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1. Introduction

Let B, A, A*, AR stand for the set of non-negative integers, isols, isolic in-
tegers and regressive isols respectively, and let P(x) be the co-group of Godel
numbers of permutations of the set T c e which move only finitely many elements
oft. The concept of an co-group was studied by Hassett [5]. He proved in P12 of
[5] that for an isolated set T, the decomposition of P(T) into conjugacy sets is a
gc-decomposition if and only if x is regressive. For the finite symmetric group on
n elements, Sn, it is known that the order of the conjugacy class is p(n), where
p(n) is the partition function. The author shows in this paper, using a result of
Barback [1], that if pA(T) is Nerode's canonical extension of p(n) to A and
Req (T) = T, then pA(T) = Req Ct, where Ct is the decomposition of P(T) into
conjugacy sets. The reader is assumed to be familiar with the contents of [2], [4]
and [5].

2. Basic concepts

NOTATIONS, (i) A function of n, say a{n), may also be written an.
(ii) v(n) = { 0 , l , 2 , - , n - l } .
(iii) In this paper we will denote the group of all finite permutations of a set

a, i.e. those permutations which move only finitely many elements of a, by 2?{p)-
We denote the set of elements in P(a) by a*, that is,

o* = {/*ee|/6^(cO}.

(iv) For a recursive function/(x), we denote Nerode's canonical extension
from A into A* by/A. We know by [1] thaty^ maps AR into itself if and only if/
is eventually increasing.

1 The results presented in this paper were taken from the author's doctoral dissertation
written at Rutgers University under the direction of Professor J. C. E. Dekker.
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[2] Recursive equivalence of an co-group 173

We need the following theorems, [3, Prop. 1] and [1, p. 36] respectively,
(1) The function f has a one-to-one partial recursive extension if and only

if f and / " * have partial recursive extensions and f is one-to-one.

(2) Let f(n) be an increasing recursive function and define e(n) by e(0)
=/(0) and e(n + 1) = / ( n + 1) ^ / ( n ) . Then fA(T) = ZT+1en,for TeAR.-

DEFINITION. A partition of the positive integer n is an expression of the form
nl + ••• + nk, where nu---,nk denote positive integers (not necessarily distinct)
with n as sum. Two partitions of n are equal, if they only differ in the order of
their terms; we may therefore assume that 1 r^nt £n2 ^ ••• ?S, nk^ n.

DEFINITION. The partition function is the function p(n) from £ into e such
that p(0) = 1 and for n ^ 1, p{n) is the number of distinct partitions of n.

Several properties of p(n) are discussed in Chapter 10 of [7]. It is readily
seen that p(n) is an increasing recursive function which is strictly increasing for
n 2; 1. Hence pA is a function from AR into itself. It is well-known from group
theory that for n k 1, p(n) is the number of conjugacy sets of the symmetric group
Sn. Assume that T is a non-empty finite set of cardinality n. Then P(x) ^ Sn, hence

p{n) = the number of conjugacy sets of P(x).

Let T be a non-empty isolated set and Ct the decomposition of the isolic group
P(x) into conjugacy sets. By [5, P12] the md-class Ct is a #c-class if and only if x
is regressive. Obviously, if x is regressive, RET(Ct) only depends on Req(r).

NOTATION. If T e AR and T ^ 0, CT = Req (Cr), for xeT.

We observed that CT = p(n), in case T = n > 0. It is therefore a reasonable
conjecture that CT = pA(T), for TeAR, T¥=0.

3. Main Result

THEOREM. / / T is a non-zero regressive isol, CT = p\(T).

PROOF. The result holds if T is finite, hence we assume that T e AR — e
Let a e T + 1, tn a regressive function ranging over a and x = a — (t0). Then x e T.
For x e P(x) we denote the conjugacy set of x by C(x). In the proof of [5, P12] a
function h*(x) from T* into itself is defined as follows: /i*(l) = l; given any
number x =f*eP(x) with x^\, that is,/?s i, we can compute the cycle structure
of/, say

0(1), ••-,«(&)), where 2 ^ n(l) ^ ••• ^ n(fe).

