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GROTHENDIECK GROUPS OF BASS ORDERS 

KLAUS W. ROGGENKAMP 

Commutative Bass rings, which form a special class of Gorenstein rings, have 
been thoroughly investigated by Bass [1]. The definitions do not carry over to 
non-commutative rings. However, in case one deals with orders in separable 
algebras over fields, Bass orders can be defined. Drozd, Kiricenko, and 
Roïter [3] and Roïter [6] have clarified the structure of Bass orders, and they 
have classified them. These Bass orders play a key role in the question of the 
finiteness of the non-isomorphic indecomposable lattices over orders (cf. [2; 8]). 
We shall use the results of Drozd, Kiricenko, and Roïter [3] to compute the 
Grothendieck groups of Bass orders locally. Locally, the Grothendieck group of 
a Bass order (with the exception of one class of Bass orders) is the epimorphic 
image of the direct sum of the Grothendieck groups of the maximal orders 
containing it. Using this, one can compute the local Grothendieck groups. 
However, globally, the above property does not hold any more, as can be seen 
by considering hereditary orders. Nevertheless, there exists a positive integer n, 
depending only on the algebra, such that the w-fold of the Grothendieck group 
of a Bass order is contained in the image of the Grothendieck groups of the 
maximal orders containing it. 

1. Preliminaries on Bass orders. Let R be a Dedekind domain with 
quotient field K, and A an i^-order in the separable finite-dimensional K-
algebra A. A is called a left Gorenstein order if the injective dimension of A as 
left A-module is finite or equivalently (this property is more useful in praxis) 
A* = Hom#(A, R) is a projective right A-module. As for hereditary orders, A is 
left Gorenstein if and only if it is right Gorenstein. Thus we may simply talk 
about Gorenstein orders. 

A is called a Bass order if A and every R-ovder in A containing A is 
a Gorenstein order. A Bass order is characterized by the property that the full 
two-sided A-ideals form a groupoid with respect to the proper multiplication. 

Let R be a complete discrete rank-one valuation ring with quotient field K, 
and A an b o r d e r in the finite-dimensional separable it-algebra Â. Moreover, 
we assume that R has a finite residue class field. 

We list without proof some essential properties of Bass orders. The proofs 
may be found in [2] or [9, IX, §§ 5, 6]. 

LEMMA 1. Let Abe a Bass order in A. If M is an indecomposable A-lattice, which 
is not a lattice over an R-order Ai in Â, with Ai D A, Ai ^ A, then M is a projective 
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A-lattice. In addition, if M is faithful, then it is a pro generator for the category of 
left A-lattices. 

For the convenience of the reader, let us recall some of the definitions. A 
A-lattice M is a left A-module, which is finitely generated and projective over R. 
M is faithful if K ® £ M is a faithful -4-module, i f is called a progenerator if it is 
a projective lattice, and if Hom£{M, — ) is a faithful functor. We say that A is 
completely primary if A is indecomposable as left A-lattice. Because of the 
method of "lifting idempotents", A is completely primary, if modulo its 
radical, it is a division algebra. 

THEOREM 1 {Classification theorem). Let A be a Bass order in A, which is 
indecomposable as a ring. Then one of the following cases must occur: 

(I) A is simple and A is hereditary; 
(II) A is simple, say Â == 0)n, where D is a separable division algebra and A 

is M or ita-equivalent to an R-order of the form 

/Û Nd\ 
U * J , d > 2, 

where Û with rad Û = N is the maximal R-order in D (rad à is the Jacobson 
radical of Û); 

(III) Â = 0)n is simple, and A is M or ita-equivalent to a Bass order in D; 
(IV) A = 0)n is simple, and A is Morita-equivalent to a completely primary 

Bass order in 0)2; 
(V) Â = 0i)m © 02)nii Di a separable division algebra over K, i = 1,2, 

and A is Morita-equivalent to a completely primary Bass order in Di © D2, which 
is a subdirect sum of Ûi © 02, where Uf is the maximal R-order in Dt, i = 1, 2. 
{We recall that two R-order s At in Âiy i = 1, 2, are Morita-equivalent, if there 
exists a M-lattice Mi which is a progenerator for the category of Ai-lattices such that 
EndAi(Mi) = A2. Being Morita-equivalent is an equivalence relation, which 
preserves Bass orders.) 

