, m′
1,m

′
2, . . . ,m

′
n′ −1, and β as above;

(cb1) L(3m + [α/2];m0, . . .), with m0 � m and α = 2,5;
(cb2) L(3m +α/2;m − 1 + α/2,m1, . . .), with m1 � m and α � 4 is even;
(cb3) L(4m − m1 +(α + 1)/2; 2m − m1 +(α − 1)/2,2m+1 − m1,m2, . . .),

with m2 � m1 � m and α � 3 is odd;
(cb4) L((2 + n)m − β + γ + (α + n − 1)/2;nm − β + γ + (α + n − 3)/2,

[2m+1 − m′
n′ −1,2m+1 − m′

n′ −2, . . . ,2m+1 − m′
1],mn′+1, . . .), with 2 � n �

2 + (α − 3)/(2m + 1), mn′+1 � m, and n′, γ, m′
1,m

′
2, . . . ,m

′
n′ −1, and β as

above.
The above pairs may be Cremona, but not projectively, equivalent only if

we are in one of the following cases:
(1) (cdp1) with m0 = m1 = m2 = m and (cr1) with m1 = m2 = m;
(2) (cdp2), (cdp3), and (cr0) with m1 = m2;
(3) (cr2), for different good sequences of multiplicities of the same �-

model;
(4) (cb4), for different good sequences of multiplicities of the same �-

model.
Except in cases (3) and (4), the Cremona type of the minimal Cremona

pairs in a Cremona equivalence class is unique.

Remark 9.8. All systems in Theorem 9.7 except (cr2) and (cb4) are of
Noether type, and therefore, by Theorem 2.3, their Cremona minimality is
clear.
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The proof of Theorems 9.4 and 9.7 will follow from the analysis of three
different cases, according to the behavior of the nef part of C+mKS . Indeed,
by Propositions 4.1 and 4.2, one has C +mKS ≡ P +N , where P is the nef
and N is the negative part of C + mKS as in (11). Then there are three
possible cases:

(A) P = 0;
(B) P > 0 and P 2 = 0; or
(C) P > 0 and P 2 > 0.
We call cases (A), (B), and (C), respectively, the del Pezzo, ruled, and

big cases, and we discuss them separately.

9.1. The del Pezzo case
This case is covered by the following.

Proposition 9.9. Let (S,C) be a pair presenting the del Pezzo case.
Then (S,C) is birationally equivalent to one and only one of the pairs (dp1),
(dp2).

Accordingly, (S,C) is birationally equivalent to a Cremona minimal pair
(P2,B), B ∈ L, where L is one and only one of types (cdp1), (cdp2), and
(cdp3) in Theorem 9.7.

Proof. Let f : S → S′ be the birational morphism which first blows down
the negative part N of |C +mKS | and then other (−1)-cycles in such a way
that S′ is minimal. On S′, one has C ′ = f∗(C) ≡ −mKS′ , and a (−1)-cycle θ

on S, which is blown down by f and is not part of N , is such that C · θ = m.
If S′ = Fn, one has 0 � C ′ · En = (2 − n)m; therefore, n � 2. Thus, there are
three subcases: S′ = P2, or S′ = F0, or S′ = F2.

We may and will assume that, if S′ = F0 or F2, the birational morphism
S → S′ does not factor through a birational morphism g : S → F1 which
blows down N . Indeed, if such a morphism g exists, we may assume that
S′ = P2.

We discuss separately the three cases.
• If S′ = P2, then C ′ ≡ 3mL, where L is a line; that is, C ′ is a curve of

degree 3m with points of multiplicity at most m. Hence, we are in cases
(dp1) and (cdp1).

• If S′ = F0, then C ′ ≡ 2mE0 + 2mF0 and C ′ has points of multiplicity at
most m. If C ′ had a point p of multiplicity m, then elmp ◦f : S → F1

would be a birational morphism which factors through the blowing down
of N , a contradiction. Therefore, we are in case (dp2) with n = 0. Next,
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choose a point p of maximal multiplicity m1 of C ′. Perform an elementary
transformation elmp, and then blow down the (−1)-section E1. The result
is a pair (cdp2).

