Ad-nilpotent Elements of Semiprime Rings with Involution

Tsiu-Kwen Lee

Abstract. Let R be an n !-torsion free semiprime ring with involution $*$ and with extended centroid C, where $n>1$ is a positive integer. We characterize $a \in K$, the Lie algebra of skew elements in R, satisfying $\left(\mathrm{ad}_{a}\right)^{n}=0$ on K. This generalizes both Martindale and Miers' theorem and the theorem of Brox et al. In order to prove it we first prove that if $a, b \in R$ satisfy $\left(\operatorname{ad}_{a}\right)^{n}=\operatorname{ad}_{b}$ on R, where either n is even or $b=0$, then $(a-\lambda)^{[(n+1) / 2]}=0$ for some $\lambda \in C$.

1 Results

An associative ring R is called a prime ring (resp. a semiprime ring) if, for $a, b \in R$, $a R b=0$ implies that either $a=0$ or $b=0$ (resp. for $a \in R, a R a=0$ implies $a=0$). The primeness (resp. semiprimeness) of R is equivalent to saying that any product of two nonzero ideals (resp. any square of a nonzero ideal) of R is nonzero.

Throughout the paper, R always denotes a semiprime ring with center $Z(R)$ and with Martindale symmetric ring of quotients Q. The center of Q, denoted by C, is called the extended centroid of R. The center C is a commutative regular self-injective ring. Moreover, R is a prime ring if and only if C is a field. We refer the reader to [1] for details.

Let L be a Lie algebra with Lie bracket $[\cdot, \cdot]$. For $a \in L$, ad $_{a}: L \rightarrow L$ is the adjoint map defined by $x \mapsto[a, x]$ for $x \in L$. We let $Z(L):=\{c \in L \mid[c, x]=0 \forall x \in L\}$, the center of the Lie algebra L. An element $a \in L$ is called ad-nilpotent if $\left(\operatorname{ad}_{a}\right)^{k}=0$ on L for some $k \geq 1$. We let \mathbb{Z} denote the ring of integers. Given a ring R, let R^{-}be the Lie algebra $(R,+)$ over \mathbb{Z} endowed with the Lie bracket product $[x, y]:=x y-y x$ for $x, y \in R$. In [18] Martindale and Miers proved the following theorem (see [18, Corollary 1]).

Theorem 1.1 (Martindale and Miers 1983) Let R be a prime ring and let $n>1$ be a positive integer, $a, b \in R$. Suppose that $\left(\mathrm{ad}_{a}\right)^{n}=\mathrm{ad}_{b}$ on R^{-}, where either n is even or $b=0$. If char $(R)=0$ or a prime $p>n$, then $(a-\lambda)^{[(n+1) / 2]}=0$ for some $\lambda \in C$.

Theorem 1.1 with $b=0$ was first proved for simple rings by Herstein [13], and both Herstein [13] and Kovacs [16] conjectured the generalization to prime rings. We

[^0]also refer the reader to $[8,11]$ for nilpotent derivations of semiprime rings. For the semiprime case with $n=3$ and $b=0$, Brox et al. proved the following (see [5, Theorem 3.2]).

Theorem 1.2 (Brox et al. 2016) Let R be a 6 -torsion free semiprime ring and $a \in R$. Suppose that $\left(\operatorname{ad}_{a}\right)^{3}=0$ on R^{-}. Then $(a-\lambda)^{2}=0$ for some $\lambda \in C$.

An ad-nilpotent element a in a Lie algebra L is called a Jordan element if $\left(\operatorname{ad}_{a}\right)^{3}=0$ on L. Jordan elements in R^{-}play a fundamental role in the proof of Kostrikin's conjecture (see $[4,20]$) and are also of great importance in the Lie inner ideal structure of associative rings (see [3]). Every Jordan element $a \in R^{-}$(with $\frac{1}{2} \in R$) gives rise to a Jordan algebra $\left(R^{-}\right)_{a}$, which is called the Jordan algebra of R^{-}at a (see [10, Theorem 2.4]). A semiprime ring R is called centrally closed if $R=R C+C$. Brox et al. used Theorem 1.2 to prove that, for a 6-torsion free centrally closed semiprime ring R, the Jordan algebra of the Lie algebra R^{-}at a Jordan element is isomorphic to the symmetrization of a local algebra of the ring R (see [5, Lemma 5.1]). The first goal of this paper is to generalize Theorems 1.1 and 1.2 to the semiprime case from the viewpoint of orthogonal completion of semiprime rings (see [1]).

Theorem 1.3 Let R be an $n!$-torsion free semiprime ring, where $n>1$ is a positive integer, and $a, b \in R$. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=\operatorname{ad}_{b}$, where either n is even or $b=0$. Then $(a-\lambda)^{\left[^{\left.\frac{n+1}{2}\right]}\right.}=0$ for some $\lambda \in C$.

Let R be a semiprime ring with involution $*$ and let K denote the set of all skew elements in R; that is, $K=\left\{x \in R \mid x^{*}=-x\right\}$. Clearly, K forms a Lie algebra under the Lie bracket product $[x, y]=x y-y x$ for $x, y \in K$. It is known that the involution * on R can be uniquely extended to an involution, denoted by * also, on Q. We say that the involution $*$ is of the first kind if the restriction of $*$ to C is the identity map and it is of the second kind, otherwise. We let

$$
S_{m}\left(X_{1}, \ldots, X_{m}\right):=\sum_{\sigma \in \operatorname{Sym}(m)}(-1)^{\sigma} X_{\sigma(1)} X_{\sigma(2)} \cdots X_{\sigma(m)}
$$

be the standard polynomial of degree m in noncomutative indeterminates X_{1}, X_{2}, \ldots, X_{m}, where $\operatorname{Sym}(m)$ denotes the permutation group on the set $\{1,2, \ldots, m\}$. By an S_{m}-ring R we mean that the ring R satisfies the polynomial $S_{m}\left(X_{1}, \ldots, X_{m}\right)$. It is known that if R is a prime $S_{2 n}$-ring, then $\operatorname{dim}_{C} R C \leq n^{2}$ (see [21, Corollary 1] and [15, Theorem p. 17]). By [12, Corollary 8], given a prime ring R with involution $*$ and $a \in R \backslash Z(R)$, if $[a, K]=0$, then R is an S_{4}-ring, i.e., $\operatorname{dim}_{C} R C \leq 4$. Martindale and Miers proved the following result (see [19]).

Theorem 1.4 Let R be a prime ring with involution $* \operatorname{char}(R)=0$, or a prime $p>n$, where $n>1$ is a positive integer, and $a \in K$. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K and that R is not an S_{4}-ring. Then $(a-\lambda)^{[(n+1) / 2]+1}=0$ for some skew element $\lambda \in C$. Moreover, if $*$ is of the first kind, then $a^{[(n+1) / 2]+1}=0$, and if * is of the second kind, then $(a-\lambda)^{[(n+1) / 2]}=0$.

