A NOTE ON UNIVERSALLY ZERO-DIVISOR RINGS

S. VISWESWARAN

In this note we consider commutative rings with identity over which every unitary module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD) rings. We show (1) a Noetherian ring R is a UZD if and only if R is semilocal and the Krull dimension of R is at most one, (2) a Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals, and (3) if a ring R has Noetherian spectrum and descending chain condition on prime ideals then R is a UZD if and only if Spec (R) is a finite set. The question of ascent and descent of the property of a ring being a UZD with respect to integral extension of rings has also been answered.

INTRODUCTION

Let R be a commutative ring with identity. Let M be a unitary R-module. Recall that M is said to be a Zero-divisor R-module if for every submodule N of $M, N \neq M$, the set of zero divisors of M/N (that is, $\{x \in R : xm \in N \text{ for some } m \in M \setminus N\}$) denoted by $Z_R(M/N)$ is the union of a finite number of prime ideals of R. R is said to be a Zero-divisor ring (Z.D. ring) if R is a Z.D. R-module [4]. In this note we study the properties of those commutative rings R with identity for which every R-module is a Z.D. R-module.

All rings considered here are assumed to be commutative and with identity. If $A \subseteq B$ are rings we assume that A and B have the same identity element. By dimension of a ring we mean the Krull dimension. Modules are assumed to be unitary. Whenever a set A is a subset of a set B and $A \neq B$ we denote this symbolically as $A \subset B$.

We begin with the following definition.

We say a ring R is a Universally Zero-divisor (UZD) ring if every R-module is a Z.D. R-module.

Received 5 April 1990

I am deeply indebted to Professor R. Raghavendran for his help, guidance and encouragement and I am also deeply indebted to Professor K.R. Nagarajan for his help and encouragement.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

S. Visweswaran

PROPOSITION 1. Let R be a ring. Then R is a UZD if and only if the union of any family of prime ideals of R is the union of a finite number of prime ideals of R (not necessarily belonging to the same family).

PROOF: Assume that R is a UZD. Let $\{P_{\alpha}\}_{\alpha \in \Lambda}$ be any family of prime ideals of R. Let $M = \bigoplus_{\alpha \in \Lambda} R/P_{\alpha}$ (that is, direct sum of the R-modules R/P_{α}), It is easy to see that $Z_R(M) = \bigcup_{\alpha \in \Lambda} P_{\alpha}$. Since R is a UZD, M is a Z.D. R-module and so $Z_R(M) = \bigcup_{i=1}^t Q_i$ for

some finite number of prime ideals Q_1, \ldots, Q_t of R. Thus $Z_R(M) = \bigcup_{\alpha \in \Lambda} P_\alpha = \bigcup_{i=1}^t Q_i$.

Conversely assume that the union of any family of prime ideals of R is the union of a finite number of prime ideals of R. Let M be any R-module. Let N be a submodule of M, $N \neq M$. Notice that $R \setminus Z_R(M/N)$ is a saturated multiplicatively closed subset of R. Hence by [1, Exercise 7 (i), p.44] $Z_R(M/N)$ is a union of prime ideals of R. By assumption it follows that $Z_R(M/N)$ is the union of a finite number of prime ideals of R. Thus M is a Z.D. R-module. Hence we obtain that R is a UZD.

REMARK 2. Using the above Proposition we see that R is a UZD implies that any homomorphic image of R is a UZD and $S^{-1}R$ is a UZD for every multiplicatively closed subset S of R, $S \subseteq R \setminus \{0\}$.

PROPOSITION 3. Let R be an integral domain with quotient field K. Then R is a UZD if and only if K is a Z.D. R-module.

PROOF: The "only if" part is clear. The "if" part follows from [13, Remark 2.1] and Proposition 1.

PROPOSITION 4.

- (i) Let R be a Noetherian ring. Then R is a UZD if and only if R is semilocal and the dimension of R is at most 1.
- (ii) A Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals.

The proof of Proposition 4 makes use of the following results.

LEMMA 5. If a ring R is a UZD then R has only a finite number of maximal ideals.