• If S′ = F2, then C ′ ≡ 2mE2 + 4mF2 and C ′ has points of multiplicity
at most m. Note that C ′ · E2 = 0 implies that C ∩ E2 = ∅. The same
arguments as above imply that we are in cases (dp2), n = 2, and (cdp3).
The Cremona minimality of the pairs (cdp1), (cdp2), and (cdp3) follows

from Theorem 2.3.
Cremona minimality implies that the pairs (cdp1) are not Cremona equiv-

alent to either (cdp2) or (cdp3). To prove that (cdp2) and (cdp3) are not Cre-
mona equivalent, note that the image of P2 via the linear system adm1(L)
is projectively different in the two cases (see Remark 4.5).

The assertions Theorem 9.4(i) and Theorem 9.7(1),(2) regarding the del
Pezzo pairs follow from Corollary 2.4.

Remark 9.10. (i) From the irreducibility of C, it follows that the number
of points of multiplicity m of L in case (cdp1) is at most 9, if m > 2 (at
most 10 if m = 2).

(ii) An alternative proof of the birational inequivalence of pairs (dp1)
and (dp2) follows from Iitaka’s theorem (Theorem 5.1); since types (dp2)
and (dp3) are ��-minimal and since type (dp1), considered on F1 as in
Remark 9.6, is �-minimal.

9.2. The ruled case
We deal with this case in the following proposition.

Proposition 9.11. Let (S,C) be a pair presenting the ruled case. Then
(S,C) is birationally equivalent to one and only one of the pairs in (r), with
the usual exception for n = 0.

Accordingly, (S,C) is birationally equivalent to a Cremona minimal pair
(P2,B), B ∈ L, where L is one and only one of types (cr0), (cr1), and (cr2).

Proof. Since adm+1(C) = ∅, one has |P + KS | = ∅, and Proposition 6.1
implies that P is composed with an irreducible base point free pencil |L| of
rational curves, namely, P ≡ αL.

Blowing down of all (−1)-cycles Z such that Z · L = 0 gives a birational
morphism f : S → Fn, which maps |L| to the ruling |F | of Fn (one of the
rulings if n = 0). Therefore,

D = f∗(C) ≡ −mKFn + αF ≡ 2mE +
(
m(2 + n) + α

)
F,
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and D has points of multiplicity at most m. So this is a �-model. We may
actually assume that n is the �-index of the pair.

Note that 0 � D · En = 2m − mn + α implies that n � 2 + α/m.
If n = 0, we find case (r) with n = 0. Then we get (cr0) from (r) by choos-

ing a point p ∈ D of maximal multiplicity m1, performing the elementary
transformation elmp, and then contracting the (−1)-section E1.

If n = 1, we find case (r) with n = 1. Then we get (cr1) by contracting
the curve E1.

Assume now that n > 1. We are still in case (r), n � 2, and we get
type (cr2) as a good model obtained from the �-model of (Fn,D) (see Sec-
tion 5.3).

The birational uniqueness of types in (r), except for those with n = 0 and
at least two points of multiplicity m, follows from Remark 9.6, Theorem 5.1,
and Proposition 5.2.

As for Cremona minimality, in cases (cri), 0 � i � 1, one applies Theo-
rem 2.3. In case (cr2), Cremona minimality follows from Theorem 8.4.

The types (cri), 0 � i � 1, are clearly not Cremona equivalent. The types
(cr2) are not Cremona equivalent to the others, since such a Cremona
equivalence would induce a fibered birational equivalence between the corre-
sponding �-models (see Theorem 7.1), which would therefore be isomorphic
by Theorem 5.2, a contradiction.

Theorem 9.4(ii) follows from Proposition 5.2 in case n > 0. If n = 0 and
there is only one point of multiplicity m, the assertion follows from Corol-
lary 2.4, applied to case (cr0). Theorem 9.7(1),(2) regarding the ruled pairs
follow again from Corollary 2.4. As for Theorem 9.7(3), it follows from The-
orem 8.4 and Remark 8.5.

