SOME FINITE ANALOGUES OF THE POISSON SUMMATION FORMULA \dagger

by L. CARLITZ
(Received 8th December, 1960)

1. Guinand (2) has obtained finite identities of the type

$$
\begin{align*}
& \frac{1}{n} \sum_{r=1}^{n N} f\left(\frac{m r}{n}\right)-\frac{1}{n} \int_{0}^{n N} f\left(\frac{m t}{n}\right) d t \\
&=\frac{1}{m} \sum_{r=1}^{m N} g\left(\frac{n r}{m}\right)-\frac{1}{m} \int_{0}^{m \mathrm{M}} g\left(\frac{n t}{m}\right) d t \tag{1.1}
\end{align*}
$$

where m, n, N are positive integers and either

$$
\begin{equation*}
f(x)=g(x)=\psi(1+x)-\log x=\frac{\Gamma^{\prime}(1+x)}{\Gamma(1+x)}-\log x \tag{1.2}
\end{equation*}
$$

or

$$
\left\{\begin{array}{l}
f(x)=\frac{1}{x}\left\{\sum_{1 \leqq r \leqq x}^{\prime} 1-x\right\} \tag{1.3}\\
g(x)=\gamma+\log x-\sum_{1 \leqq r \leqq x}^{\prime} \frac{1}{n}
\end{array}\right.
$$

where γ is Euler's constant and the notation Σ^{\prime} indicates that when x is integral the term $r=x$ is multiplied by $\frac{1}{2}$. Clearly there is no loss of generality in taking $N=1$ in (1.1).

We should like to point out that identities of the form (1.1) can be obtained very easily in the following way. Following Mordell (3), let $f(x)$ be a function of x that satisfies the multiplication formula

$$
\begin{equation*}
\sum_{s-0}^{n-1} f\left(x+\frac{s}{n}\right)=C_{n} f(n x) \quad(n=1,2,3, \ldots) \tag{1.4}
\end{equation*}
$$

where C_{n} is independent of x but may depend upon the function f. Also it follows from (1.4) that $C_{m n}=C_{m} C_{n}$ for all integral $m, n \geqq 1$. In a recent paper (1), the writer has shown that (1.4) implies

$$
\begin{equation*}
C_{n} \sum_{r=0}^{m-1} f\left(n x+\frac{n r}{m}\right)=C_{m} \sum_{s=0}^{n-1} f\left(m x+\frac{m s}{n}\right) . \tag{1.5}
\end{equation*}
$$

In the paper cited above, Mordell has noted that if $\{x\}=x-[x]$, the fractional part of the real variable x, then the function $f(\{x\})$ also satisfies (1.4). Thus if we define $\bar{f}(x)$ by means of $\bar{f}(x)=f(x) \quad(0 \leqq x<1), \quad \vec{f}(x-1)=\bar{f}(x)$,
\dagger Supported in part by National Science Foundation grant G-9425.
then $\vec{f}(x)$ satisfies (1.4). We may accordingly assume that $f(x)$ in (1.4) has the period 1 .

Now consider the sum

$$
C_{n} \sum_{t=0}^{m-1} f\left(n x+\frac{n t}{m N}\right)
$$

where N is an arbitrary positive integer. Using (1.2) we obtain

$$
\begin{equation*}
\sum_{s=0}^{n-1} \sum_{i=0}^{m N-1} f\left(x+\frac{s}{n}+\frac{t}{m N}\right) . \tag{1.6}
\end{equation*}
$$

We now assume that m and N are relatively prime and that $f(x)$ has the period 1 . Then if r runs through a complete residue system $(\bmod m)$ while u runs through a complete residue system $(\bmod N)$ it follows that $t=r N+u m$ runs through a complete residue system $(\bmod m N)$. Consequently the expression (1.6) is equal to

$$
\begin{equation*}
\sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{u=0}^{N-1}\left(x+\frac{r}{m}+\frac{s}{n}+\frac{u}{N}\right) . \tag{1.7}
\end{equation*}
$$

If we prefer, each summation in (1.7) may be extended over a complete residue system modulo m, n or N, respectively. We have thus proved the formula

$$
\begin{equation*}
C_{n} \sum_{t=0}^{m-1} f\left(n x+\frac{n t}{m N}\right)=\sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{u=0}^{N-1} f\left(x+\frac{r}{m}+\frac{s}{n}+\frac{u}{N}\right) . \tag{1.8}
\end{equation*}
$$