LEMMA 2. Every non-maximal completely primary Bass order A in A is con­
tained in a unique minimal over-order Â O A such that Ai rad A C rad A. 

In case A is a skew field with maximal b o r d e r Û, there is a unique strictly 
ascending chain of orders 

A = Âo C Ai C . . . C As = Ù, 

such that Az- is the unique minimal over-order of A2_i, 1 ^ i ^ s; moreover, 
A/rad A == A^/rad A*, 1 ^ i' ^ s — 1. For i = s, one of the following cases 
must occur, which are subcases of (III) : 

(I l ia) Ô/rad Û ̂  Â/rad Â, or 
(I I lb) O/rad Û ~ fi is a two-dimensional extension field of A/rad A = t. 
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2. Local theory of Grothendieck groups of Bass orders. Again R with 
quotient field K is a complete discrete rank-one valuation ring with finite 
residue class field, and A is an bo rde r in the finite-dimensional separable 
K-algebra A. By ®0(A) we denote the Grothendieck group of the A-lattices 
relative to short exact sequences, and by ®(/(A), the Grothendieck group of all 
finitely generated A-modules, relative to short exact sequences; @0

r(A) is the 
Grothendieck group of all ^-torsion A-modules of finite type, relative to short 
exact sequences, and ®i(Â) denotes the Whitehead group of A. For the 
computation of the Grothendieck group of A, ©o(A), we may assume that A is 
indecomposable as a ring. 

THEOREM 2. Let A be a Bass order, which is indecomposable as a ring. If 
{Tt} (1 ^ i ^ s) are the different maximal Reorders in Â containing A, then the 
map 

î>:é@o(r*)->®o(Â), 

induced by restriction of the operator domain is an epimorphism, unless A is 
Morita-equivalent to an Ê-order of type (I I lb) . 

Proof. We first recall that there are only finitely many different maximal 
^-orders in Â containing A (cf. [10]). To prove the theorem we shall first 
establish that no J$-order in A containing A can be Morita-equivalent to an 
order of type (I I lb), unless this is true for A. Once this is shown, we can use 
induction. Let us therefore assume that Ai is an jR-order in Â, which is Morita-
equivalent to an b o r d e r Si of type (I l lb) . Then Â = 0)n and Si is an 
j£-order of type (I I lb) in the separable division algebra D. If A C Ai, it follows 
from the classification theorem that A must also be Morita-equivalent to an 
j$-order S2 in D. (For otherwise A would contain the maximal order in D.) 
Then we may assume that Ai = (&i)n and A = a(U2)na~l for some regular 
element a in A. We have to show that S2 is of type (I I lb) if this is true for Si. 
Let S be the maximal j^-order in D and put 12/rad 12 = fi, where fi is a two-
dimensional field extension of Ï = Si/rad S2i, Si being of type (I l lb) . We 
assume now that £22 is of type (I l ia) . Then S2/rad S2 = ïi. If Ï is ans-dimen-
sional extension field of R = -R/rad R, then for a simple left Ai-module U, we 
have 

dimniU) = ns. 

But U is also an .R-torsion A-module since Ai D Â, and if it has a composition 
series of m terms as A-module, then 

dims(Z7) = 2msn, 

and we have obtained a contradiction to the assumption that Ai is Morita-
equivalent to an b o r d e r of type (I l lb) . 
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Therefore it suffices by induction to show that 

/:©@o(Â') 
A' 

