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Ad-nilpotent Elements of Semiprime Rings
with Involution

Tsiu-Kwen Lee

Abstract. Let R be an n!-torsion free semiprime ring with involution ∗ and with extended centroid
C, where n > 1 is a positive integer. We characterize a ∈ K, the Lie algebra of skew elements in R,
satisfying (ada)n = 0 on K. _is generalizes both Martindale andMiers’ theorem and the theorem
of Brox et al. In order to prove it we ûrst prove that if a, b ∈ R satisfy (ada)n = adb on R, where
either n is even or b = 0, then (a − λ)[(n+1)/2] = 0 for some λ ∈ C.

1 Results

An associative ring R is called a prime ring (resp. a semiprime ring) if, for a, b ∈ R,
aRb = 0 implies that either a = 0 or b = 0 (resp. for a ∈ R, aRa = 0 implies a = 0).
_e primeness (resp. semiprimeness) of R is equivalent to saying that any product of
two nonzero ideals (resp. any square of a nonzero ideal) of R is nonzero.

_roughout the paper, R always denotes a semiprime ring with center Z(R) and
with Martindale symmetric ring of quotients Q. _e center of Q, denoted by C, is
called the extended centroid of R. _e center C is a commutative regular self-injective
ring. Moreover, R is a prime ring if and only if C is a ûeld. We refer the reader to [1]
for details.

Let L be a Lie algebra with Lie bracket [ ⋅ , ⋅ ]. For a ∈ L, ada ∶ L → L is the adjoint
map deûned by x ↦ [a, x] for x ∈ L. We let Z(L) ∶= {c ∈ L ∣ [c, x] = 0 ∀ x ∈ L},
the center of the Lie algebra L. An element a ∈ L is called ad-nilpotent if (ada)k = 0
on L for some k ≥ 1. We let Z denote the ring of integers. Given a ring R, let R− be
the Lie algebra (R,+) over Z endowed with the Lie bracket product [x , y] ∶= xy − yx
for x , y ∈ R. In [18] Martindale and Miers proved the following theorem (see [18,
Corollary 1]).

_eorem 1.1 (Martindale and Miers 1983) Let R be a prime ring and let n > 1 be a
positive integer, a, b ∈ R. Suppose that (ada)n = adb on R−, where either n is even or
b = 0. If char(R) = 0 or a prime p > n, then (a − λ)[(n+1)/2] = 0 for some λ ∈ C .

_eorem 1.1 with b = 0 was ûrst proved for simple rings by Herstein [13], and
both Herstein [13] and Kovacs [16] conjectured the generalization to prime rings. We
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also refer the reader to [8, 11] for nilpotent derivations of semiprime rings. For the
semiprime case with n = 3 and b = 0, Brox et al. proved the following (see [5,_eo-
rem 3.2]).

_eorem 1.2 (Brox et al. 2016) Let R be a 6-torsion free semiprime ring and a ∈ R.
Suppose that (ada)3 = 0 on R−. _en (a − λ)2 = 0 for some λ ∈ C.

An ad-nilpotent element a in a Lie algebra L is called a Jordan element if (ada)3 = 0
on L. Jordan elements in R− play a fundamental role in the proof of Kostrikin’s con-
jecture (see [4, 20]) and are also of great importance in the Lie inner ideal structure
of associative rings (see [3]). Every Jordan element a ∈ R− (with 1

2 ∈ R) gives rise to
a Jordan algebra (R−)a , which is called the Jordan algebra of R− at a (see [10, _eo-
rem 2.4]). A semiprime ring R is called centrally closed if R = RC+C. Brox et al. used
_eorem 1.2 to prove that, for a 6-torsion free centrally closed semiprime ring R, the
Jordan algebra of the Lie algebra R− at a Jordan element is isomorphic to the sym-
metrization of a local algebra of the ring R (see [5, Lemma 5.1]). _e ûrst goal of this
paper is to generalize_eorems 1.1 and 1.2 to the semiprime case from the viewpoint
of orthogonal completion of semiprime rings (see [1]).

_eorem 1.3 Let R be an n!-torsion free semiprime ring, where n > 1 is a positive
integer, and a, b ∈ R. Suppose that (ada)n = adb , where either n is even or b = 0. _en
(a − λ)[ n+1

2 ] = 0 for some λ ∈ C.