If we assume that n and N are relatively prime we get similarly

$$
\begin{equation*}
C_{m} \sum_{t=0}^{n N-1} f\left(m x+\frac{m t}{n N}\right)=\sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{u=0}^{N-1} f\left(x+\frac{r}{m}+\frac{s}{n}+\frac{u}{N}\right) . \tag{1.9}
\end{equation*}
$$

Comparing (1.9) with (1.8) we have

$$
\begin{equation*}
C_{n} \sum_{t=0}^{m N-1} f\left(n x+\frac{n t}{m N}\right)=C_{m} \sum_{t=0}^{n N-1} f\left(m x+\frac{m t}{n N}\right), \tag{1.10}
\end{equation*}
$$

provided $(N, m n)=1$ and $f(x)$ is of period 1 .
Combining (1.5) and (1.10) we state
Theorem 1. Let $f(x)$ satisfy (1.4) and have period 1. Then if m, n, N are positive integers such that $(N, m n)=1$, it follows that

$$
\begin{align*}
C_{n}\left\{\sum_{r=0}^{m-1} f\left(n x+\frac{n r}{m}\right)\right. & \left.-\frac{1}{N} \sum_{t=0}^{m N-1} f\left(n x-\frac{n t}{m N}\right)\right\} \\
& =C_{m}\left\{\sum_{s=0}^{n-1} f\left(m x+\frac{m s}{n}\right)-\frac{1}{N} \sum_{t=0}^{n N-1} f\left(m x+\frac{m t}{n N}\right)\right\} \tag{1.11}
\end{align*}
$$

If in (1.11) we let $N \rightarrow \infty$ then, provided the integrals exist, we get

$$
\begin{aligned}
\lim _{N=\infty} \frac{1}{N} \sum_{t=0}^{m N-1} f\left(n x+\frac{n t}{m N}\right) & =\int_{0}^{m} f\left(n x+\frac{n t}{m}\right) d t, \\
\lim _{N=\infty} \frac{1}{N} \sum_{t=0}^{n N-1} f\left(m x+\frac{m t}{n N}\right) & =\int_{0}^{n} f\left(m x+\frac{m t}{n}\right) d t .
\end{aligned}
$$

Thus Theorem 1 yields

Theorem 2. Let $f(x)$ satisfy (1.4) and have period 1. Then if m, n are arbitrary positive integers, we have

$$
\begin{align*}
C_{n}\left\{\sum_{r=0}^{m-1} f\left(n x+\frac{n r}{m}\right)-\right. & \left.\int_{0}^{m} f\left(n x+\frac{n t}{m}\right) d t\right\} \\
& =C_{m}\left\{\sum_{s=0}^{n-1} f\left(m x+\frac{m s}{n}\right)-\int_{0}^{n} f\left(m x+\frac{m t}{n}\right) d t\right\} \tag{1.12}
\end{align*}
$$

2. As a simple application of Theorems 1 and 2 we may take $f(x)=\bar{B}_{k}(x)$, where $B_{k}(x)$ is the Bernoulli polynomial of degree k defined by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

and

$$
\bar{B}_{k}(x)=B_{k}(x)(0 \leqq x<1), \quad \bar{B}_{k}(x+1)=\bar{B}_{k}(x) .
$$

Since

$$
\sum_{s=0}^{n-1} B_{k}\left(x+\frac{s}{n}\right)=n^{1-k} B_{k}(n x)
$$

we have in this instance $C_{n}=n^{1-k}$.
In the second place, if we put

$$
\zeta(\sigma, x)=\sum_{n=0}^{\infty} \frac{1}{(x+n)} \sigma \quad(x>0, R(\sigma)>1)
$$

then $\zeta(\sigma, x)$ satisfies (1.4) with $C_{n}=n^{\sigma}$. Thus in (1.11) and (1.12) we may take $f(x)=\zeta(\sigma,\{x\})$.