PROOF: Let $\{M_{\alpha}\}_{\alpha \in \Lambda}$ be the family of all maximal ideals of R. By Proposition 1, $\bigcup_{\alpha \in \Lambda} M_{\alpha} = \bigcup_{i=1}^{s} Q_i$ for some finite number of prime ideals Q_1, \ldots, Q_s of R. Let $M_i \ (i = 1, \ldots, s)$ be maximal ideals of R such that $Q_i \subseteq M_i$ (for $i = 1, \ldots, s$). Then it is clear that $\bigcup_{\alpha \in \Lambda} M_{\alpha} = \bigcup_{i=1}^{s} Q_i = \bigcup_{i=1}^{s} M_i$. It is now evident that distinct elements among M_1, \ldots, M_s are all the maximal ideals of R. RESULT 6. In a Noetherian ring every prime ideal has finite height [1, Corollary 11.12].

RESULT 7. In a Noetherian ring any prime ideal of height 2 contains an infinite number of height 1 prime ideals [11, Theorem 144].

RESULT 8. Let I be any ideal of a Noetherian ring R, $I \neq R$. Then the set of prime ideals of R which are minimal over I is finite.

Result 8 follows by applying [1, Exercise 9, p.79] to the Noetherian ring R/I.

PROOF OF PROPOSITION 4: (i) Assume that R is a Noetherian ring and R is a UZD. By Lemma 5, R is semilocal. We prove that the dimension of R is at most 1. Suppose that the dimension of R is at least 2. Then by Result 6 it follows that there exists a prime ideal p of R such that height p = 2.

Let $\{Q_{\alpha}\}_{\alpha \in \Lambda}$ be the set of all height one prime ideals of R_p . Note that $\{Q_{\alpha}\}_{\alpha \in \Lambda} = \{P_{\alpha}R_p\}_{\alpha \in \Lambda}$ where $\{P_{\alpha}\}_{\alpha \in \Lambda}$ are prime ideals of R such that height $P_{\alpha} = 1$ and $P_{\alpha} \subset p$ for each $\alpha \in \Lambda$. By Result 7 it follows that Λ is an infinite set. Result 8 and [2, Exercise 2, p.121] imply that there exists an element $y \in pR_p$ which is not in any of the minimal prime ideals of R_p . Now Result 8 implies that y can belong to only a finite number of height 1 prime ideals of R_p . Let them be $\{P_{\alpha_i}R_p\}_{i=1}^t$. Let $A = \Lambda \setminus \{\alpha_1, \ldots, \alpha_t\}$. Then it is easy to see that $\bigcup_{\alpha \in A} P_{\alpha}R_p$ cannot be equal to the union of any finite number of prime ideals of R_p . This is in contradiction to the fact that R_p is a UZD. Thus R is semilocal and the dimension of R is at most 1.

Conversely if R is semilocal and the dimension of R is at most 1 then any prime ideal of R is either a maximal ideal of R or a minimal prime ideal of R. Since the set of minimal prime ideals of a Noetherian ring is finite we obtain that R has only a finite number of prime ideals. It is then clear that R is a UZD.

(ii) In view of Lemma 5, we need only prove the "if part" of (ii). Assume that R is a Prüfer domain with only a finite number of maximal ideals M_1, \ldots, M_t . Let $\{P_{\alpha}\}_{\alpha \in \Lambda}$ be any family of prime ideals of R. Let C_i be the union of those P_{α} 's which are contained in M_i (for $i = 1, \ldots, t$). Now R_{M_i} is a valuation ring and so in the case $C_i \neq \emptyset$, C_i is the union of some pairwise comparable prime ideals of R and hence $C_i \in \text{Spec}(R)$. This is true for $i = 1, \ldots, t$. Further it is clear that $\bigcup_{\alpha \in \Lambda} P_{\alpha} = \bigcup_{i=1}^{t} C_i$. Hence by Proposition 1, R is a UZD.