Let n = n(l) + ••• + n(fc). Taking into account that x = {tu t2,---), we define
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" / = (*1> •">'n(l))Un(l) + l> •••>'n(l) + n(2))'"('B-n(4) + l> " ' J O * " W = \frj) •

According to the proof, the function h*(x) is a grc-function of the md-class
Ct = {C(x) | x e r*}. We conclude that

(3) CT = RET(CT) = Req fc*(x*).

Let e(0) = p(0), e(« + 1) = K« + 1) - />(«)• Thus by (2) we have that pA(T)
cn, that is,

(4) PA(T) = Req ( J iC^v(O] -

We define p = U n % j f c , v(ej], y = fc*(t*).
In view of (3) and (4) the proof will be complete if we can show that /? ~ y. Let

us call a partition (nu •••,nk) of n,

of the first type, if 1 = n1 ^ n2 ^ ••• ^ nt,

of the second type, if 2 ^ nt ^ n2 ^ ... ^ nk.

Let for n ^ 1,

^j(n) = the number of partitions of n of the first type,

p2(ri) = the number of partitions of n of the second type,

then p(n) = Px(n) + p2(n), for n ^ 1. We claim

(5)

This is trivial for n = 1, since />2(1) = 0> e(l) = 0. Now consider the numbers
^ 2, that is, the numbers of the form n + 1, with n 5; 1. If (1, n2, •••, nt) is a first
type partition of n + 1, then (n2, •••, nfc) is a partition of n. Moreover, all partitions
of n can be obtained by dropping the initial "1 + " from a first type partition of
n + 1. Hence /^(n + 1) = p(n) and

e(n + 1) = jpC» + 1) - K") = P(" + 1) - Fi(" + 1) = Pi(n + !)•

For n ^ 2 we have en > 0, that is, n has second type partitions. If («!,-••, nk)
is a second type partition we denote it by [nu •••, n t] and define its Godel number
(G-number) by

where />; is the ith odd prime. For each n ^ 2 we denote the class of second type
partitions of n by Tn and order this class according to increasing G-numbers, say
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We define the function bn(i) for n, iee by

K(i) = (*„,,)*, for n > 2, i < en,

bn(i) = 0, otherwise.

Then bn(i) is a recursive function. Let q{x) be a regressing function of tn and

q*(x) = (jty) [q'+ * (x) = q\x)l for xeSq.

Suppose a number

x=Xtn,i)efi= U ;[fn,v(O]
n=0

is given. Then the numbers

tn = k(x), n = q*k(x), i = l(x),

can be computed. Clearly i < en, because xefi. Since e(0) = p(Q) = 1, e(l) = 0,
e(m) ^ 1, for m ^ 2, we see that the number n = q*k(x) must be 0 or jg 2. If
n = 0, we have x =./Oo»0) a n d define g{x) = 1. Now assume n ^ 2. Then the
number fcn(i) is of the form

In this case we define

Since the function tn is regressive and the numbers tn, n, i can be computed from x,
so can the number g(x). We claim

(6) g is one-to-one on fi,

(7) giP) = y.

Re (6). The function # mapsj(fo>0) onto 1 and any number xefi which is
different from j'(f0.0) onto a member of y which is different from 1.

Now assume that

x =j(tn,i)ep,x'=j(tm,i')ep,

where n, m S: 2 and x ^ x'. It follows that n ̂  m, or n = m and i ^ /'. If n ^ m,
the classes Tn and Tm are disjoint, and hence g(x) and g(x') are G-numbers of
finite permutations in 3P{x) whose cycle classes are distinct. On the other hand,
if n = m, i # i', we see that Tn = Tm and g(x) and ^(x') are G-numbers of finite
permutations in ^ ( T ) whose cycle structures are distinct members of Tn. In each
case g{x) ^ g(x').
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Re (7). The function g maps j? into y. Let y = / * e y. If y = 1, y = a/('o> 0)
where j(to,0)ep. Now assume y ^ 1, i.e. / V i, say

2 ^ m(l) ^ ••• ^ m(0, m =

Define i and x by

then i<em,xeP and #(» = 3;.
We have proved that g maps p one-to-one onto y. Note that in the proof of

(7) we have suggested how to compute g~l. It can be shown that g and g'1 have
partial recursive extensions. Hence by (1) we have p ~y and we are done.
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