Let R be a semiprime ring with involution ∗ and let K denote the set of all skew
elements in R; that is, K = {x ∈ R ∣ x∗ = −x}. Clearly, K forms a Lie algebra under
the Lie bracket product [x , y] = xy − yx for x , y ∈ K. It is known that the involution
∗ on R can be uniquely extended to an involution, denoted by ∗ also, on Q. We say
that the involution ∗ is of the ûrst kind if the restriction of ∗ to C is the identity map
and it is of the second kind, otherwise. We let

Sm(X1 , . . . , Xm) ∶= ∑
σ∈Sym(m)

(−1)σXσ(1)Xσ(2) ⋅ ⋅ ⋅Xσ(m) ,

be the standard polynomial of degree m in noncomutative indeterminates X1 , X2 ,
. . . , Xm , where Sym(m) denotes the permutation group on the set {1, 2, . . . ,m}. By
an Sm-ring R wemean that the ring R satisûes the polynomial Sm(X1 , . . . , Xm). It is
known that if R is a prime S2n-ring, then dimC RC ≤ n2 (see [21, Corollary 1] and
[15,_eorem p. 17]). By [12, Corollary 8], given a prime ring R with involution ∗ and
a ∈ R ∖ Z(R), if [a,K] = 0, then R is an S4-ring, i.e., dimC RC ≤ 4. Martindale and
Miers proved the following result (see [19]).

_eorem 1.4 Let R be a prime ring with involution ∗, char(R) = 0, or a prime
p > n, where n > 1 is a positive integer, and a ∈ K. Suppose that (ada)n = 0 on K
and that R is not an S4-ring. _en (a − λ)[(n+1)/2]+1 = 0 for some skew element λ ∈ C.
Moreover, if ∗ is of the ûrst kind, then a[(n+1)/2]+1 = 0, and if ∗ is of the second kind,
then (a − λ)[(n+1)/2] = 0.
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Remarks (I) _e theorem above was proved byMartindale andMiers with the
assumption that char(R) = 0 (see [19,Main _eorem]). _eir argument is still eòec-
tive when char(R) = 0 or a prime p > n. We sketch its proof here for the sake of the
reader. If ∗ is of the second kind, (ada)n = 0 on K implies that (ada)n = 0 on R (see
Lemma 2.5). In this case, the theorem is reduced to _eorem 1.1. _us, ∗ is assumed
to be of the ûrst kind. Let m ∶= n − 1 as given in the proof of [19,Main _eorem]. It
suõces to notice the following facts in [19]:
(a) On page 1049, 1+(n

2)+(n
4)+ ⋅ ⋅ ⋅ = (n

1)+(n
3)+(n

5)+ ⋅ ⋅ ⋅ = 2n−1 ∈ C∖{0} in Eq.(10);
(b) On page 1050, −[(m

0) + (m
2 ) + (m

4) + ⋅ ⋅ ⋅] = −2
m−1 ∈ C ∖ {0};

(c) On page 1048, let β j ∶= (−1) j[(m
j )− ( m

j−2)] ∈ C in Eq.(8), where 0 ≤ j ≤ m+ 2 and
(m

k ) = 0 if k < 0 or k > m. Indeed, let 2 ≤ j ≤ m. We have

(−1) jβ j = (m
j
) − ( m

j − 2
) = m!n(n − 2 j + 1)

j!(m − j + 2)! .

Note that ∣n − 2 j + 1∣ < n. _us, β j = 0 in C only when 2 j − 1 = n. Clearly, β j /= 0 for
j = 0, 1,m+ 1,m+2. We now go to the proof on page 1050 with ar+1 = 0 but ar /= 0. In
this case, recall that ∗ is of the ûrst kind. By Eq.(17), we have∑n+1

j=0 β jan+1− j ⊗ a j = 0,
where each β j /= 0 except in the one case when n is odd and j = n+1

2 . _is implies that
an+1 = 0 and so r ≤ n + 1. It follows from the proof on page 1050 that a[(n+1)/2]+1 = 0,
as asserted.

(II) Suppose that ∗ is of the second kind. _ere exists a nonzero skew element
ν ∈ C. Since ν∗ = −ν ∈ C and (ada)n = 0 on K, we get (adνa)n = 0 on Q (see
Lemma 2.5). In view of _eorem 1.3, (νa − µ)[(n+1)/2] = 0 for some µ ∈ C. By the
primeness of R, C is a ûeld. _erefore, (a− ν−1µ)[(n+1)/2] = 0. Togetherwith fact that
(a−λ)[(n+1)/2]+1 = 0,we see that λ−ν−1µ is a nilpotent element in C and so λ = ν−1µ.
_erefore, (a − λ)[(n+1)/2] = 0, as asserted.

Let Z{X̂} be the free associative Z-algebra in noncommutative indeterminates
X1 , X2 , . . . ,where X̂ ∶= {X1 , X2 , . . .}. Given a polynomial f (X1 , . . . , Xt) ∈ Z{X̂} that
has zero constant term, a semiprime ring R is called faithful f -free if every nonzero
ideal of R does not satisfy f . _e second goal of this paper is to generalize _eorem
1.4 to the semiprime case.

