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1. Introduction

Let g, A, A*, Ay stand for the set of non-negative integers, isols, isolic in-
tegers and regressive isols respectively, and let P(zr) be the w-group of Godel
numbers of permutations of the set 1 < ¢ which move only finitely many elements
of 7. The concept of an w-group was studied by Hassett [5]. He proved in P12 of
[5] that for an isolated set 7, the decomposition of P(7) into conjugacy sets is a
gc-decomposition if and only if 7 is regressive. For the finite symmetric group on
n elements, S,, it is known that the order of the conjugacy class is p(n), where
p(n) is the partition function. The author shows in this paper, using a result of
Barback [1], that if p,(T) is Nerode’s canonical extension of p(n) to A and
Req (t) = T, then p,(T) = Req C,, where C, is the decomposition of P(z) into
conjugacy sets. The reader is assumed to be familiar with the contents of [2], [4]
and [5].

2. Basic concepts

NortaTiONs. (i) A function of n, say a(n), may also be written a,,.

(i) v(n)={0,1,2,---,n—1}.

(iii) In this paper we will denote the group of all finite permutations of a set
g, i.e. those permutations which move only finitely many elements of o, by (o).
We denote the set of elements in P(¢) by ¢*, that is,

o* = {f*ee|fe 2(0)}.

(iv) For a recursive function f(x), we denote Nerode’s canonical extension
from A into A* by f,. We know by [1] that f, maps Ag into itself if and only if
is eventually increasing.

! The results presented in this paper were taken from the author’s doctoral dissertation
written at Rutgers University under the direction of Professor J. C. E. Dekker.
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We need the following theorems, [3, Prop. 1] and [1, p. 36] respectively,
(1) The function f has a one-to-one partial recursive extension if and only
if f and f~* have partial recursive extensions and f is one-to-one.

(2) Let f(n) be an increasing recursive function and define e(n) by e(0)
=f(0) and e(n + 1) = f(n + 1) # f(n). Then f\(T) = Xy, e, for Te Ag.~

DErRINITION. A partition of the positive integer n is an expression of the form
ny + -~ + m, where ny,---,n, denote positive integers (not necessarily distinct)
with n as sum. Two partitions of n are equal, if they only differ in the order of
their terms; we may therefore assume that 1 <n, €n, <--- <n, < n.

DerFINITION. The partition function is the function p(n) from ¢ into ¢ such
that p(0) =1 and for n = 1, p(n) is the number of distinct partitions of n.

Several properties of p(n) are discussed in Chapter 10 of [7]. It is readily
seen that p(n) is an increasing recursive function which is strictly increasing for
n = 1. Hence p, is a function from Ay into itself. It is well-known from group
theory that for n = 1, p(n) is the number of conjugacy sets of the symmetric group
S,. Assume that 7 is a non-empty finite set of cardinality n. Then P(r) = S,, hence

p(n) = the number of conjugacy sets of P(7).

Let T be a non-empty isolated set and C, the decomposition of the isolic group
P(7) into conjugacy sets. By [5,P12] the md-class C, is a gc-class if and only if t
is regressive. Obviously, if 7 is regressive, RET(C,) only depends on Req (7).

NortatioN. If Te Ag and T # 0, Cp = Req(C,), for te T.

We observed that C; = p(n), in case T = n > 0. It is therefore a reasonable
conjecture that Cp = p,(T), for TeAg, T #0.

3. Main Result
THEOREM. If T is a non-zero regressive isol, Cy = pA(T).

ProoF. The result holds if T is finite, hence we assume that TeAy — ¢
Let oe T + 1, t, a regressive function ranging over ¢ and 7 = ¢ — (tp). Then 7 T.
For x e P(t) we denote the conjugacy set of x by C(x). In the proof of [5, P12] a
function h*(x) from t* into itself is defined as follows: A*(1) =1; given any
number x = f* € P(r) with x # 1, that is, f # i, we can compute the cycle structure

of f, say
(n(1), -+, n(k)), where 2 £ n(1) < --- < n(k).

Let n = n(1) + --- + n(k). Taking into account that v = (¢4, ¢,,-), we define
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he=(ty s tay) tacry+ 15 s By +n(2)) = Gumngy 410 *%> 0n)s B¥(xX) = (p)*.

