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Abstract Plasma-enhanced atomic layer deposition (PEALD) is gaining interest in thin 

films for laser applications, and post-annealing treatments are often used to improve thin 

film properties. However, research to improve thin-film properties is often based on an 

expensive and time-consuming trial-and-error process. In this study, PEALD-HfO2 thin film 

samples were deposited and treated under different annealing atmospheres and temperatures. 

The samples were characterized in terms of their refractive indices, layer thicknesses, and 

O/Hf ratios. The collected data were split into training and validation sets and fed to multiple 
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back-propagation neural networks (BPNNs) with different hidden layers to determine the 

best way to construct the process-performance relationship. The results showed that the 

three-hidden-layer back-propagation neural network (THL-BPNN) achieved stable and 

accurate fitting. For the refractive index, layer thickness, and O/Hf ratio, the THL-BPNN 

model achieved accuracy values of 0.99, 0.94, and 0.94, respectively, on the training set and 

0.99, 0.91, and 0.90, respectively, on the validation set. The THL-BPNN model was further 

used to predict the laser-induced damage threshold of PEALD-HfO2 thin films and the 

properties of the PEALD-SiO2 thin films, both showing high accuracy. This study not only 

provides quantitative guidance for the improvement of thin film properties but also proposes 

a general model that can be applied to predict the properties of different types of laser thin 

films, saving experimental costs for process optimization. 

Keywords: plasma-enhanced atomic layer deposition, laser thin film, neural network, laser-

induced damage threshold 
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I. INTRODUCTION 

Optical thin films are key components of laser systems, and their optical properties and laser-

induced damage threshold (LIDT) directly affect their output energy [1–3]. Traditional preparation 

methods for laser thin films include electron-beam evaporation [4–6] and ion-beam sputtering [7]. 

Recently, plasma-enhanced atomic layer deposition (PEALD) has attracted attention because of 

its precise thickness controllability [8], excellent conformality [9], low-temperature growth 

https://doi.org/10.1017/hpl.2024.6 Published online by Cambridge University Press

mailto:bree@siom.ac.cn
https://doi.org/10.1017/hpl.2024.6


Accepted Manuscript 

 

 

 

 

properties [10], and high LIDT [11]. Furthermore, post-treatment annealing improves the properties 

of thin films grown via PEALD [12]. However, owing to the diversity and wide range of process 

parameters, process optimization and thin film performance improvement often require extensive, 

expensive, and time-consuming experiments. 

Back-propagation neural networks (BPNNs), a subset of machine learning, have shown 

potential for mapping the relationship between experimental parameters and material properties 

[13,14]. This approach can identify underlying regularities in the training data by updating the 

internal weight parameters [15,16]. In recent years, researchers have begun to study the application 

of neural networks in the field of thin films to predict growth rate [17–20], hydrophobicity [21], 

permeate flux, and foulant rejection [22]. Although these reports demonstrate the application of 

BPNNs in various thin films, studies on the properties of laser thin films are lacking. Furthermore, 

the adopted models were mainly shallow structures with single or double hidden layers. Shallow-

structure neural networks can meet most modeling and prediction needs but may require a large 

number of neurons to accurately represent the relationship between the input and output [23], which 

increases the likelihood of errors in models [22]. In 2022, Mengu et al. [24], while studying the 

emerging symbiotic relationship between deep learning and optics, reported the advantages of 

deep neural networks with three or more hidden layers in terms of approximation and 

generalization capability. However, as the number of hidden layers increases, deep neural 

networks may suffer from poor performance or training failure owing to issues such as 

vanishing/exploding gradients [25]. Therefore, it is necessary to determine the optimal number of 

hidden layers for solving a special task.  
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In this study, we employ several BPNN models to establish the relationship between the 

annealing process and the properties of PEALD-HfO2 thin films for laser applications. First, 

comparing the performance of BPNN models with different numbers of hidden layers, it is 

deduced that the three-hidden-layer back-propagation neural network (THL-BPNN) performs 

best. The THL-BPNN model was then used to model and predict the relationship between the 

annealing process and the PEALD-HfO2 thin-film properties and compared with the other two 

models. Finally, the LIDT of the PEALD-grown thin films and the properties of the PEALD-SiO2
 

thin films were predicted using the THL-BPNN model, and the applicability of the THL-BPNN 

model was verified. We believe that the THL-BPNN model can help predict the properties of other 

laser thin films. 