Remarks (I) The theorem above was proved by Martindale and Miers with the assumption that $\operatorname{char}(R)=0$ (see [19, Main Theorem]). Their argument is still effective when $\operatorname{char}(R)=0$ or a prime $p>n$. We sketch its proof here for the sake of the reader. If $*$ is of the second kind, $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K implies that $\left(\mathrm{ad}_{a}\right)^{n}=0$ on R (see Lemma 2.5). In this case, the theorem is reduced to Theorem 1.1. Thus, * is assumed to be of the first kind. Let $m:=n-1$ as given in the proof of [19, Main Theorem]. It suffices to notice the following facts in [19]:
(a) On page $1049,1+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots=2^{n-1} \in C \backslash\{0\}$ in Eq.(10);
(b) On page 1050, $-\left[\binom{m}{0}+\binom{m}{2}+\binom{m}{4}+\cdots\right]=-2^{m-1} \in C \backslash\{0\}$;
(c) On page 1048, let $\beta_{j}:=(-1)^{j}\left[\binom{m}{j}-\binom{m}{j-2}\right] \in C$ in Eq.(8), where $0 \leq j \leq m+2$ and $\binom{m}{k}=0$ if $k<0$ or $k>m$. Indeed, let $2 \leq j \leq m$. We have

$$
(-1)^{j} \beta_{j}=\binom{m}{j}-\binom{m}{j-2}=\frac{m!n(n-2 j+1)}{j!(m-j+2)!} .
$$

Note that $|n-2 j+1|<n$. Thus, $\beta_{j}=0$ in C only when $2 j-1=n$. Clearly, $\beta_{j} \neq 0$ for $j=0,1, m+1, m+2$. We now go to the proof on page 1050 with $a^{r+1}=0$ but $a^{r} \neq 0$. In this case, recall that $*$ is of the first kind. By Eq.(17), we have $\sum_{j=0}^{n+1} \beta_{j} a^{n+1-j} \otimes a^{j}=0$, where each $\beta_{j} \neq 0$ except in the one case when n is odd and $j=\frac{n+1}{2}$. This implies that $a^{n+1}=0$ and so $r \leq n+1$. It follows from the proof on page 1050 that $a^{[(n+1) / 2]+1}=0$, as asserted.
(II) Suppose that * is of the second kind. There exists a nonzero skew element $v \in C$. Since $v^{*}=-v \in C$ and $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K, we get $\left(\operatorname{ad}_{v a}\right)^{n}=0$ on Q (see Lemma 2.5). In view of Theorem 1.3, $(v a-\mu)^{[(n+1) / 2]}=0$ for some $\mu \in C$. By the primeness of R, C is a field. Therefore, $\left(a-v^{-1} \mu\right)^{[(n+1) / 2]}=0$. Together with fact that $(a-\lambda)^{[(n+1) / 2]+1}=0$, we see that $\lambda-v^{-1} \mu$ is a nilpotent element in C and so $\lambda=v^{-1} \mu$. Therefore, $(a-\lambda)^{[(n+1) / 2]}=0$, as asserted.

Let $\mathbb{Z}\{\widehat{X}\}$ be the free associative \mathbb{Z}-algebra in noncommutative indeterminates X_{1}, X_{2}, \ldots, where $\widehat{X}:=\left\{X_{1}, X_{2}, \ldots\right\}$. Given a polynomial $f\left(X_{1}, \ldots, X_{t}\right) \in \mathbb{Z}\{\widehat{X}\}$ that has zero constant term, a semiprime ring R is called faithful f-free if every nonzero ideal of R does not satisfy f. The second goal of this paper is to generalize Theorem 1.4 to the semiprime case.

Theorem 1.5 Let R be an $n!$-torsion free semiprime ring with involution $*$ and $a \in K$, where $n>1$ is a positive integer. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K. Then there exist an idempotent $e=e^{*} \in C$ and a skew element $\lambda \in C$ such that $(e a-\lambda)^{[(n+1) / 2]+1}=0, e R$ is a faithful S_{4}-free ring, and $(1-e) R$ is an S_{4}-ring. Moreover,

$$
(\mathrm{E}[\lambda] e a-\lambda)^{\left[\frac{n+1}{2}\right]}=0 \quad \text { and } \quad((1-\mathrm{E}[\lambda]) e a)^{\left[\frac{n+1}{2}\right]+1}=0
$$

We refer the reader to the next section for the definition of $\mathrm{E}[\lambda]$ for $\lambda \in C$. Given a ring T with involution $*$, let $K(T)$ denote the Lie algebra of all skew elements in T. We also write K instead of $K(R)$ for simplicity. An element $s \in T$ is called symmetric if $s^{*}=$ s. With Theorem 1.5 in hand, we have to characterize skew ad-nilpotent elements in a semiprime S_{4}-ring with involution $*$. Such a characterization is obtained as follows.

Theorem 1.6 Let R be a $(2 n-1)$!-torsion free semiprime S_{4}-ring with involution *, where $n>1$ is a positive integer and $a \in K$. Suppose that $\left(\mathrm{ad}_{a}\right)^{n}=0$ on K. Then there exist orthogonal symmetric idempotents $e_{1}, e_{2} \in C, e_{1}+e_{2}=1$, and a skew element $\lambda \in e_{2} C$ such that $e_{1} a \in Z\left(e_{1} K\right)$ and $\left(e_{2} a-\lambda\right)^{2}=0$. In particular, $e_{2} a$ is a Jordan element of the Lie algebra $\left(e_{2} R\right)^{-}$.

As a consequence of Theorems 1.5 and 1.6, we have the following corollary.

Corollary 1.7 Let R be a $(2 n-1)$!-torsion free semiprime ring with involution $*$ and $a \in K$, where $n>1$ is a positive integer. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K. Then there exist orthogonal symmetric idempotents $e_{1}, \ldots, e_{5} \in C, e_{1}+\cdots+e_{5}=1$, and skew elements $\lambda_{1}, \lambda_{2} \in C$ satisfying the following:
(i) $\left(e_{1} a-\lambda_{1}\right)^{\left[\frac{n+1}{2}\right]}=0$;
(ii) $\quad\left(e_{2} a\right)^{\left[\frac{n+1}{2}\right]+1}=0$ and $\left(e_{1}+e_{2}\right) R$ is an faithful S_{4}-free ring;
(iii) $\left[e_{3} a, K\right]=0$;
(iv) $\left(e_{4} a-\lambda_{2}\right)^{2}=0,\left(e_{3}+e_{4}\right) R$ is an S_{4}-ring, and $e_{5} a=0$;
(v) $R a R$ is an essential ideal of $\left(1-e_{5}\right) R$.