@o(A) 

is an epimorphism, where the sum is taken over all ^-orders in A, properly 
containing A. It should be observed that this sum is finite since A is noetherian, 
and since there are only finitely many maximal orders containing A. (More­
over, T/A is a finite ring for every maximal order T containing A.) It is even 
enough to show that for every irreducible Â-lattice M, [M] £ Im <p, where [M] 
denotes the class of M in @0(A). In view of Lemma 1, we may assume that M is 
an irreducible projective A-lattice, which is not a lattice over an i^-order Ai 
properly containing A. In particular, if anni (K (g)£ M) = Â/Âe for some central 
idempotent e of A, then e £ A and M is faithful, A being indecomposable as a 
ring; i.e. M is a progenerator by Lemma 1. Thus A ~ (Ûi)n> where Ûi is a Bass 
order of type (I l ia) in a division algebra D, M being a progenerator, 
£2i = End£(ikf). Since A ^ Mw as left Â-lattice, where Jkf(w) denotes the direct 
sum of n copies of M, we have Aa = M{n) for some regular element a d Â. 
But then a~lAa = (S2i)re, and conjugation with a transforms the ^-orders 
containing A into the ^-orders containing (Ûi)n. Therefore we may assume that 
A = (Qi)w and M = (Ûi)nÇ£u, where 6^- is the matrix with 1 at the (i,j)~ 
position and zeros elsewhere. Let Û be the maximal b o r d e r containing Ûi. 
Since Ûx is of type (I l ia) , we have 

(*) Ô/rad Û ̂  Ôi/rad Oi ^ !, 

where Î is a finite field. In particular, ï is an ^-module. Moreover, by Lemma 2, 
there exists a unique Bass order Û2 properly containing Oi such that rad Ôi is an 
SVmodule. (We point out that our theorem is only of interest if Ûx is not 
maximal.) Then 

M / ( r a d A ) M = ( l ) n g u 

is an (O)^-module and (rad A)M is an (fi2)w-lattice. The exact sequence 

0 -> (rad A)M - • M -> M/ (rad A)M -» 0 

shows that 

[M] = [(rad A)M] + [M/(rad A)M] in ©(/(A), 

and the commutative diagram (cf. [11]) 

0 ®o'(A')-5^> ®o'(A) 
AOA; 
AVA 

l\\ l\\ 

M ®o(Â') —*U ©o(A) 
AOA; 
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(where the vertical maps are isomorphisms) shows that [M] £ Im <pf. Now we 
can use induction to conclude that <p is an epimorphism. (One has to distinguish 
between the case that A' decomposes as a ring and the one that A' is indecom­
posable as a ring.) 

We remark briefly what happens in the remaining case. 

COROLLARY 1. If A is a Bass order in A, indecomposable as a ring, which is 
Morita-equivalent to an R-order of type (I I lb), then Im <p D 2®0(A). 

Proof. In the notation of Theorem 2 and its proof, we would have instead 
of (*): 

â/rad Ù = Ii, Ôi/rad Ôi = ï, 

where ïi is a two-dimensional extension field of ï and 2[ï] = [îi] in ®</(A). This 
then shows that 2[M] G Im <p. 

Example 1. <p need not be an epimorphism if A is a Bass order which is of 
type (I I lb). Let A be of type (I I lb) in the separable division algebra D, with 
maximal ^-order Û. The commutative diagram (cf. [5]) 

Sti0) -> ®oT(Ô) -> ©o(0) -> ©o0) 

II l* i * II 
$10) -> @oT(A) -» ®o(A) -> ®o0) 

shows that a is an epimorphism if <p is epic. Here a is also induced from the 
restriction of the operators. It remains to show that a cannot be epic. The 
Jordan-Holder theorem shows that 

®0
T(Û) ~ @o(Ô/rad Û) ~ Z, ®0

r(A) ^ ®0(Â/rad A) ~ Z, 

and ®0
r(Œ) is freely generated by [ÏJ = [fi/rad Ô] and ®0

T(A) is freely 
generated by [ÏJ = [A/rad A], where fi is a two-dimensional extension field 
of I. Thus 

a: [fi] ^ 2[f] 

and o- is not epic; hence <p cannot be epic. 

3. Computation of the Grothendieck groups of local Bass orders. We 
shall use Theorems 1 and 2 to compute ®0(A) explicitly, in case A is a Bass 
order which is indecomposable as a ring. Again we assume that R with quotient 
field K is a complete discrete rank-one valuation ring with finite residue class 
field, and A is a separable finite-dimensional i?-algebra. Since Morita-equiva­
lent ^-orders have isomorphic Grothendieck groups, we need only consider the 
following cases (cf. Theorem 1, Lemma 2). 