Remark 9.12. Iitaka’s theorem (Theorem 5.1) gives an alternative proof
of the fact that pairs of type (r) are birationally inequivalent when m1 < m,
because in that case type (r) is ��-minimal.

9.3. The big case
Finally, we dispose of the big case. This finishes the analysis of the various

possible cases and the proof of Theorems 9.4 and 9.7.

Proposition 9.13. Let (S,C) be a pair presenting the big case. Then
(S,C) is birationally equivalent to one and only one of pairs (b1).

Accordingly, (S,C) is birationally equivalent to a Cremona minimal pair
(P2,B), B ∈ L, where L is one and only one of types (cb1), (cb2), (cb3), and
(cb4) in Theorem 9.7.
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Proof. Since |C + (m + 1)KS | = ∅, one has |P + KS | = ∅, and Proposi-
tion 6.1 implies that |P | is a base point free linear system of dimension
α = P 2 + 1 > 1. The same argument used after Proposition 6.1 shows that
there is a birational morphism f : S → S′, with either S′ = P2 or S′ = Fn,
mapping |P | to a linear system |P ′ | = f∗(|P |), which is one of the cases (bj),
(cd

n), n � 0, of Theorem 6.2. Furthermore, as in the del Pezzo case and the
ruled case, the curve C ′ = f∗(C) has points of multiplicity at most m. In
the Fn-case we may assume that n is the �-index.

We analyze the different cases which may occur.

(bj) On P2 one has |P ′ | = L(j), so either α = 2, if j = 1, or α = 5, if j = 2.
Hence, C ′ ≡ −mKP2 +P ′ ≡ (3m+[α/2])L, L a line, and we are in case (b1).

(cd
1) On F1, one has |P ′ | = L1(1, d), d � 2, where d = α/2. Hence, α � 4

is even, and C ′ ≡ −mKF1 + P ′ ≡ (2m + 1)E + (3m + α/2)F, that is, case
(b2), n = 1.

(cd
0) On F0, one has |P ′ | = L0(1, d − 1), d � 2, where d = (α + 1)/2; thus

α � 3 is odd, and C ′ ≡ −mKF0 + P ′ ≡ (2m + 1)E + (2m + (α − 1)/2)F.

Hence, we are in case (b2), n = 0.
(cd

n) On Fn, n � 2, one has |P ′ | = Ln(1, d), d � n, where d = (α+n − 1)/2,
and therefore C ′ ≡ (2m + 1)E + (m(2 + n) + (α + n − 1)/2)F. Since 0 �
C ′ · En = m(2 − n) + (α − n − 1)/2, one has α � 3 + (2m + 1)(n − 2), and
we are in case (b2), n � 2.

The above pairs are birationally distinct by Theorem 5.1.
Now we deal with Cremona models. Cases (cb1) and (cb2) correspond

to cases (b1) and (b2), n = 1. In case (b2), n = 0, choose a point p1 of the
highest multiplicity m1 of C ′, and perform the elementary transformation
elmp1 : F0 ��� F1; by contracting the (−1)-curve E1 of F1, we arrive at
case (cb3). In case (b2), n � 2, consider the �-model obtained from the �-
model we have reached (see notation introduced in Section 5.3 and used in
Section 9.2), then go to a good plane model, thus getting case (cb4).

The Cremona minimality of types (cb1), (cb2), and (cb3) follows from
Theorem 2.3. That of type (cb4) can be proved with the same arguments
we used in the ruled case for (cr2). The birational inequivalence of the four
cases is clear.

Theorem 9.7(4) follows from Theorem 8.4 and Remark 8.5.

Remark 9.14. (i) Iitaka’s theorem gives an alternative proof of the bira-
tionally inequivalence of types (b1), (b2), because all of them are ��-minimal
(considering (b1) as a pair (20) on F1; see Remark 9.6).
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(ii) From Theorem 6.2 we have that |C + hKS | = ∅ for any h � m. By
definition, |C + hKS | �= ∅ for 0 � h � m, unless C is rational, in which case
|C + KS | = ∅.