2 Proofs

Recall that R always denotes a semiprime ring with extended centroid C. The set \mathbf{B} of all idempotents of C forms a Boolean algebra with respect to the operations $e+h:=$ $e+h-2 e h$ and $e \cdot h:=e h$ for all $e, h \in \mathbf{B}$. It is complete with respect to the partial order $e \leq h$ (defined by $e h=e$) in the sense that any subset S of \mathbf{B} has a supremum $\bigvee S$ and an infimum $\wedge S$. Given a subset S of Q, we define $\mathrm{E}[S]$ to be the infimum of the subset $\{e \in \mathbf{B} \mid e x=x \forall x \in S\}$. If $S=\{b\}$, we write $\mathrm{E}[b]$ instead of $\mathrm{E}[S]$ for simplicity.

We call a set $\left\{e_{v} \in \mathbf{B} \mid v \in \Lambda\right\}$ an orthogonal subset of \mathbf{B} if $e_{\nu} e_{\mu}=0$ for $v \neq \mu$ and a dense subset of \mathbf{B} if $\sum_{v \in \Lambda} e_{\nu} C$ is an essential ideal of C. A subset T of Q, where $0 \in T$, is called orthogonally complete in the following sense: given any dense orthogonal subset $\left\{e_{v} \mid v \in \Lambda\right\}$ of \mathbf{B}, there exists a one-one correspondence between T and the direct product $\prod_{v \in \Lambda} T e_{v}$ via the map

$$
x \longmapsto\left\langle x e_{v}\right\rangle \in \prod_{v \in \Lambda} T e_{v} \quad \text { for } x \in T .
$$

Therefore, given any subset $\left\{a_{v} \in T \mid v \in \Lambda\right\}$, there exists a unique $a \in T$ such that $a \mapsto\left\langle a_{v} e_{v}\right\rangle$. The element a is written as $\sum_{v \in \Lambda}^{\perp} a_{v} e_{v}$ and is characterized by the property that $a e_{v}=a_{v} e_{v}$ for all $v \in \Lambda$.

In view of [1, Proposition 3.1.10], Q is orthogonally complete. Moreover, P is a minimal prime ideal of Q if and only if $P=\mathbf{m} Q$ for some $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$, the spectrum of \mathbf{B} (i.e., the set of all maximal ideals of \mathbf{B}) (see [1, Theorem 3.2.15]). In particular, it follows from the semiprimeness of Q that $\bigcap_{\mathbf{m} \in \operatorname{Spec}(\mathbf{B})} \mathbf{m} Q=0$. We refer the reader to [1] for details.

To begin with, we prove the following.

Lemma 2.1 Let R be an $n!$-torsion free semiprime ring, where n is a positive integer. Then $\operatorname{char}(Q / \mathbf{m} Q)=0$ or a prime $p>n$ for any $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$.

Proof Let $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$. Suppose on the contrary that $\operatorname{char}(Q / \mathbf{m} Q)$ is a prime $p \leq n$. Then $n!(Q / \mathbf{m} Q)=0$; that is, $n!Q \subseteq \mathbf{m} Q$. Since $n!Q$ is orthogonally complete, it follows from [1, Corollary 3.2.4] that $n!e Q=0$ for some $e \in \mathbf{B} \backslash \mathbf{m}$. Thus, $n!e=$ 0 . Since R is an $n!$-torsion free semiprime ring, so is Q. This implies that $e=0$, a contradiction. This proves that $\operatorname{char}(Q / \mathbf{m} Q)=0$ or a prime $p>n$.

We let $C[t]$ denote the polynomial ring over C in the indeterminate t.
Theorem 2.2 Let R be a semiprime ring, $a_{i} \in Q$ and $g_{i}(t) \in C[t]$ for $1 \leq i \leq n$. Suppose that, given any $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$, there exists $\lambda_{\mathbf{m}} \in C$ such that $\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i} \in$ $\mathbf{m} Q$. Then $\sum_{i=1}^{n} g_{i}(\lambda) a_{i}=0$ for some $\lambda \in C$.

Proof Let

$$
\Sigma:=\left\{e \in \mathbf{B} \mid e\left(\sum_{i=1}^{n} g_{i}(\beta) a_{i}\right)=0 \text { for some } \beta \in C\right\} .
$$

We claim that Σ is an ideal of the complete Boolean algebra B. Clearly, if $f \leq e$ and $e \in \Sigma$, then $f \in \Sigma$. Let $e, f \in \Sigma$. We have to prove that $e+f-e f \in \Sigma$. Since $e+f-e f=e+f(1-e)$ and $e, f(1-e) \in \Sigma$, we may assume from the start that $e f=0$. Choose $\alpha, \beta \in C$ such that

$$
e\left(\sum_{i=1}^{n} g_{i}(\alpha) a_{i}\right)=0=f\left(\sum_{i=1}^{n} g_{i}(\beta) a_{i}\right)
$$

Note that $(e+f) g_{i}(\alpha e+\beta f)=e g_{i}(\alpha)+f g_{i}(\beta)$, and so

$$
(e+f)\left(\sum_{i=1}^{n} g_{i}(\alpha e+\beta f) a_{i}\right)=e\left(\sum_{i=1}^{n} g_{i}(\alpha) a_{i}\right)+f\left(\sum_{i=1}^{n} g_{i}(\beta) a_{i}\right)=0
$$

This proves that $e+f \in \Sigma$, as asserted. If $1 \in \Sigma$, then we are done. Suppose on the contrary that $1 \notin \Sigma$. Then $\Sigma \subseteq \mathbf{m}$ for some $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$. By hypothesis, there exists $\lambda_{\mathbf{m}} \in C$ such that $\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i} \in \mathbf{m} Q$. Thus, there exists $e \in \mathbf{B} \backslash \mathbf{m}$ such that $e\left(\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i}\right)=0$. This implies that $e \in \Sigma$ and so $e \in \mathbf{m}$, a contradiction.