(I) A is hereditary of type n in A = 0)n, where D is a separable division 
algebra. (A hereditary .R-order is said to be of type s if it has s non-isomorphic 
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irreducible lattices, or, equivalently, if it is contained in s different maximal 
borders . ) 

(ii) A = ^ ô ; f ^ 2 , 

where 12 with rad 12 = N is the maximal b o r d e r in D. 
(I l ia) A is a Bass order in D of type ( I l ia) . 
(I l lb) A is a Bass order in D of type (I l lb) . 

(IV) A is a completely primary Bass order in (J9)2, and the unique 
minimal over-order of A, that decomposes as a module, is either 

(IVa) maximal, or 
(IVb) non-maximal hereditary. 

(V) A is a completely primary Bass order in Di © D2, D{ a separable 
division algebra, i = 1, 2. 

In the next theorem, (I)-(V) refer to the above list. 

THEOREM 3. If A is a Bass order which is indecomposable as a ring, then one 
of the following cases must occur: 

(I) ®o(A) 9É Z<»>; 
(II) ® o ( A ) ^ Z < » ; 

(I l ia) © 0 ( À ) Ê Ë Z ; 

(I l lb) © O ( Â ) 9 Ë Z © Z/2Z; 
(IVa) © 0 ( A ) ^ Z ; 
(IVb) © o ( A ) ^ Z © Z / 2 Z ; 

(V) ®o(A)^Z<2>. 

Proof. (I) Because of the Krull-Schmidt theorem and since A is hereditary of 
type n in (D)n, we have ®0(A) ^ Z<*>. 

(">_ - ( S _ f ) : « * • 
12/rad 12 = f is a finite field and A/rad A == ï © ï as a A-module. If 

l (Ù M) 
Ao = \û Ù) 

is a hereditary b o r d e r containing A, then A0/rad A0 = Ï © ï as a A0-module, 
and in the commutative diagram 

fli((£)2) -> ®or(Ao) -> ®o(A0) -> ®o(i) -> 0 

II k 1<P II 
« i ( ( ^ ) 2 ) - > ®or(A) -> @o(A) - > ® 0 ( i ï ) - * 0 

(7 is an isomorphism. Diagram chasing shows that <p has to be an isomorphism, 
and by (I) we conclude that ®0(Â) ^ Z<2). 

( I l ia) A is a Bass order of type (I l ia) in J9, and by Theorem 2, 

<p: ®o(0)-*®o(A) 
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is an epimorphism, where Û is the maximal b o r d e r in D. Since we also have an 
epimorphism ®0(A) -> ®o(D), we conclude that Z ^ ®0(O) ^ @0(A). 

(I I lb) A is a Bass order of type (I I lb) in D. Let 

A = Â C A i C . . . C A s = Ô 

be the unique strictly ascending chain of Bass orders containing A (cf. 
Lemma 2). Since 

A/rad A ^ A^/rad A<, 1 g i ^ 5 - 1, 

we conclude, as in the proof of Theorem 2, that ®o(A) ^ ®0(As_i). (Observe 
that 5 è 1, A being of type (I I lb).) Hence we may assume that A = As_i, and 
thus, every non-projective indecomposable A-lattice M is an Œ-lattice, i.e., in 
the homomorphism cp: ®o(^) —> ®o(A), we have [M] Ç Im <p. Because of the 
Krull-Schmidt theorem, and since A is completely primary, A is the only 
projective A-lattice, which is also irreducible. Corollary 1 and Example 1 
show that [A] Ç? Im <p and 2[A] £ Im <p. Hence ®0(A) is generated by 
([Ô], [Û] - JA]) and so ®0(A) ^ Z © Z/2Z. 

(IV) If A is a completely primary Bass order in (D)2, there exists a unique 
properly ascending chain of orders 

A = Âo C Ai C . . . C A„ 

where A* is the unique minimal over-order of A*_i, 1 S i S s, and where A* is 
completely primary, 0 ^ i ^ 5 — 1 (cf. Lemma 2). As decomposes as a module, 
and thus it is hereditary (cf. [3]). 