(iii) The above results can be easily extended to pairs (S, L) with L a
positive dimensional, irreducible linear system on a rational surface S. Once
one arrives at a �-model, the definition of a good sequence of multiplicities
has to be slightly changed, inasmuch as one may perform elementary trans-
formations only at base points of the system or at general points of the
surface. We do not further dwell on this here.

§10. Applications

10.1. Minimality of pairs
Let (S,C) be a pair as usual. The following definitions are due to

Iitaka [I1]. The pair (S,C) is called relatively minimal if there is no (−1)-
curve E on S such that C · E � 1. The pair is called minimal if whenever
we have a pair (S′,C ′) and a birational map φ : S′ ��� S inducing an equiv-
alence (S,C) ∼ (S′,C ′), then φ is a morphism.

Proposition 10.1 (Iitaka [I1]). Let (S,C) be a relatively minimal pair,
with S rational and C irreducible. Assume that κ(S,C) � 0, that either
m(S,C) > 1 or m(S,C) = 1, that and (S,C) does not present the ruled case.
Then (S,C) is minimal.

Proof. Let (S′,C ′) be another pair, and let φ : S′ → S be a birational
map inducing an equivalence (S,C) ∼ (S′,C ′).

If m(S,C) > 1, apply Proposition 4.4 for m = 2. We have the diagram

X
f ′ f

S′
φ

S

Let Θ be an f ′-exceptional (−1)-cycle on X which is noncontracted by f .
Then f∗(Θ) = θ is a (−1)-cycle on S such that C · θ � 1, a contradiction.
This proves the assertion in this case.

If m(S,C) = 1, then we consider P = C + KS , which is nef. In the del
Pezzo case, we have C ≡ −KS , and relative minimality implies that there
is no (−1)-curve on S, proving the assertion. In the big case, note that
relative minimality implies that there is no (−1)-curve E such that P · E = 0.
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Then |P | determines a morphism f : S → Σ ⊂ Pr, with Σ a minimal degree
surface. Then S is minimal, proving the assertion in this case, too.

Corollary 10.2 (Iitaka [I1]). Let (S,C) be a relatively minimal pair,
with S rational and C irreducible. If κ(S,C) � 0, then C2 and K2

S are
birational invariant of the pair (S,C).

Proof. The assertion follows from Proposition 10.1 if either m(S,C) > 1
or m(S,C) = 1 and (S,C) does not present the ruled case. In the former
case, however, we have C +KS ≡ αL, where L is a pencil of rational curves.
But the relative minimality hypothesis implies that there is no (−1)-curve E

such that E · L = 0. Hence, S is a Fn, and C ≡ αL − KS ; thus C2 and K2
S

do not depend on n.

10.2. Low Kodaira dimension
Proposition 10.3 (Kumar-Murthy [KM], Iitaka [I1]). Let (S,C) be a

relatively minimal pair with S rational and C irreducible. Assume that κ =
κ(S,C) = 0,1. Then (S,C) is one of the following:

(i) (S,C) is the minimal resolution of singularities of (P2,D), with D ∈
L(3m;m9), m � 1 (κ = 0);

(ii) (S,C) is the minimal resolution of singularities of (Fn,D), n = 0,2,
with D ∈ L(2m, (2 + n)m;m8), m � 1 (κ = 0);

(iii) (S,C) is the minimal resolution of singularities of (P2,D), with D ∈
L(3m;m9,2), m � 1 (κ = 0);

(iv) (S,C) is the minimal resolution of singularities of (Fn,D), n = 0,2,
with D ∈ L(2m, (2 + n)m;m8,2), m � 1 (κ = 0);

(v) (Fn,D) as in case (r) of Theorem 9.4, with m = 1 (κ = 1).

Proof. Let m = m(S,C), and let mKS + C = P + N , with P the nef
and N the negative part. One has P 2 = 0. If we are in the del Pezzo case,
then we are in cases (i)–(iv). If we are in the ruled case, since C + P is big,
one has m = 1, and we are in case (v).