Proof of Theorem 1.3 Since R and Q satisfy the same GPIs with coefficients in Q (see [1, Theorem 6.4.1]), we have $\left(\operatorname{ad}_{a}\right)^{n}=\operatorname{ad}_{b}$ on Q. Let

$$
q:=\left[\frac{n+1}{2}\right] \quad \text { and } \quad g_{i}(t):=(-1)^{q-i}\binom{q}{i} t^{q-i} \in C[t]
$$

for $0 \leq i \leq q$. Then

$$
(a-\lambda)^{q}=\sum_{i=0}^{q} g_{i}(\lambda) a^{i}
$$

for all $\lambda \in C$. Let $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$. By Lemma 2.1, $\operatorname{char}(Q / \mathbf{m} Q)=0$ or a prime $p>n$. Moreover, $\left(\operatorname{ad}_{\bar{a}}\right)^{n}=\operatorname{ad}_{\bar{b}}$ on $Q / \mathbf{m} Q$, where $\bar{z}:=z+\mathbf{m} Q \in Q / \mathbf{m} Q$ for $z \in Q$. Note that $C+\mathbf{m} Q / \mathbf{m} Q$ is the extended centroid of the prime ring $Q / \mathbf{m} Q$ (see [1, Theorem 3.2.5]). In view of Theorem 1.1, there exists $\lambda_{\mathrm{m}} \in C$ such that $\left(\bar{a}-\overline{\lambda_{\mathrm{m}}}\right)^{q}=0$.

That is, $\sum_{i=0}^{q} g_{i}\left(\lambda_{\mathbf{m}}\right) a^{i} \in \mathbf{m} Q$. In view of Theorem 1.3, there exists $\lambda \in C$ such that $\sum_{i=0}^{q} g_{i}(\lambda) a^{i}=0$, i.e., $(a-\lambda)^{q}=0$.

Lemma 2.3 Let R be an n--torsion free, faithful S_{4}-free semiprime ring with involution $*, a \in K$, where $n>1$. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K. Then $(a-\lambda)^{[(n+1) / 2]+1}=0$ for some skew element $\lambda \in C$.

Proof Let $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$. By Lemma 2.1, $\operatorname{char}(Q / \mathbf{m} Q)=0$ or a prime $p>n$. Since R is a faithful S_{4}-free semiprime ring, by [22, Theorem 2.3] $Q / \mathbf{m} Q$ does not satisfy S_{4}.

Case 1: $\mathbf{m}^{*}=\mathbf{m}$. Then $(\mathbf{m} Q)^{*}=\mathbf{m} Q$. Thus, $Q / \mathbf{m} Q$ can be endowed with an involution, denoted by $*$ also, defined by $\bar{x}^{*}=\overline{x^{*}}$ for $x \in Q$. Since $\left(\operatorname{ad}_{a}\right)^{n}\left(x-x^{*}\right)=0$ for all $x \in R$, it follows from [2, Theorem 1.4.1] that $\left(\operatorname{ad}_{a}\right)^{n}\left(x-x^{*}\right)=0$ for all $x \in Q$. This implies that $\left(\operatorname{ad}_{\bar{a}}\right)^{n}\left(\bar{x}-\bar{x}^{*}\right)=0$ for all $x \in Q$. Thus, $\left(\operatorname{ad}_{\bar{a}}\right)^{n}(\bar{z})=0$ for all $\bar{z} \in K(Q / \mathbf{m} Q)$ as $Q / \mathbf{m} Q$ is 2-torsion free. In view of Theorem 1.4, there exists $\lambda_{\mathbf{m}} \in C$ such that $\left(\bar{a}-\bar{\lambda}_{\mathbf{m}}\right)^{[(n+1) / 2]+1}=0$; that is, $\left(a-\lambda_{\mathbf{m}}\right)^{[(n+1) / 2]+1} \in \mathbf{m} Q$.

Case 2: $\mathbf{m}^{*} \neq \mathbf{m}$. As proved in Case $1,\left(\operatorname{ad}_{a}\right)^{n}\left(x-x^{*}\right)=0$ for all $x \in Q$. Then $\bar{x}=\bar{x}-$ $\bar{x}^{*} \in \mathbf{m} Q+\mathbf{m}^{*} Q / \mathbf{m} Q$ for all $x \in \mathbf{m}^{*} Q$. Thus, $\left(\operatorname{ad}_{\bar{a}}\right)^{n}(\bar{z})=0$ for $\bar{z} \in \mathbf{m} Q+\mathbf{m}^{*} Q / \mathbf{m} Q$. Note that $\mathbf{m} Q+\mathbf{m}^{*} Q / \mathbf{m} Q$ is a nonzero ideal of the prime ring $Q / \mathbf{m} Q$. In view of [1, Theorem 6.4.1] or [7, Theorem 2], $\mathbf{m} Q+\mathbf{m}^{*} Q / \mathbf{m} Q$ and $Q / \mathbf{m} Q$ satisfy the same GPIs. Therefore, $\left(\operatorname{ad}_{\bar{a}}\right)^{n}(\bar{z})=0$ for $\bar{z} \in Q / \mathbf{m} Q$. In view of Theorem 1.3, there exists $\lambda_{\mathbf{m}} \in C$ such that $\left(\bar{a}-\overline{\lambda_{\mathbf{m}}}\right)^{\left[\frac{n+1}{2}\right]}=0$; that is, $\left(a-\lambda_{\mathbf{m}}\right)^{[(n+1) / 2]} \in \mathbf{m} Q$. In particular, $\left(a-\lambda_{\mathbf{m}}\right)^{[(n+1) / 2]+1} \in \mathbf{m} Q$.

In either case, if $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$, there exists $\lambda_{\mathbf{m}} \in C$ such that $\left(a-\lambda_{\mathbf{m}}\right)^{[(n+1) / 2]+1} \in$ $\mathbf{m} Q$. That is, $\sum_{i=0}^{q} g_{i}\left(\lambda_{\mathbf{m}}\right) a^{i} \in \mathbf{m} Q$, where $q:=\left[\frac{n+1}{2}\right]+1$ and $g_{i}(t):=(-1)^{q-i}\binom{q}{i} t^{q-i} \in$ $C[t]$ for $0 \leq i \leq q$. In view of Theorem 2.2, $\sum_{i=0}^{q} g_{i}(\lambda) a^{i}=0$ for some $\lambda \in C$, i.e., $(a-\lambda)^{\left[\frac{n+1}{2}\right]+1}=0$ for some $\lambda \in C$. Since $a^{*}=-a$, we have $\left(a+\lambda^{*}\right)^{[(n+1) / 2]+1}=0$. Thus, $\lambda^{*}+\lambda$ is nilpotent as $\lambda^{*}+\lambda=\left(a+\lambda^{*}\right)-(a-\lambda)$. Hence, $\lambda^{*}=-\lambda$ by the semiprimeness of Q.

Lemma 2.4 Let R be a semiprime ring with involution $*$ and $\lambda \in C$. Then $C \mathrm{E}[\lambda]=$ $C \lambda$ and $\mathrm{E}\left[\lambda^{*}\right]=\mathrm{E}[\lambda]^{*}$. Moreover, if $C \lambda=C \lambda^{*}$, then $\mathrm{E}[\lambda]^{*}=\mathrm{E}[\lambda]$.