If $\left.F^{\prime} x\right)=f(x)$, then (1.2) implies

$$
\begin{equation*}
\sum_{s=0}^{n-1} F\left(x+\frac{s}{n}\right)=\frac{1}{n} C_{n} F(n x)+C_{n}^{\prime} \tag{2.1}
\end{equation*}
$$

where C_{n}^{\prime} is also independent of x. For example we have the well-known formula

$$
\begin{equation*}
\sum_{s=0}^{n-1} \Psi\left(x+\frac{s}{n}\right)=n \Psi(n x)-n \log n \tag{2.2}
\end{equation*}
$$

It is easily verified that the function $\bar{F}(x)=F(\{x\})$ also satisfies (2.1).
It follows from (2.1) that

$$
\begin{equation*}
\frac{1}{m} C_{m} \sum_{s=0}^{n-1} F\left(m x+\frac{m s}{n}\right)+n C_{m}^{\prime}=\frac{1}{n} C_{n} \sum_{r=0}^{m-1} F\left(n x+\frac{n r}{m}\right)+m C_{n}^{\prime} . \tag{2.3}
\end{equation*}
$$

Also, exactly as in proving (1.10), we find that

$$
\frac{1}{m} C_{m} \sum_{t=0}^{m-1} \bar{F}\left(m x+\frac{m t}{n}\right)=\sum_{r=0}^{m-1} \sum_{s=0}^{n-1} \sum_{u=0}^{N-1} \bar{F}\left(x+\frac{r}{m}+\frac{s}{n}+\frac{u}{N}\right)-n N C_{m}^{\prime},
$$

so that
$\frac{1}{m N} C_{m} \sum_{t=0}^{m N-1} F\left(m x+\frac{m t}{n}\right)+n C_{m}^{\prime}=\frac{1}{n N} C_{n} \sum_{t=0}^{m N} F\left(n x+\frac{n t}{m}\right)+m C_{n}^{\prime}$
provided $(N, m n)=1$.

L. CARLITZ

We may therefore state the following theorems.
Theorem 3. Let $F^{\prime}(x)=f(x)$, where $f(x)$ satisfies (1.4), and put

$$
\begin{equation*}
\bar{F}(x)=F(\{x\})=F(x-[x]) \tag{2.5}
\end{equation*}
$$

Then if $(N, m n)=1$ it follows that

$$
\begin{align*}
& \frac{1}{n} C_{n}\left\{\sum_{r=0}^{m-1} \bar{F}\left(n x+\frac{n r}{m}\right)-\frac{1}{N} \sum_{t=0}^{m-1} \bar{F}\left(n x+\frac{n t}{m}\right)\right\} \\
& =\frac{1}{m} C_{m}\left\{\sum_{s=0}^{n-1} \bar{F}\left(m x+\frac{m s}{n}\right)-\frac{1}{N} \sum_{t=0}^{n N-1} \bar{F}\left(m x+\frac{m t}{n}\right)\right\} . \tag{2.6}
\end{align*}
$$

Moreover in the sums over r and s in (2.6), \bar{F} may be replaced by F.
Theorem 4. Let $F^{\prime}(x)=f(x)$, where $f(x)$ satisfies (1.4) and define $\bar{F}(x)$ by means of (2.5). Then

$$
\begin{align*}
& \frac{1}{n} C_{n}\left\{\sum_{r=0}^{m-1} F\left(n x+\frac{n r}{m}\right)-\int_{0}^{m} \bar{F}\left(n x+\frac{n t}{m}\right) d t\right\} \\
& \quad=\frac{1}{m} C_{m}\left\{\sum_{s=0}^{n-1} \bar{F}\left(m x+\frac{m s}{n}\right)-\int_{0}^{n} \bar{F}\left(m x+\frac{m t}{n}\right) d t\right\} . \tag{2.7}
\end{align*}
$$

Moreover in each sum in (2.7) \bar{F} may be replaced by F.
3. Since $\psi(x)$ satisfies (2.2) it is evident that (2.6) and (2.7) yield

$$
\begin{align*}
\frac{1}{m} \sum_{r=0}^{m-1} \Psi\left(n x+\frac{n r}{m}\right) & -\frac{1}{m N} \sum_{t=0}^{m N-1} \bar{\psi}\left(n x+\frac{n t}{m}\right) \\
& =\frac{1}{n} \sum_{s=0}^{n-1} \Psi\left(m x+\frac{m s}{n}\right)-\frac{1}{n N} \sum_{t=0}^{n N-1} \bar{\psi}\left(m x+\frac{m t}{n}\right) \tag{3.1}
\end{align*}
$$