According to the proof, the function h*(x) is a gc-function of the md-class
C.= {C(x)l xet*}. We conclude that

3) Cr = RET(C,) = Req h*(z*).
Let e(0) = p(0), e(n + 1) = p(n + 1) — p(n). Thus by (2) we have that p,(T)
= X146, that is,

@ pa(T) = Req O Tt w(e]

We define 8 = Ug%o it v(e)], ¥ = h*@*).
In view of (3) and (4) the proof will be complete if we can show that g ~y. Let
us call a partition (n,---,n,) of n,

of the first type,if 1l =n, <n, £--- <ny,
of the second type,if 2=n, <n, <...< n,.
Let forn>1,
pi(n) = the number of partitions of n of the first type,
p.(n) = the number of partitions of n of the second type,
then p(n) = p,(n) + py(n), for n = 1. We claim
5) pa(n) = e(n), for n = 1.

This is trivial for n =1, since p,(1) =0, e(1) = 0. Now consider the numbers
= 2, that is, the numbers of the form n + 1, with n = 1. If (1,n,,---,n,) is a first
type partition of n + 1, then (n,, ---,n,) is a partition of n. Moreover, all partitions
of n can be obtained by dropping the initial *‘1+ "’ from a first type partition of
n + 1. Hence p,(n + 1) = p(n) and

en+1)=pn+1)—pn)=pn+1)—p;(n+1)=py(n+1).

For n = 2 we have e, > 0, that is, n has second type partitions. If (n, -+, n,)
is a second type partition we denote it by [n,, -+, n,] and define its Godel number
(G-number) by

[nb '":nk]# = p,l'.l "'p:ka

where p; is the ith odd prime. For each n = 2 we denote the class of second type
partitions of n by T, and order this class according to increasing G-numbers, say

T;l = (Sn.O’ Sp,15 "3 Sn,e(n) - 1)'
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We define the function b,(i) for n, iee by

b,(i) = (5,,)%, fornz2,i<e,
b,(i)) =0, otherwise.

Then b,(i) is a recursive function. Let g(x) be a regressing function of ¢, and

a*(x) = () [ (x) = ¢°(%)], for x e 5q.

Suppose a number
X = j(tm l) € ﬂ = LJO j[tns v(e,,)]

is given. Then the numbers
ty = k(x), n = q*k(x), i = I(x),

can be computed. Clearly i < e,, because x € B. Since e(0) = p(0) = 1, ¢(1) =0,
e(m) 2 1, for m = 2, we see that the number n = g*k(x) must be 0 or = 2. If
n =0, we have x = j(t,,0) and define g(x) = 1. Now assume n = 2. Then the
number b,(i) is of the form

b, (i) = [ny, -+, m]%, where [ny,--,n,] e T,
In this case we define
g(x) = ((tla Tty tn(l)) ot (tn—n(k)+19 *y tn))*-

Since the function ¢, is regressive and the numbers t,, n, i can be computed from x,
so can the number g(x). We claim

(6) g is one-to-one on 8,
™ g = y.

Re (6). The function g maps j(ty, 0) onto 1 and any number x € § which is
different from j(z,. 0) onto a member of y which is different from 1.

Now assume that

X =j(tm i)eﬂ’ x’ =j(tm,i,)eﬁ’

where n, m =2 2 and x # x'. It follows that n # m,orn=mand i #i’. If n # m,
the classes T, and T,, are disjoint, and hence g(x) and g(x’) are G-numbers of
finite permutations in £(z) whose cycle classes are distinct. On the other hand,
if n=m, i#i, wesee that T, = T,, and g(x) and g(x’) are G-numbers of finite
permutations in () whose cycle structures are distinct members of T,. In each
case g(x) # g(x’).
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Re (7). The function g maps B into 7. Let y = f*ey. If y =1, y = gj(t,,0)
where j(t,,0)e f. Now assume y # 1, i.e. f# i, say

f= (t13"',tm(l))”'(tm—m(l)+1a"'atm),
2sm) - smD, m=ml)+ - +m(l).
Define i and x by
bm(l) = [mls "'aml]#, X =j(tmsi)’

then i <e,, xe f and g(x) = y.

We have proved that g maps f one-to-one onto y. Note that in the proof of
(7) we have suggested how to compute g ~!. It can be shown that g and g~ have
partial recursive extensions. Hence by (1) we have f ~ y and we are done.
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