REMARK 9. We have noted in Proposition 3 that an integral domain R is a UZD if and only if the quotient field of R is a Z.D. R-module. We now mention an example which shows (for an arbitrary ring R) that "the total quotient ring of R is a Z.D. Rmodule" need not imply that R is a UZD. Consider $T = Q(\sqrt{2})[[X, Y, Z]]$, the power series ring in three indeterminates X, Y, Z over $Q(\sqrt{2})$ where Q denotes the field of rationals. Let M denote the unique maximal ideal of T. Let S = Q + M. Notice that the dimension of T is 3 and T is a finite integral extension of S. Hence by [6, 11.8, p.106] and [3, Theorem 2] it follows that the dimension of S is 3 and S is Noetherian. Consider the chain of prime ideals $(0) \,\subset P_1 \,\subset P_2 \,\subset M$ of S where $P_1 = XT$ and $P_2 = XT + YT$. Let R = S/(XS). We now show that the unique maximal ideal M/(XS) of R is full of zero divisors. For an element $m \in M$, let $m + XS \in M/(XS)$. Note that $(m + XS)(\sqrt{2}X + XS) = \sqrt{2}(mX) + XS = X(\sqrt{2}m) + XS = XS$ since $\sqrt{2}m \in M \subset S$. But $\sqrt{2}X \notin XS$. For if $\sqrt{2}X \in XS$ then we obtain $\sqrt{2} \in S$ which in turn implies that $\sqrt{2} = q + y$ for some $q \in Q$, $y \in M$. This implies that $\sqrt{2} - q = y \in Q(\sqrt{2}) \cap M = (0)$ and so $\sqrt{2} = q \in Q$ which is not true. Thus $\sqrt{2}X \notin XS$. This proves that M/(XS) is full of zero divisors. Hence R equals the total quotient ring of R. Since R is a Noetherian ring, R is a Z.D. R-module. Since the dimension of R is 2, it follows from Proposition 4 (i) that R is not a UZD.

PROPOSITION 10. Let R be a ring with Noetherian spectrum and descending chain condition on prime ideals. Then R is a UZD if and only if Spec(R) is a finite set.

PROOF: Assume that R has Noetherian spectrum and has descending chain condition on prime ideals and R is a UZD. The argument that we shall give below to show that Spec(R) is a finite set closely follows an argument of Heinzer and Lantz [10, Proposition 3.7]. By Lemma 5, R has only a finite number of maximal ideals say M_1, \ldots, M_t . Let, if possible, $\operatorname{Spec}(R)$ be an infinite set. Then $\operatorname{Spec}(R_{M_i})$ is an infinite set for some $i \in \{1, ..., t\}$. Now R_{M_i} has Noetherian spectrum and so $M_i R_{M_i} = \sqrt{(y_1, \ldots, y_h) R_{M_i}}$ for some $y_j \in M_i R_{M_i}$ $(j = 1, \ldots, h)$ [12, Corollary 2.4]. It is then clear that Spec $(R_{M_i}[1/y_j])$ is an infinite set for some $j \in \{1, \ldots, h\}$. Since $R_{M_i}[1/(y_j)]$ is a UZD, it has only a finite number of maximal ideals say $N_1, \ldots N_s$. Note that each N_g (g = 1, ..., s) is of the form $Q_g R_{M_i}[1/y_j]$ for some prime ideal $Q_g R_{M_i}$ of R_{M_i} such that $Q_g R_{M_i} \subset M_i R_{M_i}$. Notice that $\operatorname{Spec}\left(\left(R_{M_i}[1/y_j]\right)_{N_g}\right)$ is an infinite set for some $g \in \{1, \ldots, s\}$. Further observe that $M_i \supset Q_g$. Now $(R_{M_i}[1/y_j])_{N_g} \simeq R_{Q_g}$ by [2, Proposition 11 (iii), p.70] and thus Spec $(R_{\mathbf{Q}_g})$ is an infinite set and $R_{\mathbf{Q}_g}$ has Noetherian spectrum and is a UZD. Hence applying the above argument to the ring $R_{\mathbf{Q}_g}$ yields $H \in \operatorname{Spec}(R)$ such that $\mathbf{Q}_g \supset H$ and $\operatorname{Spec}(R_H)$ is infinite. So by repeating the above procedure we obtain a strictly descending sequence of prime ideals of R. This is in contradiction to the assumption that R has descending chain condition on prime D ideals. Therefore Spec(R) is a finite set.