_eorem 1.5 Let R be an n!-torsion free semiprime ring with involution ∗ and a ∈ K,
where n > 1 is a positive integer. Suppose that (ada)n = 0 on K. _en there exist an
idempotent e = e∗ ∈ C and a skew element λ ∈ C such that (ea − λ)[(n+1)/2]+1 = 0, eR
is a faithful S4-free ring, and (1 − e)R is an S4-ring. Moreover,

(E[λ]ea − λ) [
n+1
2 ] = 0 and ((1 − E[λ])ea) [

n+1
2 ]+1 = 0.

We refer the reader to the next section for the deûnition of E[λ] for λ ∈ C. Given a
ringT with involution∗, letK(T) denote theLie algebra of all skew elements inT . We
alsowriteK instead ofK(R) for simplicity. An element s ∈ T is called symmetric if s∗ =
s. With _eorem 1.5 in hand, we have to characterize skew ad-nilpotent elements in a
semiprime S4-ring with involution ∗. Such a characterization is obtained as follows.
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_eorem 1.6 Let R be a (2n − 1)!-torsion free semiprime S4-ring with involution ∗,
where n > 1 is a positive integer and a ∈ K. Suppose that (ada)n = 0 on K. _en there
exist orthogonal symmetric idempotents e1 , e2 ∈ C, e1 + e2 = 1, and a skew element
λ ∈ e2C such that e1a ∈ Z(e1K) and (e2a − λ)2 = 0. In particular, e2a is a Jordan
element of the Lie algebra (e2R)−.

As a consequence of_eorems 1.5 and 1.6, we have the following corollary.

Corollary 1.7 Let R be a (2n − 1)!-torsion free semiprime ring with involution ∗ and
a ∈ K, where n > 1 is a positive integer. Suppose that (ada)n = 0 on K. _en there exist
orthogonal symmetric idempotents e1 , . . . , e5 ∈ C, e1 + ⋅ ⋅ ⋅ + e5 = 1, and skew elements
λ1 , λ2 ∈ C satisfying the following:

(i) (e1a − λ1)[
n+1
2 ] = 0;

(ii) (e2a)[
n+1
2 ]+1 = 0 and (e1 + e2)R is an faithful S4-free ring;

(iii) [e3a,K] = 0;
(iv) (e4a − λ2)2 = 0, (e3 + e4)R is an S4-ring, and e5a = 0;
(v) RaR is an essential ideal of (1 − e5)R.

2 Proofs

Recall that R always denotes a semiprime ringwith extended centroid C. _e set B of
all idempotents of C forms a Boolean algebra with respect to the operations e+̇h ∶=
e + h − 2eh and e ⋅ h ∶= eh for all e , h ∈ B. It is complete with respect to the partial
order e ≤ h (deûned by eh = e) in the sense that any subset S of B has a supremum
⋁ S and an inûmum ⋀ S. Given a subset S of Q, we deûne E[S] to be the inûmum
of the subset {e ∈ B ∣ ex = x ∀x ∈ S}. If S = {b}, we write E[b] instead of E[S] for
simplicity.

We call a set {eν ∈ B ∣ ν ∈ Λ} an orthogonal subset of B if eνeµ = 0 for ν /= µ and a
dense subset ofB if∑ν∈Λ eνC is an essential ideal ofC. A subset T ofQ,where 0 ∈ T , is
called orthogonally complete in the following sense: given any dense orthogonal subset
{eν ∣ ν ∈ Λ} of B, there exists a one-one correspondence between T and the direct
product∏ν∈Λ Teν via themap

x z→ ⟨xeν⟩ ∈ ∏
ν∈Λ

Teν for x ∈ T .

_erefore, given any subset {aν ∈ T ∣ ν ∈ Λ}, there exists a unique a ∈ T such
that a ↦ ⟨aνeν⟩. _e element a is written as ∑�

ν∈Λ aνeν and is characterized by the
property that aeν = aνeν for all ν ∈ Λ.

In view of [1, Proposition 3.1.10], Q is orthogonally complete. Moreover, P is a
minimal prime ideal of Q if and only if P =mQ for somem ∈ Spec(B), the spectrum
of B (i.e., the set of all maximal ideals of B) (see [1,_eorem 3.2.15]). In particular, it
follows from the semiprimeness of Q that⋂m∈Spec(B)mQ = 0. We refer the reader to
[1] for details.