$\frac{1}{m} \sum_{r=0}^{m-1} \Psi\left(n x+\frac{n r}{m}\right)-\frac{1}{m} \int_{0}^{m} \psi\left(n x+\frac{n t}{m}\right) d t$

$$
\begin{equation*}
=\frac{1}{n} \sum_{s=0}^{n-1} \bar{\psi}\left(m x+\frac{m s}{n}\right)-\frac{1}{n} \int_{0}^{n} \bar{\psi}\left(m x+\frac{m t}{n}\right) d t \tag{3.2}
\end{equation*}
$$

where $\psi(x)=\psi(x-[x])$.
To get a result like (3.2) involving $\psi(x)$ we note first that by (2.2) and (2.3)

$$
\begin{equation*}
\frac{1}{m} \sum_{r=0}^{m-1} \psi\left(n x+\frac{n r}{m}\right)+\log n=\frac{1}{n} \sum_{s=0}^{n-1} \psi\left(m x+\frac{m s}{n}\right)+\log m \tag{3.3}
\end{equation*}
$$

Secondly we have

$$
\begin{align*}
\frac{1}{m} \int_{0}^{m} \psi\left(n x+\frac{n t}{m}\right) d t & =\int_{0}^{1} \psi(n x+n t) d t \\
& =\frac{1}{n} \log \frac{\Gamma(n x+n)}{\Gamma(n x)}=\log n+\sum_{s=0}^{n-1} \log \left(x+\frac{s}{n}\right) . \tag{3.4}
\end{align*}
$$

If we put

$$
\begin{equation*}
G(x)=\psi(x)-\log x \tag{3.5}
\end{equation*}
$$

and make use of (3.3) and (3.4), we find after a little computation that

$$
\begin{align*}
\frac{1}{m}\left\{\sum_{r=0}^{m-1} G\left(n x+\frac{n r}{m}\right)\right. & \left.-\int_{0}^{m} G\left(n x+\frac{n t}{m}\right) d t\right\} \\
& =\frac{1}{n}\left\{\sum_{s=0}^{n-1} G\left(m x+\frac{m s}{n}\right)-\int_{0}^{n} G\left(m x+\frac{m t}{n}\right) d t\right\} \tag{3.6}
\end{align*}
$$

It can be verified that (3.6) is equivalent to Theorem 2 of Guinand's paper. Put

$$
\begin{equation*}
H(x)=G(x)-\Psi(x)=\psi(x)-\Psi(x)-\log x, \tag{3.7}
\end{equation*}
$$

which evidently implies that, for $x>0$,

$$
\begin{equation*}
H(x)=\sum_{1 \leq k<x} \frac{1}{x-k}-\log x \tag{3.8}
\end{equation*}
$$

Comparing (3.6) with (3.2), we have at once that

$$
\begin{align*}
\frac{1}{m}\left\{\sum _ { r = 0 } ^ { m - 1 } H \left(n x+\frac{n r}{m}\right.\right. &)-\int_{0}^{m} H\left(n x+\frac{n t}{m}\right) d t\right\} \\
& =\frac{1}{n}\left\{\sum_{s=0}^{n-1} H\left(m x+\frac{m s}{n}\right)-\int_{0}^{n} H\left(m x+\frac{m t}{n}\right) d t\right\} \tag{3.9}
\end{align*}
$$

The function $H(x)$ may be compared with $g(x)$ as defined in (1.3).
We have noted above that in Theorem 2 we may take $f(x)=\zeta(\sigma,\{x\})$.
Now for the function $\zeta(\sigma, x)$ we have first by (1.5)

$$
\begin{equation*}
n^{\sigma} \sum_{r=0}^{m-1} \zeta\left(\sigma, n x+\frac{n r}{m}\right)=m^{\sigma} \sum_{s=0}^{n-1} \zeta\left(\sigma, m x+\frac{m s}{n}\right) \tag{3.10}
\end{equation*}
$$