The converse is obvious.

REMARK 11. (i) We mention an example to show that the hypothesis in Proposition 10 that R has Noetherian spectrum cannot be dropped. There exists a valuation ring Vsuch that the set of prime ideals of V forms an infinite ascending chain (0) $\subset P_1 \subset$ $P_2 \subset \cdots \subset M = \bigcup_{i=1}^{\infty} P_i$ [5, Example 5, p.578]. Thus Spec(V) is an infinite set but by Proposition 4 (ii), V is a UZD. Further, note that V has descending chain condition on prime ideals.

(ii) We now mention an example to show that the hypothesis in Proposition 10 that R has descending chain condition on prime ideals cannot be dropped.

Let F be a field and $\{X_i\}_{i=1}^{\infty}$ be a set of elements algebraically independent over F. Let $K = F(\{X_i\}_{i=1}^{\infty})$. Let G be the direct sum of countably many copies of Z, the additive group of integers. We order G with reverse lexicographic ordering. Then there exists a valuation ring W on K with value group G by [7, Example 2.6]. It is easy to verify that the set of all prime ideals of W forms an infinite descending chain $M \supset P_1 \supset P_2 \supset \ldots$. But W is a UZD and W has Noetherian spectrum.

Next we consider the ascent and descent of UZD with respect to integral extension of rings.

PROPOSITION 12. (i) Let $R \subset T$ be rings. Let T be integral over R. If T is a UZD then R is a UZD.

(ii) Let B be a finite integral extension ring of a ring A. If B has finitely many minimal prime ideals and if A is a UZD then B is a UZD.

PROOF: (i) Let $\{P_{\alpha}\}_{\alpha \in \Lambda}$ be any family of prime ideals of R. Now for each P_{α} , there exists $Q_{\alpha} \in \text{Spec}(T)$ such that $Q_{\alpha} \cap R = P_{\alpha}$ by [1, Theorem 5.10]. Since T is UZD, by Proposition 1, $\bigcup_{\alpha \in \Lambda} Q_{\alpha} = \bigcup_{i=1}^{n} H_i$ for some $H_i \in \text{Spec}(T)$ (i = 1, ..., s). Now it follows that $\bigcup_{\alpha \in \Lambda} P_{\alpha} = \bigcup_{\alpha \in \Lambda} (Q_{\alpha} \cap R) = \bigcup_{i=1}^{n} (H_i \cap R)$. Hence R is a UZD.

(ii) By hypothesis B has only a finite number of minimal prime ideals, say Q_1, \ldots, Q_t . Notice that each B/Q_i $(i = 1, \ldots, t)$ is a finite integral extension of $A/(Q_i \cap A)$ and $A/(Q_i \cap A)$ is a UZD (for $i = 1, \ldots, t$). We prove that B/Q_i is a UZD for each $i \in \{1, \ldots, t\}$. Then it will follow that B is a UZD. Hence it suffices to prove (ii) in the case in which B is an integral domain. Let K denote the quotient field of B. Let X be an indeterminate over K. Consider V = K[[X]] = K + M where M = XK[[X]]. Let $B_1 = B + M$; $A_1 = A + M$. Since B is a finite integral extension of A, it follows that B_1 is a finite integral extension of A_1 . As A is a UZD, A_1 is a Z.D. ring by [13, Remark 2.1]. Hence B_1 is a Z.D. ring by [9, Theorem 2.9]. Again by [13, Remark 2.1], B is a UZD. This completes the proof of (ii).

REMARK 13. We mention an example to show that Proposition 12 (ii) does not extend to infinite integral extensions. Gilmer and Huckaba in [8, Example p.211] have constructed for a fixed prime p an infinite algebraic extension L of the field of rationals Qsuch that the integral closure $\overline{Z_p}$ of Z_p in L has an infinite number of maximal ideals. S. Visweswaran

Since Z_p is a 1-dimensional quasilocal domain it is clear that Z_p is a UZD. As $\overline{Z_p}$ has an infinite number of maximal ideals, $\overline{Z_p}$ is not a UZD.