II. MATERIALS AND METHODS 

2.1 Data Preparation 

The HfO2 thin films used to construct the annealing process-thin film property relationship were 

grown on Si substrates using a commercial PEALD device (Picosun Advanced R200, Finland) 

with an integrated remote plasma source. HfO2 thin films were grown by alternating exposure to 

the precursor tetrakis-ethylmethylamino hafnium (Hf(N(CH3)(CH2CH3))4, TEMAH) and O2/Ar 

gas mixture plasma reactant at a deposition temperature of 150 °C. The number of deposition 

cycles was 500, and the pulse sequence for each HfO2 growth cycle was as follows: TEMAH 

feeding (1.6 s), N2 purging (19 s), Ar/O2 mixture feeding (11 s), and Ar purging (10 s). The 

samples were then annealed in quartz tube annealing equipment (RS 80/300/11, Nabertherm) for 

3 h. The annealing process included a combination of three atmospheres (vacuum, O2, and N2) 
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and six annealing temperatures (300 ℃ to 800 ℃ in 100 ℃ increments). For vacuum annealing, 

the pressure in the tubular annealing chamber was approximately 1×10-4 Pa. For O2 and N2 

atmosphere annealing, the gas flow rate was 150 SCCM for both O2 and N2. The HfO2 thin films 

were measured using an ellipsometer (Horiba Uvisel 2), and the thicknesses and refractive indices 

were extracted using the Tauc-Lorentz model in DeltaPsi2 software, neglecting the extinction 

coefficient (k). The O/Hf ratio of the HfO2 thin films was analyzed using XPS (Thermo Scientific) 

with a monochromatic Al Kα (1486.6 eV) X-ray source. The data used to construct the annealing 

process-thin film property relationship consisted of 19 samples, including 1 as-deposited sample 

and 18 annealed samples. 

The HfO2 thin film data used for LIDT modeling and prediction comes from Ref. [26], 

including 12 samples treated by different annealing process parameters. Among them, 6 samples 

were annealed in an O2 atmosphere, and the other 6 samples were annealed in a N2 atmosphere. 

The annealing temperature ranged from 300 ℃ to 800 ℃. 

The SiO2 thin film data used for properties modeling and prediction comes from Ref. [27], 

including 10 samples grown by different deposition process parameters. Among them, 4 samples 

were grown at different temperatures ranging from 50 ℃ to 200 ℃, and 6 samples were grown 

with different precursor source exposure times ranging from 0.2 s to 0.7 s.  

Table 1 lists the detailed parameters of the datasets used to model and predict the properties 

of HfO2 and SiO2 thin films, including refractive index, thickness, and stoichiometric ratio. As the 

annealing temperature increases, the thickness of the HfO2 thin film decreases and the refractive 

index increases. In vacuum environment, O2 environment and N2 environment, the thickness of 

HfO2 thin films annealed at different temperatures changes in the range of 34.7 to 42.7, 38.5 to 
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49.1, and 36.3 to 46.7, respectively, while the refractive index (at 355nm) of HfO2 thin films 

annealed at different temperatures changes in the range of 1.99 to 2.24, 1.83 to 1.97, and 1.88 to 

2.00, respectively. This means that the packing density of the HfO2 thin film increases with 

increasing annealing temperature [26]. In addition, the O/Hf ratio of HfO2 thin films annealed in an 

O2 environment fluctuates slightly around the ideal value of 2.0. However, the O/Hf ratio of HfO2 

thin films annealed in vacuum and N2 environments decreases with increasing annealing 

temperature. 
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Table 1. Datasets for properties prediction of HfO2 and SiO2 thin films 

 HfO2 thin films SiO2 thin films 

 Variables Range Variables Range 

Input 

Annealing atmosphere 0–3 Deposition temperature (°C) 50–200 

Annealing temperature (°C) 0–800 Precursor exposure time (s) 0.1–0.7 

Output 

Refractive index 

(at 355 nm) 
1.83–2.24 

Refractive index 

(at 355 nm) 
1.48–1.49 

Thickness (nm) 34.7–50.3 Thickness (nm) 69.0–88.1 

O/Hf ratio 1.80–2.04 O/Si ratio 1.94–2.01 

Note:  0, 1, 2 and 3 represent as-deposited sample, O2, N2, and vacuum, respectively. 