Proof Since C is a regular ring, $\lambda \lambda_{1} \lambda=\lambda$ for some $\lambda_{1} \in C$. Then $e:=\lambda \lambda_{1}$ is a central idempotent. We claim that $e=\mathrm{E}[\lambda]$. Indeed, $\mathrm{E}[\lambda] e=\mathrm{E}[\lambda] \lambda \lambda_{1}=\lambda \lambda_{1}=e$, implying $e \leq \mathrm{E}[\lambda]$. On the other hand, $e \lambda=\lambda \lambda_{1} \lambda=\lambda$, implying $\mathrm{E}[\lambda] \leq e$. Thus, $e=\mathrm{E}[\lambda]$, as asserted. Clearly, $C E[\lambda]=C \lambda \lambda_{1} \subseteq C \lambda$. On the other hand, $C \lambda=C \lambda \lambda^{\prime} \lambda \subseteq C \lambda \lambda^{\prime}=$ $C E[\lambda]$. Thus, $C E[\lambda]=C \lambda$.

We have $C \mathrm{E}[\lambda]^{*}=C \lambda^{*}$. However, $C \lambda^{*}=C \mathrm{E}\left[\lambda^{*}\right]$ and so $C \mathrm{E}[\lambda]^{*}=C \mathrm{E}\left[\lambda^{*}\right]$, implying $\mathrm{E}[\lambda]^{*}=\mathrm{E}\left[\lambda^{*}\right]$, as asserted. Finally, suppose that $C \lambda=C \lambda^{*}$. Then $C \mathrm{E}[\lambda]=$ $C \mathrm{E}\left[\lambda^{*}\right]$ and so $\mathrm{E}[\lambda]=\mathrm{E}\left[\lambda^{*}\right]=\mathrm{E}[\lambda]^{*}$.

Let R be a semiprime ring with involution $*$. An ideal I of R is called a $*$-ideal if $I=I^{*}$.

Lemma 2.5 Let R be a semiprime ring with involution $*$. Suppose that $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K, where $a \in K$ and n is a positive integer. If R is 2 -torsion free, then $\left(\operatorname{ad}_{\lambda a}\right)^{n}=0$ and $\left(\operatorname{ad}_{\mathrm{E}[\lambda] a}\right)^{n}=0$ on Q for $\lambda^{*}=-\lambda \in C$.

Proof Suppose that R is 2-torsion free. Choose an essential $*$-ideal I of R such that $\lambda I \subseteq R$. Let $x \in I$. Then $2 x=s+k$, where $s=x+x^{*} \in I$ and $k=x-x^{*} \in I$. Then $\lambda s \in K$ and so

$$
2\left(\operatorname{ad}_{\lambda a}\right)^{n}(x)=\left(\operatorname{ad}_{\lambda a}\right)^{n}(s+k)=\lambda^{n-1}\left(\operatorname{ad}_{a}\right)^{n}(\lambda s)+\lambda^{n}\left(\operatorname{ad}_{a}\right)^{n}(k)=0 .
$$

Thus, $\left(\operatorname{ad}_{\lambda a}\right)^{n}(x)=0$. This proves that $\left(\operatorname{ad}_{\lambda a}\right)^{n}=0$ on I. In view of [2, Theorem 1.4.1], I and Q satisfy the same *-GPIs with coefficients in Q. Thus, $\left(\operatorname{ad}_{\lambda a}\right)^{n}=0$ on Q. By Lemma 2.4, $\mathrm{E}[\lambda]=\lambda \lambda_{1}$ for some $\lambda_{1} \in C$. Then $\left(\operatorname{ad}_{\mathrm{E}[\lambda] a}\right)^{n}=\lambda_{1}^{n}\left(\operatorname{ad}_{\lambda a}\right)^{n}=0$ on Q.

Proof of Theorem 1.5 In view of [22, Theorem 2.2], there exists an idempotent $e \in C$ such that $(1-e) Q$ is an S_{4}-ring and $e Q$ is a faithful S_{4}-free ring. Moreover, $R \cap(1-e) Q$ is the largest ideal of R satisfying S_{4} (see [22, Theorem 2.2(3)]). Since $(1-e) Q$ satisfies S_{4}, so does $\left(1-e^{*}\right) Q$. Thus, $R \cap\left(1-e^{*}\right) Q \subseteq R \cap(1-e) Q$, implying that $e\left(1-e^{*}\right)=0$ and so $e=e^{*}$.

Thus, $e a \in K(e Q)$. Since $\left(\mathrm{ad}_{a}\right)^{n}=0$ on $K(Q)$ (see the proof of Lemma 2.3), we have $\left(\operatorname{ad}_{e a}\right)^{n}=0$ on $K(e Q)$. But $e Q$ is an $n!$-torsion free, faithful S_{4}-free semiprime ring. By Lemma 2.3, there exists $\lambda \in e C \subseteq C$ such that $(e a-\lambda)^{[(n+1) / 2]+1}=0$. Since $(e a)^{*}=-e a$, we have $\left(e a+\lambda^{*}\right)^{[(n+1) / 2]+1}=0$, which implies that $\lambda+\lambda^{*}$ is a nilpotent element in C. By the semiprimeness of Q, we get $\lambda^{*}=-\lambda$.

By Lemma 2.4, we have $C \lambda=C \mathrm{E}[\lambda]$ and $\mathrm{E}[\lambda]^{*}=\mathrm{E}[\lambda]$. In view of Lemma 2.5, $\left(\operatorname{ad}_{\mathrm{E}[\lambda] a}\right)^{n}=0$ on Q. By Theorem 1.3, there exists $\mu \in C$ such that
$(\mathrm{E}[\lambda] e a-\mu)^{\left[\frac{n+1}{2}\right]}=0 \quad$ and $\quad((1-\mathrm{E}[\lambda]) e a)^{\left[\frac{n+1}{2}\right]+1}=(1-\mathrm{E}[\lambda])(e a-\lambda)^{\left[\frac{n+1}{2}\right]+1}=0$,
as $(1-\mathrm{E}[\lambda]) \lambda=0$. Since $(e a-\lambda)^{[(n+1) / 2]+1}=0$, it follows that $(\mathrm{E}[\lambda] e a-\lambda)^{\left[\frac{n+1}{2}\right]+1}=0$ as $\mathrm{E}[\lambda] \lambda=\lambda$. This implies that $\lambda=\mu$. That is, $(\mathrm{E}[\lambda] e a-\lambda)^{[(n+1) / 2]}=0$.

We now turn to the proof of Theorem 1.6. Given an ideal I of R, for $q \in R$ we have $q I=0$ if and only if $I q=0$. Thus, $\operatorname{Ann}_{R}(I):=\{q \in R \mid q I=0\}$ is an ideal of R. An ideal J of R is called essential if $\operatorname{Ann}_{R}(J)=0$. An ideal J of R is called an annihilator ideal of R if $J=\operatorname{Ann}_{R}(I)$ for some ideal I of R. The following is well known in the literature (see, for instance, [17, Lemma 2.10]).