We conclude this note with the following Proposition which determines when every overring of an integral domain is a UZD.

PROPOSITION 14. Let R be an integral domain with quotient field K. Then each overring of R is a UZD if and only if the integral closure of R in K is a Prüfer domain with only finitely many maximal ideals.

PROOF: (\Rightarrow) Let \overline{R} denote the integral closure of R in K. Let $Q \in \operatorname{Spec}(\overline{R})$. Let $\alpha \in K$, $\alpha \neq 0$. Let X be an indeterminate over \overline{R}_Q . Let g denote the \overline{R}_Q homomorphism from $\overline{R}_Q[X]$ to $\overline{R}_Q[\alpha]$ determined by $g(X) = \alpha$. Now $\overline{R}_Q[\alpha]$ is a UZD and hence it has only a finite number of maximal ideals. We assert that $\ker g \not\subseteq Q\overline{R}_Q[X]$. For if $\ker g \subseteq Q\overline{R}_Q[X]$ then $(\overline{R}_Q[X])/(Q\overline{R}_Q[X]) \simeq (\overline{R}_Q)/(Q\overline{R}_Q)[X]$ becomes a homomorphic image of $\overline{R}_Q[\alpha]$ which would force $(\overline{R}_Q)/(Q\overline{R}_Q)[X]$ to have only a finite number of maximal ideals, a contradiction. Hence $\ker g \not\subseteq Q\overline{R}_Q[X]$. So by [6, Lemma 19.14] either α or α^{-1} is in \overline{R}_Q . Thus \overline{R}_Q is a valuation ring for each $Q \in \operatorname{Spec}(\overline{R})$. Hence \overline{R} is a Prüfer domain. Since \overline{R} is a UZD, \overline{R} has only a finite number of maximal ideals.

(\Leftarrow) Let A be any overring of R. Let \overline{A} denote the integral closure of A in K. Then \overline{A} is a Prüfer domain with only a finite number of maximal ideals by [6, Theorem 26.1 (a) and Exercise 14, p. 331]. So \overline{A} is a UZD by Proposition 4(ii). Now Proposition 12 (i) implies that A is a UZD.

References

- M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra (Addison Wesley, Reading, MA, 1969).
- [2] N. Bourbaki, Commutative algebra (Addision Wesley, Reading, MA, 1972).
- P.M. Eakin, 'The converse to a well known theorem on Noetherian rings', Math. Ann. 177 (1968), 278-282.
- [4] E.G. Evans, 'Zero divisors in Noetherian-like rings', Trans. Amer. Math. Soc. 155 (1971), 505-512.
- [5] R. Gilmer, Multiplicative ideal theory 12, Queen's papers on Pure and Applied Mathematics (Queen's University, Kingston, Ontario, 1968).
- [6] R. Gilmer, Multiplicative ideal theory (Marcel-Dekker, New York, 1972).
- [7] R. Gilmer and W. Heinzer, 'The quotient field of an intersection of integral domains', J. Algebra 70 (1981), 238-249.
- [8] R. Gilmer and J.A. Huckaba, 'The transform formula for ideals', J. Algebra 21 (1972), 191-215.
- [9] W. Heinzer and D. Lantz, 'The Laskerian property in commutative rings', J. Algebra 72 (1981), 101-114.

- [10] W. Heinzer and D. Lantz, 'Commutative rings with ACC on n-generated ideals', J. Algebra 80 (1983), 261-278.
- [11] I. Kaplansky, Commutative rings (University of Chicago Press, Chicago, 1974).
- [12] J. Ohm and R. Pendleton, 'Rings with Noetherian spectrum', Duke Math. J. 35 (1968), 631-640.
- [13] S. Visweswaran, 'Subrings of $K[y_1, \ldots, y_t]$ of the type D + I', J. Algebra 117 (1988), 374-389.

Department of Mathematics Saurashtra University Rajkot India 360 005