Table 2 lists the detailed parameters of the datasets used for LIDT modeling and prediction. 

Compared with PEALD-HfO2 thin films, PEALD-SiO2 thin films have lower absorption and 

impurity content. Furthermore, properties such as, absorption, impurity content and stoichiometric 

ratio influence each other. Detailed relationships are described in Ref. [26] and Ref. [27]. The 

LIDT was tested in 1-on-1 mode according to ISO 21254 using a Gaussian-shape 3ω Nd: YAG 

laser (355 nm, 7.8 ns). The LIDT test was performed under normal incidence, and the maximum 

laser fluence with zero damage probability was determined as LIDT. It is worth mentioning that 

the LIDT of HfO2 thin films is lower than that of the SiO2 thin films, which is attributed to the fact 

that the bandgap of HfO2 is lower than that of SiO2. 
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Table 2. Datasets for LIDT prediction of HfO2 and SiO2 thin films 

 Variables Range 

  HfO2 thin films SiO2 thin films 

Input 

Type 1 2 

Total impurity content (at. %) 5.4–13.5 0.6–1.1 

Absorption (ppm) 211–10892 3.8–5.8 

Stoichiometric ratio 1.81–2.06 1.94–2.01 

Output LIDT (J/cm2) 1.2–6.3 22.0–39.4 

Note:  1 and 2 represent HfO2 samples and SiO2 samples, respectively. 

2.3 Models 

Six models, namely, four BPNN models with different numbers of hidden layers (single-hidden-

layer BPNN, double-hidden-layer BPNN, three-hidden-layer BPNN, and four-hidden-layer 

BPNN), a support vector machine regression (SVR) model [28] using a Gaussian kernel function, 

and a linear regression (LR) model [29], were used to establish the correlation between the 

annealing process and the refractive index, layer thickness, and O/Hf ratio of PEALD-HfO2 thin 

films. Except for the LR model, which belongs to the category of linear regression fitting, the 

other models belong to the category of nonlinear regression fitting. All models performed 

regression fitting by training on a training set, tuning the modeling parameters to achieve the 

highest accuracy (i.e., lowest error), and then validating on a validation set. When constructing 

the relationship between the annealing process and the properties of the PEALD-HfO2 thin films, 

6 samples were randomly selected as the validation set, and the remaining 13 samples (12 annealed 

samples and one as-deposited sample) were used as the training set. When predicting the LIDT of 

PEALD-grown thin films, 6 samples (3 HfO2-samples and 3 SiO2-samples) were randomly 
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selected as the validation set, and the remaining 16 samples (9 HfO2-samples and 7 SiO2-samples) 

were used as the training set. When predicting the properties of PEALD-SiO2 thin films, the leave-

one-out cross-validation method was adopted owing to limited data. For each test, one sample was 

used as a validation set, and the remaining samples were used as a training set until every sample 

was used as a validation set. Subsequently, the average performance deviation was calculated for 

each model. 

Fig. 1 shows a schematic of the THL-BPNN model, including an input layer (layer 0), three 

hidden layers (layers 1–3), and an output layer (layer 4), with each layer containing one or more 

neurons. The number of neurons in the input and output layers was determined by the number of 

input and output variables in the dataset, whereas the number of neurons in the hidden layers was 

initially determined using Eq. (1) (an empirical formula) and finally determined by a global 

traversal search. 

 l u v a   ,   (1) 

where u, v, and l are the numbers of neurons in the input, output, and hidden layers, respectively, 

and a is a random number between 1 and 10. 

The neurons receive input signals from the previous layer and generate output signals for the 

next layer [30,31]. For example, the first neuron in layer 1 (from top to bottom), the circle where h11 

is located, receives input signals, x = [x1; x2], from layer 0. Then x undergoes linear transformation 

to get weighted sum, z, which is expressed as follows: 

 z b Tw x , (2) 
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where w = [w1; w2]R is a weight vector between the neurons, and bR is a bias. 

 

Fig. 1. THL-BPNN model with all neurons in adjacent layers connected. x = [x1; x2], y1 and hij 

represent the input, output and intermediate processing signals, respectively. 