(IVa) If As is maximal, then it is the unique maximal b o r d e r containing A, 
and since <p: ®o(As) —> ®o(A) is an epimorphism, we must have ®0(A) = Z. 

(IVb) As is a non-maximal hereditary J$-order. Since the above chain of 
orders is unique, the proof of Theorem 2 shows that we have an epimorphism 

<p: @o(As)->®o(A). 

The commutative diagram 

fli((£)2) ^ ®or(As) -*U ®0(AS) -> ®o(0)2) ->0 

Il Ï* I* II 
^ 1 ( 0 ) 2 ) A > ®0

r(A) -L+ ®o(Â) ->®0((£)2)->0 
shows that a is an epimorphism, <p being epic. Since every irreducible A-lattice 
is also an irreducible As-lattice by Lemma 1, and since isomorphism is pre­
served, there are exactly two non-isomorphic irreducible As-lattices, M\ and 
M2. Then (rad As)Mi ^ M2 and^ (rad AS)M"2 9Ë Mx (cf. [7]). If 12 is the 
maximal bo rde r in D, and Ô/rad 12 = ï, then 

As/rad As ^ la © te2, 

where Mt = Mi/ (rad A8)Mi = leu i = 1, 2. Since A is completely primary, 
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there exists exactly one simple A-module U = A/rad A, and in &0
T(A), we have 

[Mt] = [£/<V], 

and consideration of the dimensions shows that s± = s2. However, since a is an 
epimorphism, Si = s2 = 1 and a: [Mi] •—* [[/], i = 1, 2. Thus, diagram chasing 
shows that 

<p: 2([Ml] - [jfir2])h->0. 

Therefore, to prove that ®0(A) ~ Z ® Z/2Z, we need only show that 
ipilMt] - [M2]) 5* 0. Since p0([Mi]) = [Mi] - [Û2\ and since a ([Mi]) 
generates ®0

r(A), we conclude, by letting <p[Mi] = <p[M2], that û must be an 
epimorphism, say 

ê(x) = [Â/rad A] - <r([MJ). 

The commuta tivity of our diagram then shows that aâ0(x) = a ([Mi]). How­
ever, Ker a = {w([J0Y| - [i?2]): ^ Z ) ; i.e., #<>(*) = [Mi] + n([J(?i] - [M2]), 
and consequently 

0 = po#o(x) = (2« + l)([Mi] ~ [M2]) in ®o(A,). 

Since ©0(A5) is a free abelian group, and since [Mi] 9e [M2] in ©0(ÂS), we have 
obtained a contradiction, i.e., @o(A) ~ Z © Z/2Z. 

(V) If A is a completely primary Bass order in Dx © Z>2, then ®0(A) = Z (2), 
since <p: ®o(T) —> ®o(A) is an epimorphism, where T is the unique maximal 
b o r d e r containing A, and since ® 0 (A © -Z)2) ^ Z(2). 

4. Grothendieck groups of global Bass orders. Let R be a Dedekind 
domain with quotient field K and A an i^-order in the separable finite-dimen­
sional X-algebra A. We assume that the Jordan-Zassenhaus theorem holds for 
A-lattices. By max(R) we denote the spectrum of maximal ideals in R, and if 
p G max(jR), we write X$ (Xp) for the localization (completion) of X at p. 

Since hereditary i^-orders are Bass orders, the analogue of Theorem 2 cannot 
hold globally, as shown by the following example. 

Example 2. Let A be a central division algebra which is unramified at 
q £ max(i^), say Âq ~ (Kq)2, and let Aq be a hereditary b o r d e r of type 2 in 
Âq and put Aq = A (^\ Aq. Then Aq is a hereditary i^q-order in A, and Aq is 
contained in exactly two maximal i^q-orders Tq and IV, and 

<p: ®o(rQ) © ®o(lY)-»@o(Aq) 

is not an epimorphism. In fact, let Mq (Mq) be the irreducible iylat t ice 
(iV-lattice); then 

[Nq] = [AC\ (Mq © Mq')] g Im <p. 