Lemma 2.6 Let R be a semiprime ring. Then every annihilator ideal of Q is generated by one central idempotent.

Given additive subgroups A, B of R, let $A B$ (resp. $[A, B]$) denote the additive subgroup of R generated by all $a b$ (resp. [a,b]) for $a \in A$ and $b \in B$. If A is generated by one element, say a, we write $a B$ (resp. $[a, B]$) to stand for $A B$ (resp. $[A, B]$).

Theorem 2.7 Let R be a semiprime ring, $a_{i} \in Q$ and $g_{i}(t) \in C[t]$ for $1 \leq i \leq n$. Suppose that, given any $\mathbf{m} \in \operatorname{Spec}(\mathbf{B})$, there exists $\lambda_{\mathbf{m}} \in C$ such that $\left[\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i}, Q\right] \subseteq$ $\mathbf{m} Q$. Then $\sum_{i=1}^{n} g_{i}(\lambda) a_{i} \in C$ for some $\lambda \in C$.

Proof The proof is analogous to that of Theorem 2.2. We only sketch it. Let

$$
\Sigma:=\left\{e \in \mathbf{B} \mid e\left(\sum_{i=1}^{n} g_{i}(\beta) a_{i}\right) \in C \text { for some } \beta \in C\right\} .
$$

Applying an analogous argument as given in the proof of Theorem 2.2, we get that Σ is an ideal of the complete Boolean algebra \mathbf{B}. If $1 \in \Sigma$, then we are done. Suppose on the contrary that $1 \notin \Sigma$. Then there exists a maximal ideal \mathbf{m} of \mathbf{B} such that $\Sigma \subseteq \mathbf{m}$. By hypothesis, there exists $\lambda_{\mathbf{m}} \in C$ such that $\left[\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i}, Q\right] \subseteq \mathbf{m} Q$. Note that [$\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i}, Q$] is an orthogonally complete subset of Q. In view of [1, Proposition 3.1.11], there exists $e \in \mathbf{B} \backslash \mathbf{m}$ such that $e\left[\sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i}, Q\right]=0$. This implies that $e \sum_{i=1}^{n} g_{i}\left(\lambda_{\mathbf{m}}\right) a_{i} \in C$ and so $e \in \Sigma$, contradicting to the fact that $\Sigma \subseteq \mathbf{m}$.

Let R be a semiprime $S_{2 n}$-ring. Recall that R and Q satisfy the same GPIs with coefficients in Q. Thus, Q is also a semiprime $S_{2 n}$-ring. It is known that every nilpotent element in a semiprime $S_{2 n}$-ring has nilpotence index $\leq n$. Thus, $a^{n}=0$ for any nilpotent element $a \in Q$. We will use this fact in the proof below.
Proof of Theorem 1.6 By Lemma 2.6, $\operatorname{Ann}_{Q}(Q[a, K] Q)=e_{1} Q$ for some $e_{1} \in \mathbf{B}$. Since a is a skew element, $Q[a, K] Q$ is a $*$-ideal of Q and so $e_{1}^{*}=e_{1}$. This implies that $\left[e_{1} a, e_{1} K\right]=0$; that is, $e_{1} a \in Z\left(e_{1} K\right)$. Let $e_{2}:=1-e_{1}$. For simplicity of notation, let $R_{2}:=e_{2} Q \cap R, a_{2}:=e_{2} a$ and $Q_{2}:=e_{2} Q$. Then Q_{2} is equal to the Martindale symmetric ring of quotients of R_{2} (see [1, Proposition 2.3.14]). By assumption, we have $\left(\operatorname{ad}_{e_{2} a}\right)^{n}\left(K\left(R_{2}\right)\right)=0$, implying $\left(\operatorname{ad}_{e_{2} a}\right)^{n}\left(K\left(Q_{2}\right)\right)=0$ (see [2, Theorem 1.4.1]). By a direct computation, we get

$$
\begin{equation*}
\left(\operatorname{ad}_{e_{2} a}\right)^{2 n-1}\left(K\left(Q_{2}\right)^{2}\right)=0 . \tag{2.1}
\end{equation*}
$$

Let $\mathbf{B}_{2}:=e_{2} \mathbf{B}$. Let $\mathbf{m} \in \operatorname{Spec}\left(\mathbf{B}_{2}\right)$. Note that Q_{2} is a $(2 n-1)$!-torsion free semiprime S_{4}-ring with involution $*$. By Lemma 2.1, $\operatorname{char}\left(Q_{2} / \mathbf{m} Q_{2}\right)=0$ or a prime $p>2 n-1$.
Case 1: $\mathbf{m}=\mathbf{m}^{*}$. Then $*$ canonically induces an involution, denoted by $*$ also, on the prime ring $Q_{2} / \mathbf{m} Q_{2}$. That is, $\bar{x}^{*}:=\overline{x^{*}}$ for $x \in Q$. We claim that $K\left(Q_{2} / \mathbf{m} Q_{2}\right)=$ $\left(K\left(Q_{2}\right)+\mathbf{m} Q_{2}\right) / \mathbf{m} Q_{2}$. Clearly, $\left(K\left(Q_{2}\right)+\mathbf{m} Q_{2}\right) / \mathbf{m} Q_{2} \subseteq K\left(Q_{2} / \mathbf{m} Q_{2}\right)$. For the reverse inclusion, let $\bar{y} \in K\left(Q_{2} / \mathbf{m} Q_{2}\right)$, where $y \in Q_{2}$. Since $\frac{1}{2} \in\left(C e_{2}+\mathbf{m} Q_{2}\right) / \mathbf{m} Q_{2}$, there exists $\bar{z} \in K\left(Q_{2} / \mathbf{m} Q_{2}\right)$, where $z \in Q_{2}$, such that

$$
\bar{y}=2 \bar{z}=\bar{z}-\bar{z}^{*}=\overline{z-z^{*}} \in\left(K\left(Q_{2}\right)+\mathbf{m} Q_{2}\right) / \mathbf{m} Q_{2} .
$$

Thus, $K\left(Q_{2} / \mathbf{m} Q_{2}\right) \subseteq\left(K\left(Q_{2}\right)+\mathbf{m} Q_{2}\right) / \mathbf{m} Q_{2}$, as asserted. By (2.1), we get

$$
\left(\operatorname{ad}_{\overline{a_{2}}}\right)^{2 n-1}\left({\overline{K\left(Q_{2}\right)}}^{2}\right)=0
$$