Remark 10.4. Proposition 10.3(i),(ii) are birational to minimal Cre-
mona plane curves D ∈ L(3m;m9) which, for m � 1, give rise to Halphen’s
pencils of elliptic curves. Cases (iii) and (iv) are birational plane curves
D ∈ L(3m;m9,2) with minimal Cremona degree, which are nodal curves in
Halphen’s pencils.
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10.3. Genus 0
Let (S,C) be a relatively minimal pair with S rational and C irreducible

and rational. If C2 � −3, then h0(S, OS(2KS + C)) = 0 and (S,C) presents
the line case.

Proposition 10.5 (Matsuda [M]). Let (S,C) be a relatively minimal
pair with S rational and C irreducible and rational. If C2 = −4 and (S,C)
does not present the line case, then κ(S,C) = 0 and (S,C) is as in Proposi-
tion 10.3(iii),(iv). The minimal Cremona type of C is (3m;m9,2), that is,
C is a nodal curve in a Halphen’s pencil.

Proof. Set K2
S = k, and set P = 2KS + C, which is effective and nef. One

has P 2 = 4(k + 1) � 0; thus k � −1. Also, P · KS = 2(k + 1). The Riemann-
Roch theorem says that dim(|P |) � k + 1. But since C · P = 0, one has
dim(|P |) = 0; hence, k = −1 and P 2 = P · KS = 0. Moreover, 2(KS + C) =
P + C. This implies that κ(S,C) � 1. The assertion follows from Proposi-
tion 10.3.

10.4. Genus 1
The following results are classical (see, e.g., [Na1], [Na2]).

Proposition 10.6. Let (S,C) be a relatively minimal pair with S rational
and C nef of genus 1. Assume that C2 � 0 with C irreducible if C2 = 0. Then
(S,C) is as in Proposition 10.3(i),(ii), with m = m(S,C) = 1 if and only if
C2 > 0. In particular, (S,C) is birational to a pair in Proposition 10.3(i).

Proof. Set KS +C = P which is effective and nef. Since P · C = 0, if C2 >

0, the index theorem yields P = 0. If C2 = 0, then P 2 = 0 and κ(S,C) < 2;
thus the assertion follows from Proposition 10.3.

Corollary 10.7. Let (S, L) be a relatively minimal pair with S rational
and L a linear system whose general curve C is nef and irreducible if C2 = 0
and has arithmetic genus 1 and r = dim(L) � 1. Then

(i) (S, L) is birational to (P2, L(3; 19−r)), with 2 � r � 9;
(ii) (S, L) is birational to (P2, L(3m;m9)), with r = 1; or
(iii) (S, L) is birational to (Fn, L(2,2 + n)), n = 0,2, or to (P2, L(4,22)),

where the two base points may be infinitely near (r = 8).

We add the following corollaries.
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Corollary 10.8. Let (S,C) be a pair, with S a rational surface and C

an irreducible curve of genus 1. Then (S,C) is birational to (P2,B) with B

a smooth plane cubic if and only if m(S,C) = 1.

Proof. One implication is clear. As for the other, let P = KS + C, which
we may assume to be nef by contracting all (−1)-curves E with C · E =
0. Since P · C = 0, only the del Pezzo case is possible, and the assertion
follows.

Corollary 10.9. Let (S,C) be a relatively minimal pair, with S a ratio-
nal surface and C an irreducible curve of genus 1 with C2 < 0. Then C2 <

−1.

Proof. Assume by contradiction that C2 = −1. Set P = KS +C, which is
effective and nef. The case m(S,C) = 1 is impossible since P · C = 0. Then
P ′ = 2KS + C is effective and nef. Set k = K2

S . Since P 2 = k + 1, we have
k � −1. On the other hand, P ′ · C = 1, and the Riemann-Roch theorem
says that dim(|P ′ |) � k +1. This implies that k = −1. But then (P ′)2 = −1,
a contradiction.

10.5. De Franchis’s theorem
In this section we deal with the genus 2 case (for a classical reference,

see [DF]; however, this is affected, as well as all papers on the subject
that appeared before 1901, by the criticism raised by C. Segre to Noether’s
original proof of the Noether-Castelnuovo theorem [S]; cf. [Ne]).