(We may assume without loss of generality that Kq(Mq © Mq) = Âq.) 
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We shall generalize this phenomenon to arbitrary Bass orders. Assume that 
A = ©?=i (Di)m, {Di} (1 = ^ = n) separable skew fields ; then for p G max(i^), 
we have 

3=1 

where {l)^(p)} are separable skew fields. We let v$ be the smallest common 
multiple of {ntj(p)} (1 ^ i g n, 1 ^ j ^ w*(p)). For a given i^-order A in ^4, 
we let ©o = { P G max(jR): A» is not maximal} and let *; be the smallest 
common multiple of {v$\ (p G ©o). If ô is the smallest common multiple of the 
{vp\ (p G max(i^)), then fl0 is independent of A and v ^ vQ < co. 

THEOREM 4. Le/ {I\} (1 S i ^ 5) be the maximal R-orders in A containing A, 
and assume that for every p G ©0, 

^ :©®o(r%)-»®o(Âp) 

w aw epimorphism. Then in the homomorphism <p\ ©z
s=i @o(I\) —>@0(A), we 

have Im <^0 fl©o(A). 

As the example of hereditary orders shows, this result is best possible as a 
general statement. 

Proof. We may assume that A is not maximal, and hence ©0 ^ 0. We first 
show that the result is true for Ap, p a fixed maximal ideal in R. We have the 
commutative diagram of Grothendieck groups 

s 

s © Ouf s 

e@o(rJ^Ue©o(r^) 
<p$ <£>*) 

©0(Ap) —?U ©o(A»), 

where {ai) (1 tk i 1=k s) and a are induced from the functor R$ ® ^ —. We 
claim that a is a monomorphism. Let â([Mi] — [M2]) = 0. Then there exist 
two exact sequences of A^-lattices (cf. [4]) 

£ 2 : 0 -+X-^ i ï f 2 p © Z - > F - > 0 

However, it is easily seen that we may assume that there are Ap-lattices X, F, 
and Z with X* ^ X , F» ^ F, and Zp 9Ë Z. But if N and iV' are Ap-lattices, then 

Exti^(Np, N*') ^ nat R, ®Bp ExtA/(iV, iV'), 

and since Ext^^N, N') is an i^-torsion module of finite type, we conclude that 

ExtA/(7V, N') 9* ExtA/(iVp, ft*'), 
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and the isomorphism is induced by R\> ®Bp - . Applying this to our situation, 
we can find two exact sequences of A^-lattices: 

Ei:Q->X-+M->Y-+0 
£ 2 : 0 - * X - > i \ r - > F - + 0 

such that Rp ®Bp Et = Êu i = 1,2. Then Mp ^ Mh ©Zp and Np ÊË M^ © Zp; 
i.e., M ^ Afi © Z and iV ^ ikf2 © Z. Thus [M] = [iV] in ®0(A») (cf. [4]), and 
â is monic. To show that 

I m <pp D vp®o(Ap), 

it therefore suffices to establish that 

(4à*)) 
Let x G @o(Ap). Then ax 6 Im <pp; but 

© o ( r i p ) ^ n a t © o ( ^ ) and ® 0 ( î % ) ^ n a t @ o ( i » ) . 

In addition, <p (£>p) composed with the epimorphism ©o(A) —> ©0^4) 
(®o(Ap) —» ©oC4p)) induces the codiagonal map 

© ®0(A)-+®0(A) (® ®o(Â*)-> ®o(Âp)\ 

Consequently, 

vpâx G Im( ç>p[ © ai J J ; 

i.e., E Ç Im (pp. To show globally that Im <p 3 y@0(A), we consider the 
commutative diagram 

s k& at / s \ 

©@o(r,)-^-> © (e@o(iY)j 

<p © P 6 @ o ^ 

®o(A) — - > © ®o(A») 

where {at\ (1 ^ i ^ s) and a are induced from Rp ®B-, We shall show next 
that for [M] G ®o(A), there exists x £ © t i ®o(I\) such that 

[M] = (® ^)(é«<V. 