Subsequently, z passes through a nonlinear activation function ( )f [32], and the output signal 

h11 is generated as 

 11 ( )h f z . (3) 

These processes were performed for each neuron in each layer to form the final output signal, 

y1 
[33]. Obviously, mapping from the input space to the output space is initially established through 

layer-by-layer information transfer.  

To further improve the mapping accuracy, a training loss was constructed in the output layer, 

and an appropriate training algorithm is selected to update the relevant parameters (weights w and 

bias b) in combination with the chain rule [34] until the loss or the number of iterations reaches the 

preset threshold [35]. The Levenberg-Marquardt algorithm [36] was used to solve the nonlinear least 
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squares problem. The hyperbolic tangent function was selected as the activation function for all 

hidden layers. The initialization state of each run was fixed to avoid interference from other factors.  

2.4 Model Specification and Evaluation 

2.4.1 Variable Scaling 

Considering that different distribution ranges of the input and output values may lead to biased 

assessments, Eq. (4) is used to scale the input and output of the data to [-1, 1].  

 max min min
norm min

max min

Y Y X X
X Y

X X


 



( - )（ ）
, (4) 

where X is the input or output vector; Xmax and Xmin are the maximum and minimum values of the 

input or output vector, respectively; and Ymax and Ymin are the maximum and minimum values after 

normalization, respectively. 

2.4.2 Model Evaluation Metrics 

The coefficient of determination (R2) [37] was used to evaluate the overall performance of each 

model. The average accuracy (AA) was used to evaluate the performance of each model on a 

validation set with only a single sample. The root mean square error (RMSE) [38] was used to 

measure the deviation between the predicted and measured values. 
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where n is the size of the dataset; Yi and Ti are the measured and predicted values of the i-th sample 

in the dataset, respectively; and Y is the average of the measured values. The lower RMSE (close 

to 0) and higher R2 and AA (close to 1) indicate smaller differences between the measured and 

predicted values. 

III. RESULTS AND DISCUSSION 

3.1 Analysis of the Number of Hidden Layers of the BPNN Model 

The influence of the number of hidden layers in the BPNN model on the modeling accuracy was 

studied using the measured data of the refractive index, layer thickness, and O/Hf ratio of the 

PEALD-HfO2 thin films treated with different annealing process parameters. The optimal number 

of neurons in each hidden layer was determined by a global traversal search on the training set 

corresponding to the lowest mean absolute error, and then the optimal model was applied to the 

validation set. For the refractive index and layer thickness datasets, the total number of neurons 

in the BPNN model with multiple hidden layers was consistent with that of the single-hidden-

layer BPNN model. For the O/Hf ratio dataset, because the optimal number of neurons in the 

single-hidden-layer BPNN model is only five, this value is set as the maximum number of neurons 

in each hidden layer in the BPNN model with multiple hidden layers. The modeling and prediction 

accuracies are shown in Fig. 2. Overall, as the number of hidden layers increased from one to 

three, the difference between R2 and RMSE on the training and validation sets decreased, 
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indicating that the model moved from inexact to exact fitting. However, as the number of hidden 

layers was further increased to four, the difference between R2 and RMSE on the training and 

validation sets increased. This may be due to the fact that the combination of neurons in each layer 

grows exponentially with the number of hidden layers, which introduces the risk of overfitting 

while potentially obtaining better solutions. The only exception is the modeling of the refractive 

index, where a single-hidden-layer BPNN also exhibits good performance, which could be 

attributed to the small variation in the properties and the uncomplicated relationship between the 

input and output. With the three-hidden-layer BPNN model, the R2 values of the refractive index, 

layer thickness, and O/Hf ratio were higher than 0.90 on both the training and validation sets. The 

THL-BPNN model was selected for the follow-up study.  
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Fig. 2. Accuracy of BPNNs with 1–4 hidden layers based on (a) refractive index (at 355 nm), (b) 

layer thickness, and (c) O/Hf ratio of PEALD-HfO2. The four columns in each subgraph represent 

the R2 values of the model on the training and validation sets and the RMSE values on the training 

and validation sets, respectively. The table indicates the number of neurons in each hidden layer 

of each model.  