Proposition 10.10. Let (S, L) be a relatively minimal pair with S ratio-
nal and L a complete linear system of curves of arithmetic genus 2 with
r = dim(L) � 1 whose general curve C is nef. Then (S, L) is as follows:

(i) (Fn, Ln(2,3 + n)), with 0 � n � 3;
(ii) (S, L) is the minimal desingularization of a pair of the form (P2, L(6;

28));
(iii) (S, L) is the minimal desingularization of a pair of the form (P2, L(7;

3,210));
(iv) (S, L) is the minimal desingularization of a pair of the form (P2, L(9;

38,22));
(v) (S, L) is the minimal desingularization of a pair of the form (P2,

L(13; 5,49)).

Proof. Set KS + C = P , which is effective and nef. Since P · C = 2, then
P �= 0. Actually, |P | is a pencil.
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If P 2 = 0, then P · KS = −2, and therefore |P | is a pencil of curves of
genus 0 and there is no (−1)-curve E such that E · P = 0, namely, S = Fn,
for some n � 0. Hence, m = m(S,C) = 1 and α = α(S,C) = 1, and we are in
case (r) of Theorem 9.4, which leads to case (i).

If P 2 > 0, the index theorem yields C2 � 4. If P 2 = 1, then P · KS = −1.
By contracting all (−1)-curves E such that P · E = 1, we obtain a new pair
(S′, P ′). This may let L acquire base points of multiplicity 2. Then we may
apply Proposition 10.6, which tells us what (S′, P ′) is, and we conclude that
(S,P ) is the minimal desingularization of a pair of the form (P2, L(6; 28)) or
(Fn, Ln(4,2(2+n); 27)), with n = 0,2. Thus we are in case (ii). In particular,
this applies when C2 = 4.

So we are left with the case P 2 � 2, and the cases C2 = 1, P 2 = 4, and
C2 = P 2 = 2 can be excluded by the index theorem.

Consider first the case r > 1. Set K2
S = k. If −KS is not effective, then L

cuts on P a linear series of dimension 2 and degree 2. Hence, P is rational;
then m(S,C) = 1, and we are in the big case since P 2 > 0. This contradicts
α = 1. So −KS > 0. Then 2 � P 2 = P · (KS +C) � P · C = 2. Hence, P 2 = 2
and P · KS = 0. Moreover, C2 � 1, C · KS = 2 − C2, so that 0 = P · KS =
k + 2 − C2. In conclusion, C · KS = −k + KS · P = −k = 2 − C2 � 0, a con-
tradiction.

So we may assume that r = 1. Then C2 � 2, since 1 = r = h0(S, OS(C)) −
1 = h0(C, OC(C)) � C2 − 1.

Let C2 = c, C · KS = 2 − c, with 0 � c � 1. Then P 2 = k +4 − c, P · KS =
k + 2 − c; hence, pa(P ) = k + 4 − c = P 2. Set P ′ = P + KS = C + 2KS .
Then dim(|P ′ |) = P 2 − 1 and C · P ′ = 4 − c. Therefore, P 2 � 3 − c, since
P ′ − C ≡ 2KS is not effective.

So we are left with the cases C2 = 0,2 � P 2 � 3, C2 = 1, and P 2 = 2.
If C2 = 0, P 2 = 2, then k = −2, P ′ is still nef, and (P ′)2 = 0. Moreover,

P · P ′ = 2 implies that |P ′ | is a pencil of rational curves, so we are in the
ruled case with m = 2, α = 1, and (S, L) is the minimal desingularization
of a pair of the form (Fn, Ln(4,5 + 2n; 210)), with 0 � n � 2, and we are in
case (iii).

If C2 = 1, P 2 = 2, then k = −1, P ′ is nef, and (P ′)2 = 1, P ′ · KS = −1.
Hence, |P ′ | is a pencil of curves of arithmetic genus 1. By Corollary 10.7,
we are in case (iv).