Rather than presenting the proof in the general case, where it is very much 
obscured by a multitude of indices, we only present a proof in case @o consists 
of two ideals. (Apart from the indices, this proof is the same as the general 
proof.) We assume that Aq = Tq is maximal for all 

q £ msx(R), q ^ pi, p2, ©o = {pi, p2}. 
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Let {Ti(pj)} (1 ^ i ^ tij) be the different maximal i?py-orders containing 
Apy,7 = 1, 2. Then 

r« = ( n rQ)n r,(pi)n r,(p2), u ^ ^ i g ^ n , , 
\Q<Emax(i2)\©o / 

are the different maximal ^-orders containing A, and we have the commutative 
diagram: 

0 ©o(r„) ^H © ®o((r „)*) e (© @o(r„)„J 

<P 
£>*>! © <P\>2 

©0(A) - ^ U ©oCÂ ) ©@o(A»2) 

We observe that ( T ^ ) ^ = (r i ; ' )»i and (r^)p2 = (IY )̂»>2 for all i, i', j , j ' . 
Since @o(A) is generated by the irreducible A-lattices, it is enough to show that 
v[M] G Im <p, whenever M is irreducible. According to the first part of the 
proof, va[M] € I m ^ © (pp2); i.e., there exist r^^) - la t t i ces Mik

l and Mik
2

t 

1 ^ i <̂  nk, k = 1, 2, such that 

v[MH] = <pd £ [Jtf*1] " [M*2]) , £ = 1 , 2 . 

In ©o(^4) we must have 

£ ([XM«'J - [ilf «*]) = »[XM], fe = 1, 2. 

However, KM is simple, say it is a faithful ^4^i-module, e\ a central primitive 
idempotent in A. Then we may assume that KMik

l are ^4^i-modules, for all 
iy &, I. However, the orders {T^} are maximal, and for the sake of simplicity, 
we shall assume that A is simple. But then there exists (up to isomorphism) 
only one irreducible ri(pA;)-lattice. Moreover, by adding and subtracting 
suitable elements in ©o(I\(pfc))>

 w e may assume that 

£ [KM*'] = Z [KMi2']9 5 = 1 , 2 . 

Therefore it remains to show the following: Let Mi($k) be the irreducible 
I\(pA;)-lattice; then for every pair {Mt(pi), Mj(p2)\, there exists a r ^-lattice iV 
such that N^ ^ Jlfi(pi) and Np2 ^ Af,(p2). But 

iv = ( n M(q)) n Jif f(pi) n ikr,(p2), 
\q€max(J2)\©o / 

where ikT(q) is the irreducible Tq-lattice, has the desired properties. Hence we 
have shown that 

z/a@o(A) C Im( © <p* ) ( © at) 
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To complete the proof, we consider the commutative diagram (cf. [11]) 

é © ©ottVqr,) ̂  © ©o(r,) -» e (© ©.(r,,) ) 

<P 0*5<E@o ^ 

0 ®o(A/qA) •£ ®o(A) -£ 0 ®o(A»), 

where the rows are exact sequences and the columns are induced from the re­
striction of the operators. Since A/qA ^ Aq/qAq ^ Tiq/qTiq ^ I \ / q I \ , for 
q ? ©o, we see that rq is an isomorphism for every q (? ©o. Given now 
v[M] G ®o(A). Then we have shown above that there exists x Ç ®Li ® ( I \ ) 
such that <px — v[M] Ç Ker y = Im 13. Since 0Q£®O rq is an epimorphism, we 
have y € 0 c ^ o ®o( lVqI \ ) such that <px — v[M] = <pay\ i.e., 

z>[M] = <p(x — ay) G Im (p. 

THEOREM 5. Let A be a Bass order in A and {I\} (1 ^ i ^ s) the different 
maximal R-orders in A containing A. In the homomorphism 

<?:© ®o(I\)-*®o(A), 

we have Im #02z/ ®0(A). Moreover, if for every p £ ©0, ?Z0 riwg 6fo>ec/ summand 
of Ap is Morita-equivalent to a Bass order of type (I I lb), then 2v can be replaced 
by v. If A is commutative, then v = 1. 

Proof. This follows immediately from the previous theorems. We remark that 
in case <p is an epimorphism, ®o(A) can be computed explicitly, using a 
technique developed by Heller and Reiner [5]. 
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