Note that ${\overline{K\left(Q_{2}\right)}}^{2}$ is a Lie ideal of $\overline{Q_{2}}$ (see [14, Lemma 2.1]). Suppose first that ${\overline{K\left(Q_{2}\right)}}^{2}$ is noncentral. In view of [6, Theorem], $\left(\operatorname{ad}_{\overline{a_{2}}}\right)^{2 n-1}\left(\overline{Q_{2}}\right)=0$. By Theorem 1.1, there exists $\lambda \in e_{2} C$ such that $\left(\overline{a_{2}}-\bar{\lambda}\right)^{n}=0$. But $Q_{2} / \mathbf{m} Q_{2}$ is a prime S_{4}-ring. This
 central Lie ideal. In particular, ${\overline{a_{2}}}^{2} \in \overline{C e_{2}}$.
Case 2: $\mathbf{m} \neq \mathbf{m}^{*}$. Then $\mathbf{m}^{*} Q_{2}+\mathbf{m} Q_{2} / \mathbf{m} Q_{2}$, which is contained in $K\left(Q_{2}\right)+\mathbf{m} Q_{2} / \mathbf{m} Q_{2}$, is a nonzero ideal of the prime ring $Q_{2} / \mathbf{m} Q_{2}$. Thus, by (2.1),

$$
\left(\operatorname{ad}_{\overline{a_{2}}}\right)^{2 n-1}\left({\overline{\mathbf{m}^{*} Q_{2}}}^{2}\right)=0
$$

where $\overline{\mathbf{m}^{*} Q_{2}}$ is a nonzero ideal of $Q_{2} / \mathbf{m} Q_{2}$. Note that ${\overline{\mathbf{m}^{*} Q_{2}}}^{2}$ and $Q_{2} / \mathbf{m} Q_{2}$ satisfy the same GPIs (see [1, Theorem 6.4.1] or [7, Theorem 2]). Therefore, $\left(\operatorname{ad}_{\overline{a_{2}}}\right)^{2 n-1}\left(\overline{Q_{2}}\right)=0$ (see also [9, Theorem]). Since $\operatorname{char}\left(Q_{2} / \mathbf{m} Q_{2}\right)=0$ or a prime $p>2 n-1$. By Theorem 1.1, there exists $\lambda_{\mathbf{m}} \in C e_{2}$ such that $\left(\overline{a_{2}}-\overline{\lambda_{\mathbf{m}}}\right)^{n}=\overline{0}$. But $Q_{2} / \mathbf{m} Q_{2}$ is a prime S_{4}-ring. We have $\left(\overline{a_{2}}-\overline{\lambda_{\mathbf{m}}}\right)^{2}=\overline{0}$. That is, $\left(a_{2}-\lambda_{\mathbf{m}}\right)^{2} \in \mathbf{m} Q_{2}$.

In either case, we have proved that given an $\mathbf{m} \in \operatorname{Spec}\left(\mathbf{B}_{2}\right)$, there exists $\lambda_{\mathbf{m}} \in C e_{2}$ such that $\left[\left(a_{2}-\lambda_{\mathbf{m}}\right)^{2}, Q_{2}\right] \subseteq \mathbf{m} Q_{2}$. In view of Theorem 2.7 , there exists $\lambda \in C e_{2}$ such that $\left(a_{2}-\lambda\right)^{2} \in C e_{2}$.

We claim that $\left(a_{2}-\lambda\right)^{2}=0$. Suppose not. Let $b:=a_{2}-\lambda$ and $\beta:=b^{2}$. Then $0 \neq \beta \in C e_{2}$. Note that $\left(\operatorname{ad}_{b}\right)^{n}=\left(\operatorname{ad}_{a_{2}}\right)^{n}=0$ on K_{2}. Given any $k \in K_{2}$, we expand $\left(\operatorname{ad}_{b}\right)^{n}(k)=0$ to get $2^{n-1} \beta^{q} k=2^{n-1} \beta^{q-1} b k b$ if $n=2 q$ and $2^{n-1} \beta^{q} b k=2^{n-1} \beta^{q} k b$ if $n=2 q+1$ for some positive integer q, where we have used the fact that

$$
1+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots=2^{n-1}
$$

Since Q_{2} is 2-torsion free, we see that either $\beta^{q} k=\beta^{q-1} b k b$ or $\beta^{q} b k=\beta^{q} k b$. Since $\beta=b^{2} \in C$, we get $\beta^{q}(b k-k b)=0$ for all $k \in K_{2}$. By [2, Theorem 1.4.1], $\beta^{q}(b k-k b)=0$ for all $k \in K\left(Q_{2}\right)$.

Let $\mathbf{m} \in \operatorname{Spec}\left(\mathbf{B}_{2}\right)$. Then $\bar{\beta}^{q}\left[\bar{b}, K\left(\overline{Q_{2}}\right)\right]=0$, where $\overline{Q_{2}}:=Q_{2} / \mathbf{m} Q_{2}$. This implies that either $\beta \in \mathbf{m} Q_{2}$ or $\left[b, K_{2}\right] \subseteq \mathbf{m} Q_{2}$. Thus, $\beta Q_{2}\left[b, K_{2}\right] Q_{2} \subseteq \mathbf{m} Q_{2}$. Note that $\cap_{\mathbf{m} \in \operatorname{Spec}\left(\mathbf{B}_{2}\right)} \mathbf{m} Q_{2}=0$. Therefore, $\beta Q_{2}\left[b, K_{2}\right] Q_{2}=0$. That is, $\left(e_{2} a-\lambda\right)^{2} Q[a, K] Q=0$, implying that $\left(e_{2} a-\lambda\right)^{2} \in e_{1} Q$ and so $\left(e_{2} a-\lambda\right)^{2}=0$, as asserted.

Lemma 2.8 Suppose that R is a faithful f-free semiprime ring. Then $e R$ is also a faithful f-free ring for any nonzero $e \in \mathbf{B}$.

Proof Let N be a nonzero ideal of $e R$. Choose an essential ideal J of R such that $e J \subseteq R$. Then $e J R$ is a nonzero ideal of R contained in $e R$. Then $J N=e J N$, which is a nonzero ideal of R. Since R is faithful f-free, $J N$ does not satisfy f. Note that $J N=e J N \subset N$. In particular, N does not satisfy f. This proves that $e R$ is a faithful f-free ring.