Secondly we have, for $\sigma \neq 1$, that

$$
\begin{equation*}
n^{\sigma} \int_{0}^{m} \zeta\left(\sigma, n x+\frac{n t}{m}\right) d t=\frac{1}{\sigma-1} \sum_{s=0}^{n-1}\left(m x+\frac{m s}{n}\right)^{1-\sigma} \tag{3.11}
\end{equation*}
$$

Thus if we put

$$
\begin{equation*}
G_{\sigma}(x)=\zeta(\sigma, x)-\frac{x^{1-\sigma}}{1-\sigma}, . \tag{3.12}
\end{equation*}
$$

it follows from (3.10) and 3.11) that

$$
\begin{align*}
& n^{\sigma}\left\{\sum_{r=0}^{m-1} G_{\sigma}\left(n x+\frac{n r}{m}\right)-\int_{0}^{m} G_{\sigma}\left(n x+\frac{n t}{m}\right) d t\right\} \\
&=m^{\sigma}\left\{\sum_{s=0}^{n-1} G_{\sigma}\left(m x+\frac{m r}{n}\right)-\int_{0}^{n} G_{\sigma}\left(m x+\frac{m t}{n}\right) d t\right\} \tag{3.13}
\end{align*}
$$

We may state

Theorem 5. If

$$
\zeta(\sigma, x)=\sum_{k=0}^{\infty} \frac{1}{(x+k)^{\sigma}} \quad(R(\sigma)>1)
$$

and $G_{o}(x)$ is defined by (3.12), then (3.13) holds for arbitrary positive integers m, n.
By analytic continuation (3.13) holds for all $\sigma \neq 1$.
Since, by (1.12),

$$
\begin{aligned}
& n^{\sigma}\left\{\sum_{r=0}^{m-1} \zeta\left(\sigma,\left\{n x+\frac{n r}{m}\right\}\right)-\int_{0}^{m} \zeta\left(\sigma,\left\{n x+\frac{n t}{m}\right\}\right) d t\right\} \\
&=m^{\sigma}\left\{\sum_{s=0}^{n-1} \zeta\left(\sigma,\left\{m x+\frac{m s}{n}\right\}\right)-\int_{0}^{n} \zeta\left(\sigma,\left\{m x+\frac{m t}{n}\right\}\right) d t\right\}
\end{aligned}
$$

comparison with (3.13) yields

$$
\begin{align*}
& \begin{array}{l}
n^{\sigma}\left\{\sum_{r=0}^{m-1} H_{\sigma}\left(n x+\frac{n r}{m}\right)-\int_{0}^{m} H_{\sigma}\left(n x+\frac{n t}{m}\right) d t\right\} \\
\\
=m^{\sigma}\left\{\sum_{s=0}^{n-1} H_{\sigma}\left(m x+\frac{m s}{n}\right)-\int_{0}^{n} H_{\sigma}\left(m x+\frac{m t}{n}\right) d t\right\}
\end{array}
\end{align*}
$$

$$
\begin{align*}
H_{\sigma}(x) & =\zeta(\sigma,\{x\})-G_{\sigma}(x) \\
& =\zeta(\sigma,\{x\})-\zeta(\sigma, x)+\frac{x^{1-\sigma}}{1-\sigma} \\
& =\sum_{1 \leqq k<x} \frac{1}{(x-k)^{\sigma}}+\frac{x^{1-\sigma}}{1-\sigma} \cdots \tag{3.15}
\end{align*}
$$

The formula (3.14) may be compared with Theorem 5 of Guinand's paper.
We remark that since

$$
\zeta(1-k, x)=-\frac{1}{k} B_{k}(x) \quad(k=1,2,3, \ldots)
$$

(3.13) can be expressed in terms of Bernoulli polynomials.

REFERENCES

(1) L. Carlitz, Some generalized multiplication formulas for Bernoulli polynomials and related functions, Monatshefte fur Mathematik, 65 (to appear).
(2) A. P. Guinand, Some finite identities connected with Poisson's summation formula, Proceedings of the Edinburgh Mathematical Society, 12 (1960), 17-25.
(3) L. J. Mordell, Integral formulas of arithmetic character, Journal of the London Mathematical Society, 33 (1957), 371-375.

Duke University
 U.S.A.