3.2 Comparison of the THL-BPNN Model with Other Models 

The performance of the THL-BPNN model was further evaluated and compared with the LR and 

SVR models. The refractive index, layer thickness, and O/Hf ratio of the HfO2 thin films predicted 
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by the three models were compared with the measured values, as shown in Fig. 3 and Table 2. As 

shown in Figs. 3(a), 3(d), and 3(g), the poor performance of the LR model on all three datasets 

indicates a nonlinear relationship between the annealing process and the thin film properties. As 

shown in Figs. 3(b), 3(e), and 3(h), the SVR model obtains a better fit than the LR model on the 

layer thickness and O/Hf ratio datasets, but it still does not perform well enough on the refractive 

index dataset. As shown in Figs. 3(c), 3(f), and 3(i), the predicted and measured values of most 

samples are in good agreement, particularly for the refractive index dataset, indicating that the 

THL-BPNN model has a high accuracy in modeling and predicting the relationship between the 

annealing process parameters and HfO2 thin film properties.  
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Fig. 3. Measured and predicted (a)–(c) refractive index, (d)–(f) layer thickness, and (g)–(i) O/Hf 

ratio of HfO2 thin films. The data in the left, middle, and right columns are predicted by the LR 

model, SVR model, and THL-BPNN model, respectively. The blue line (with a slope of 1) serves 

as a guideline for a perfect prediction.  

Table 3 lists the specific performance of all models on the training and validation sets. The 

THL-BPNN model performs best among the three regression models, with R2 values no lower 

than 0.90 for the refractive index, layer thickness, and O/Hf ratio datasets. High R2 values and low 

RMSE values indicate that the THL-BPNN model can capture the patterns and extend them to 
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unknown data. In short, the THL-BPNN model shows good stability in constructing the 

relationship between the annealing process and HfO2 thin film properties under several conditions. 

Table 3. Evaluation of LR, SVR, and THL-BPNN models 

 

Refractive index Layer thickness O/Hf ratio 

Training 

data 

Validation 

data 

Training 

data 

Validation 

data 

Training 

data 

Validation 

data 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

LR 0.72 0.06 0.66 0.08 0.74 2.24 0.48 2.88 0.43 0.08 0.48 0.08 

SVR 0.71 0.06 0.52 0.10 0.75 2.22 0.56 2.64 0.84 0.04 0.74 0.05 

THL-BPNN 0.99 0.01 0.99 0.01 0.94 1.08 0.91 1.18 0.94 0.03 0.90 0.03 

 

3.3 Evaluation of THL-BPNN Model for Other Thin Film Applications 

3.3.1 Prediction of LIDT of PEALD-HfO2 and PEALD-SiO2 Thin Films 

LIDT value is a key specification for thin films used in laser systems [39,40]. Firstly, we analyzed 

the main factors affecting LIDT. According to Ref. [26], the main factors affecting the LIDT of 

HfO2 thin films are the C impurity content, N impurity content, absorption, and O/Hf ratio. 

Pearson’s correlation coefficient was used to further analyze the correlation between the main 

influencing factors and LIDT. The results shown in Fig. 4 indicate that, except for the O/Hf ratio, 

which is positively correlated with the LIDT, all other parameters are negatively correlated with 

the LIDT. The change in the C and N impurity contents can be represented by the total impurity 

content. Likewise, for SiO2 thin films, factors affecting LIDT include total impurity contents, 

absorption, and O/Si ratio. Then, we applied the THL-BPNN to the quantitative prediction of 

LIDT based on these factors. The total impurity contents, absorption, stoichiometric ratio, and 

https://doi.org/10.1017/hpl.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.6


Accepted Manuscript 

 

 

 

 

type of thin film were fed into the THL-BPNN as input variables, and the LIDT was derived as 

the output variable.  

 

Fig. 4. Correlations between properties of HfO2 thin films used in this section. Blue indicates a 

negative correlation, whereas red indicates a positive correlation. Darker colors and larger circles 

indicate higher correlations. The numbers inside the circles indicate the corresponding correlation 

coefficients of the two features. 