Proof of Theorem 1.7 By [22, Theorem 2.2], there exists orthogonal idempotents $g_{1}, g_{2} \in C, g_{1}+g_{2}=1$, such that $g_{1} Q$ is faithful S_{4}-free and $g_{2} Q$ is an S_{4}-ring. Since the ideal of Q generated by $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ for all $x_{i} \in Q$ is a $*$-ideal, it follows that g_{1} and g_{2} are symmetric. In view of Theorems 1.5 and 1.6, there exist orthogonal symmetric idempotents $f_{1}, \ldots, f_{4} \in C, f_{1}, f_{2} \in g_{1} C, f_{3}, f_{4} \in g_{2} C, f_{1}+f_{2}=g_{1}, f_{3}+f_{4}=g_{2}$, and $\mu_{1}, \mu_{2} \in C$ such that
(i) $\left(f_{1} a-\mu_{1}\right)^{\left[\frac{n+1}{2}\right]}=0$;
(ii) $\quad\left(f_{2} a\right)^{\left[\frac{n+1}{2}\right]+1}=0$ and $\left(f_{1}+f_{2}\right) R$ is an faithful S_{4}-free ring;
(iii) $\left[f_{3} a, K\right]=0$;
(iv) $\left(f_{4} a-\mu_{2}\right)^{2}=0$ and $\left(f_{3}+f_{4}\right) R$ is an S_{4}-ring.

It follows from Lemma 2.6 that $\operatorname{Ann}_{Q}(Q a Q)=(1-e) Q$ for some symmetric idempotent $e \in C$. Thus, $R a R \subseteq e R$ and $\operatorname{Ann}_{e R}(R a R)=0$. That is, $R a R$ is an essential ideal of $e R$. Set $e_{i}=f_{i} e$ for $1 \leq i \leq 4, e_{5}=1-e$ and $\lambda_{i}=e_{i} \mu_{i}$ for $i=1,2$.

Then $\left(e_{1} a-\lambda_{1}\right)^{\left[\frac{n+1}{2}\right]}=0,\left(e_{2} a\right)^{\left[\frac{n+1}{2}\right]+1}=0,\left[e_{3} a, K\right]=0,\left(e_{4} a-\lambda_{2}\right)^{2}=0$, and $e_{5} a=0$. Since $\left(e_{1}+e_{2}\right) R=\left(e_{1}+e_{2}\right)\left(f_{1}+f_{2}\right) R$, it follows from Lemma 2.8 that $\left(e_{1}+e_{2}\right) R$ is a faithful S_{4}-free ring. Finally, it is obvious that $\left(e_{3}+e_{4}\right) R$ is an S_{4}-ring since $\left(e_{3}+e_{4}\right) R \subseteq\left(f_{3}+f_{4}\right) R$ and $\left(f_{3}+f_{4}\right) R$ is an S_{4}-ring. This proves (i)-(v).

References

[1] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities. Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996
[2] K. I. Beidar, A. V. Mikhalev, and C. Salavova, Generalized identities and semiprime rings with involution. Math. Z. 178(1981), 37-62. http://dx.doi.org/10.1007/BF01218370
[3] G. Benkart, The Lie inner ideal structure of associative rings. J. Algebra 43(1976), 561-584. http://dx.doi.org/10.1016/0021-8693(76)90127-7
[4] _, On inner ideals and ad-nilpotent elements of Lie algebras. Trans. Amer. Math. Soc. 232(1977), 61-81. http://dx.doi.org/10.1090/S0002-9947-1977-0466242-6
[5] J. Brox, E. García and M. G. Lozano, Jordan algebras at Jordan elements of semiprime rings with involution. J. Algebra 468(2016), 155-181. http://dx.doi.org/10.1016/j.jalgebra.2016.06.036
[6] C.-L. Chuang, On nilpotent derivations of prime rings. Proc. Amer. Math. Soc. 107(1989), 67-71. http://dx.doi.org/10.1090/S0002-9939-1989-0979224-6
[7] , GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103(1988), 723-728. http://dx.doi.org/10.1090/S0002-9939-1988-0947646-4
[8] C.-L. Chuang and T.-K. Lee, Nilpotent derivations. J. Algebra 287(2005), 381-401. http://dx.doi.org/10.1016/j.jalgebra.2005.02.010
[9] L. O. Chung and J. Luh, Nilpotency of derivatives on an ideal. Proc. Amer. Math. Soc. 90(1984), 211-214. http://dx.doi.org/10.1090/S0002-9939-1984-0727235-3
[10] A. Fernandez López, E. García, and M. G. Lozano, The Jordan algebras of a Lie algebra. J. Algebra 308(2007), 164-177. http://dx.doi.org/10.1016/j.jalgebra.2006.02.035
[11] P. Grzeszczuk, On nilpotent derivations of semiprime rings. J. Algebra 149(1992), 313-321. http://dx.doi.org/10.1016/0021-8693(92)90018-H
[12] V. K. Harčenko, Differential identities of prime rings. (Russian) Algebra i Logika 17(1978), 220-238, 242-243.
[13] I. N. Herstein, Sui commutatori degli anelli semplici. (Italian) Rend. Sem. Mat. Fis. Milano 33(1963), 80-86. http://dx.doi.org/10.1007/BF02923236
[14] \longrightarrow, Topics in ring theory. The University of Chicago Press, Chicago, Ill.-London 1969.
[15] N. Jacobson, PI-algebras. An introduction. Lecture Notes in Mathematics, 441, Springer-Verlag, Berlin-New York, 1975.
[16] A. Kovacs, Nilpotent derivations. Technion Preprint Series, No. NT-453.
[17] T.-K. Lee, Anti-automorphisms satisfying an Engel condition. Comm. Algebra 45(2017), 4030-4036. http://dx.doi.org/10.1080/00927872.2016.1255894
[18] W. S. Martindale, III and C. R. Miers, On the iterates of derivations of prime rings. Pacific J. Math. 104(1983), 179-190. http://dx.doi.org/10.2140/pjm.1983.104.179
[19] , Nilpotent inner derivations of the skew elements of prime rings with involution. Canad. J. Math. 43(1991), 1045-1054. http://dx.doi.org/10.4153/CJM-1991-060-2
[20] A. A. Premet, Lie algebras without strong degeneration. Mat. Sb. (N.S.) 129(171)(1986), 140-153.
[21] L. Rowen, Some results on the center of a ring with polynomial identity. Bull. Amer. Math. Soc. 79(1973), 219-223. http://dx.doi.org/10.1090/S0002-9904-1973-13162-3
[22] M. Tamer Koşan, T.-K. Lee, and Y. Zhou, Faithful f-free algebras. Comm. Algebra 41(2013), 638-647. http://dx.doi.org/10.1080/00927872.2011.632798
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
e-mail: tklee@math.ntu.edu.tw

[^0]: Received by the editors January 6, 2017.
 Published electronically April 10, 2017.
 The work was supported in part by the Ministry of Science and Technology of Taiwan (MOST 105-2115-M-002-003-MY2) and the National Center for Theoretical Sciences (NCTS), Taipei Office.

 AMS subject classification: 16N60, 16W10, 17B60.
 Keywords: semiprime ring, Lie algebra, Jordan algebra, faithful f-free, involution, skew (symmetric) element, ad-nilpotent element, Jordan element.