If C2 = 0, P 2 = 3, then k = −1, P ′ is nef, and (P ′)2 = 4, P ′ · KS = 0.
Now let us contract all (−1)-curves E such that E · P ′ = 0, producing a
new pair (S1, P1) on which L may acquire base points of multiplicity 2. Set
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P ′
1 = KS1 + P1, which is nef, and dim(|P ′

1|) = 2. We have P 2
1 = 4 + h,K2

S1
=

h − 1, where h is the number of the (−1)-cycles on S such that E · P ′ = 0.
Then (P ′

1)
2 = 3, P ′

1 · KS1 = −1. The analysis of cases (i) and (ii) above tells
us that (S1, |P ′

1|) arises by minimally resolving the base points of either
(P2, L(4; 2,19)) or (P2, L(6; 28,1)), and in both cases h = 0. Note that the
cases (P2, L(5; 3,2,19)) and (P2, L(6; 4,22,19)) are impossible because k =
−1. On the other hand, the pair (P2, L(6; 28,1)) does not come by adjunction
from a system of curves of genus 2, whereas the pair (P2, L(4; 2,19)) does,
leading to case (v).

Remark 10.11. Note that in Proposition 10.10(i), the pair (S, L) is also
the minimal desingularization of one of the following pairs:

• L(4,2) for n = 1;
• L(5,3,2) for n = 0,2, where for n = 2 the two base points are infinitely

near;
• L(6; (4, [22])) for n = 3.

These linear systems, as well as the others appearing in Proposi-
tion 10.10(ii)–(v), are Cremona minimal, because of Corollary 2.4.

In all cases but Proposition 10.10(iii)–(v), one has h1(S, OS(C)) = 0; that
is, the system L is nonspecial. So the existence of these systems is not under
question, since one may choose the base points to be general. The question is
different for cases (iii)–(v), in which we have h1(S, OS(C)) = 1 in case (iv)
and h1(S, OS(C)) = 2 in the remaining two cases. The existence of these
systems is discussed in [DF].

10.6. Cremona equivalence to smooth curves
Coolidge [Coo, pages 399–401] considers the question of characterizing

those irreducible plane curves B which are Cremona equivalent to a smooth
curve. His answers are rather complicated. A simple characterization can be
given using Theorem 9.4 (cf. [I3]).

Proposition 10.12. Let B be an irreducible plane curve of genus g which
is not Cremona equivalent to a line. Then B is Cremona equivalent to a
smooth plane curve of degree d ≡ 0,1 modulo 3, if and only if m(S,C) = [d/3]
and, respectively, α(S,C) = 0,1, where (S,C) is the minimal desingulariza-
tion of (P2,B), and g =

(
d−1
2

)
. The same assertion holds for d ≡ 2 modulo

3, if α(S,C) = 5 as soon as either d � 29 or the pair (S,C) does not present
the ruled case.
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Proof. We prove only the nontrivial implication. Let d ≡ 0 modulo 3,
and assume that m = m(S,C) = [d/3] and that α = 0. Then, computing the
genera of all pairs in Theorem 9.4 for these values of the invariants, one sees
that, in order to have g =

(
d−1
2

)
, only case (dp1) can occur, in which case we

have the assertion. The proof of the case d ≡ 1 modulo 3 goes in the same
way. In the case d ≡ 2 modulo 3, the same proof works as soon as m > 8.
If m � 8, one may have cases in which the genus of the curves in the list
of Theorem 9.4 is larger than

(
d−1
2

)
only in the ruled case. The assertion

follows.

Coolidge [Coo] also gives conditions under which a plane curve is Cremona
equivalent to a curve with only double points. This can be also treated as
in Proposition 10.12. We do not dwell on this here.

Appendix A. A proof of the Noether-Castelnuovo theorem via
simplicity

Here we give a proof of the Noether-Castelnuovo theorem (Theorem 1.1)
by induction on the simplicity of the homaloidal net L defining a Cremona
transformation φ = φL : P2 ��� P2; namely, we will show that, if φ is not
quadratic or linear, that is, if its simplicity is larger than (1,2,0), then
there is a quadratic transformation γ : P2 ��� P2 such that γ ◦ φ is simpler
than φ.