Furthermore, the predicted LIDT and measured LIDT of each sample are shown in Fig. 5. It is 

observed that the THL-BPNN model performs well in both training and validation sets with high 

accuracy and low error, which is smaller than the relative error of the LIDT. The relative error of 

damage probability is about ± 15% mainly due to the uncertainty of the nonuniformity among the 

samples (3%), the measurement of laser spot area (5%), and the fluctuation of laser energy (5%) 

[41]. For the training set and validation set, the R2 values are 1.00 and 0.97, respectively, and the 

RMSE values are 0.48 and 2.32, respectively.  The results show that the THL-BPNN model is 

effective for predicting LIDT values of HfO2 and SiO2 thin films. 
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Fig. 5. Comparison of measured and predicted LIDT values on the (a) training set and (b) 

validation set.  

3.3.2 Prediction of other Properties of PEALD-SiO2 Thin Films 

SiO2 is the most common low-refractive-index material used for laser thin films in the ultraviolet 

to near-infrared wavelength region. It is of great significance to study the correlation between the 

properties of SiO2 thin films and the deposition parameters. Therefore, we applied the THL-BPNN 

model to evaluate the relationship between the deposition parameters and the properties of 

PEALD-SiO2 thin films. Fig. 6 shows the excellent performance of the THL-BPNN model in 

predicting the properties of PEALD-SiO2 thin films on the validation set, including the refractive 

index, layer thickness, and O/Si ratio. For most samples, the prediction deviation was smaller than 

the measurement error.  
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Fig. 6. Comparison of measured and predicted values of (a) refractive index (at 355nm), (b) layer 

thickness, and (c) O/Si ratio for SiO2 thin films on the validation set. 

Table 4 lists the R2, AA, and RMSE values of the THL-BPNN model for SiO2 thin films 

properties. Except for the average R2 value of the O/Si ratio on the training set of 0.81, the other 

values, including the average R2 value of the refractive index and layer thickness on the training 

set and the AA values of the three properties on the validation set, are higher than 0.98. Although 

the THL-BPNN model did not perform sufficiently well on the O/Si ratio training set, it still 

provided accurate predictions on the corresponding validation set. This could be attributed to the 
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successful learning of correlations by the THL-BPNN model through training. Therefore, the 

THL-BPNN model can be used to construct the relationship between the deposition parameters 

and PEALD-SiO2 thin film properties, thus proving the universality of the THL-BPNN model in 

studying the nonlinear relationship between the process parameters and thin film properties. 

Table 4. Evaluation of the THL-BPNN model for SiO2 thin film properties 

 Training data Validation data 

 R2 RMSE AA RMSE 

Refractive index 0.99 0.00 1.00 0.00 

Layer thickness 0.99 0.43 0.98 1.72 

O/Si ratio 0.81 0.01 0.99 0.03 

IV. CONCLUSIONS 

In this study, BPNN models with different numbers of hidden layers were used to establish the 

correlation between the properties of the PEALD-HfO2 thin films and the annealing parameters. 

For modeling, the annealing parameters, including the annealing atmosphere and temperature, 

were used as inputs, and measured thin film properties, including the refractive index, layer 

thickness, and O/Hf ratio, were used as outputs. The data was split into two categories: training 

set and validation set. First, BPNN models with different numbers of hidden layers were compared. 

The results demonstrated that as the number of hidden layers was increased to achieve higher 

accuracy on the training sets, the risk of overfitting also increased. Considering the fitting accuracy 

and model stability, the THL-BPNN model was adopted in a follow-up study. The performance 

of the THL-BPNN model was then compared with that of the LR and SVR models. The poor 

performance of the LR model on most datasets indicated that the effect of the two input features 

on the dependent output variable was nonlinear. The THL-BPNN model achieved a high accuracy 

https://doi.org/10.1017/hpl.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.6


Accepted Manuscript 

 

 

 

 

of no less than 0.90 on all training and validation datasets, confirming that the THL-BPNN model 

outperforms the SVR model, which also belongs to the category of nonlinear regression fitting. 

Finally, the THL-BPNN model was used to predict the LIDT of PEALD-HfO2 and PEALD-SiO2 

thin films, and the mapping relationship between deposition parameters and PEALD-SiO2 thin 

film properties was constructed. The modeling results showed that the predicted values are 

consistent with the measured values, proving that the THL-BPNN model is a reliable predictive 

learning-based model. We believe that the THL-BPNN model can be used to predict the properties 

of different types of thin films, thereby reducing the experimental cost of process optimization. 
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