The notion of simplicity is essentially due to Alexander [Al1] (cf. the
footnote by Segre in [Ca3, page 469] and [Ch]).

Write L = L(δ;α0, . . . , αr), where α0 � · · · � αr, and let pi, i = 0, . . . , r
be the point of multiplicity αi of L. Let (kφ, hφ, sφ) be the simplicity of φ,
which is that of L, as defined in (4). If δ = 2, there is nothing to prove.
Suppose, then, that δ > 2. Note that kφ = δ − α0 � 1.

By subtracting α0 times the latter equation from the former one in (3),
one gets

(δ − 1)(δ − 3α0 + 1) =
r∑

i=1

αi(αi − α0) � 0;

hence, δ < 3α0 or, equivalently, α0 > kφ/2. Therefore, hφ � 0. Similarly, by
subtracting m = kφ/2 times the latter equation from the former one in (3),
one gets

(δ − 1)(δ − 3m + 1) = δ(δ − 3m) + 3m − 1 = α0(α0 − m) +
r∑

i=1

αi(αi − m),
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which, since δ − 3m = α0 − m and m = kφ/2 � 1/2, implies that

2m(α0 − m) = (δ − α0)(α0 − m) <
r∑

i=1

αi(αi − m) �
h∑

i=1

αi(αi − m)

�
h∑

i=1

2m(αi − m),

where the last inequality follows from the fact that αi � δ − α0 = 2m, for
each i > 0. Thus

(21) α0 − m �
h∑

i=1

(αi − m),

which implies that hφ � 2 and p1, . . . , phφ
cannot be all proximate to p0; in

particular, they cannot be all infinitely near to p0 of order 1. Note that, for
0 < i < j � hφ, the points p0, pi, pj are not aligned; otherwise, α0 +αi +αj >

δ and L is reducible, a contradiction.
Suppose first that there are two points among p1, . . . , phφ

, say pi and pj ,
such that the quadratic transformation γ centered at p0, pi, pj exists. Then
ψ = γ ◦ φ is a Cremona transformation of degree δ − ε, where ε = αi + αj −
2m > 0, and it is given by a homaloidal net Λ having multiplicity α0 − ε <

α0, αj − m � m, αi − m � m, respectively, at the points (corresponding
to) p0, pi, pj . Either p0 is still a maximal multiplicity point of Λ, and so
kψ = δ − α0 = kφ and hψ = hφ − 2 (because pi and pj are now of multiplicity
� m = kψ/2), or the net Λ has maximal multiplicity μ > α0 − ε, and so
kψ < δ − α0 = kφ. In both cases, ψ is simpler than φ.

If there is no such quadratic transformation γ, it means that pi > p0, for
each i = 1, . . . , h, and, by (21), there are pi, pj such that pj >1 pi >1 p0 and
pj � p0. (If pj �/ p0, then γ exists.) Choosing a general point q ∈ P2, consider
the quadratic transformation γ′ centered at p0, pi, q, and set ψ′ = γ′ ◦ φ.
Then ψ′ has degree δ + ε′, where 0 � ε′ = 2m − αi < m, and it is given by a
homaloidal net Λ′ having multiplicity α0 + ε′ � α0, 2m, ε′ < m, respectively,
at the points (corresponding to) p0, pi, q. Therefore, kψ′ = δ − α0 = kφ and
hψ′ = hφ. But the base point of Λ′ corresponding to pj is now infinitely near
to p0 of order 1; hence, it is no longer satellite, and sψ′ = sφ − 1. Therefore,
ψ′ is simpler than φ.

Repeating this argument, we eventually get a Cremona transformation
with simplicity (1,2,0), which is a quadratic one, and the proof is con-
cluded.
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Università degli Studi di Ferrara

44121 Ferrara

Italy

alberto.calabri@unife.it

https://doi.org/10.1215/00277630-2010-003 Published online by Cambridge University Press

mailto:alberto.calabri@unife.it
https://doi.org/10.1215/00277630-2010-003


BIRATIONAL CLASSIFICATION OF CURVES ON RATIONAL SURFACES 93

Ciro Ciliberto

Dipartimento di Matematica
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