To begin with, we prove the following.
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Lemma 2.1 Let R be an n!-torsion free semiprime ring, where n is a positive integer.
_en char(Q/mQ) = 0 or a prime p > n for anym ∈ Spec(B).

Proof Let m ∈ Spec(B). Suppose on the contrary that char(Q/mQ) is a prime
p ≤ n. _en n!(Q/mQ) = 0; that is, n!Q ⊆ mQ. Since n!Q is orthogonally complete,
it follows from [1, Corollary 3.2.4] that n!eQ = 0 for some e ∈ B ∖m. _us, n!e =
0. Since R is an n!-torsion free semiprime ring, so is Q. _is implies that e = 0, a
contradiction. _is proves that char(Q/mQ) = 0 or a prime p > n.

We let C[t] denote the polynomial ring over C in the indeterminate t.

_eorem 2.2 Let R be a semiprime ring, a i ∈ Q and g i(t) ∈ C[t] for 1 ≤ i ≤ n.
Suppose that, given any m ∈ Spec(B), there exists λm ∈ C such that ∑n

i=1 g i(λm)a i ∈
mQ. _en∑n

i=1 g i(λ)a i = 0 for some λ ∈ C.

Proof Let

Σ ∶= { e ∈ B ∣ e(
n

∑
i=1

g i(β)a i) = 0 for some β ∈ C} .

We claim that Σ is an ideal of the complete Boolean algebra B. Clearly, if f ≤ e and
e ∈ Σ, then f ∈ Σ. Let e , f ∈ Σ. We have to prove that e + f − e f ∈ Σ. Since
e+ f − e f = e+ f (1− e) and e, f (1− e) ∈ Σ,wemay assume from the start that e f = 0.
Choose α, β ∈ C such that

e(
n

∑
i=1

g i(α)a i) = 0 = f (
n

∑
i=1

g i(β)a i) .

Note that (e + f )g i(αe + β f ) = eg i(α) + f g i(β), and so

(e + f )(
n

∑
i=1

g i(αe + β f )a i) = e(
n

∑
i=1

g i(α)a i) + f (
n

∑
i=1

g i(β)a i) = 0.

_is proves that e + f ∈ Σ, as asserted. If 1 ∈ Σ, then we are done. Suppose on
the contrary that 1 ∉ Σ. _en Σ ⊆ m for some m ∈ Spec(B). By hypothesis, there
exists λm ∈ C such that ∑n

i=1 g i(λm)a i ∈ mQ. _us, there exists e ∈ B ∖m such that
e(∑n

i=1 g i(λm)a i) = 0. _is implies that e ∈ Σ and so e ∈m, a contradiction.

Proof of_eorem 1.3 Since R and Q satisfy the same GPIs with coeõcients in Q
(see [1,_eorem 6.4.1]), we have (ada)n = adb on Q. Let

q ∶= [ n + 1
2

] and g i(t) ∶= (−1)q−i(q
i
)tq−i ∈ C[t]

for 0 ≤ i ≤ q. _en

(a − λ)q =
q

∑
i=0

g i(λ)a i

for all λ ∈ C. Let m ∈ Spec(B). By Lemma 2.1, char(Q/mQ) = 0 or a prime p > n.
Moreover, (ada)n = adb on Q/mQ, where z ∶= z +mQ ∈ Q/mQ for z ∈ Q. Note
that C + mQ/mQ is the extended centroid of the prime ring Q/mQ (see [1, _eo-
rem 3.2.5]). In view of _eorem 1.1, there exists λm ∈ C such that (a − λm)q = 0.
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_at is, ∑q
i=0 g i(λm)a i ∈ mQ. In view of _eorem 1.3, there exists λ ∈ C such that

∑q
i=0 g i(λ)a i = 0, i.e., (a − λ)q = 0.

Lemma 2.3 Let R be an n!-torsion free, faithful S4-free semiprime ring with involu-
tion ∗, a ∈ K, where n > 1. Suppose that (ada)n = 0 on K. _en (a − λ)[(n+1)/2]+1 = 0
for some skew element λ ∈ C.

Proof Letm ∈ Spec(B). By Lemma 2.1, char(Q/mQ) = 0 or a prime p > n. Since R
is a faithful S4-free semiprime ring, by [22,_eorem 2.3] Q/mQ does not satisfy S4.

Case 1: m∗ = m. _en (mQ)∗ = mQ. _us, Q/mQ can be endowed with an invo-
lution, denoted by ∗ also, deûned by x∗ = x∗ for x ∈ Q. Since (ada)n(x − x∗) = 0
for all x ∈ R, it follows from [2,_eorem 1.4.1] that (ada)n(x − x∗) = 0 for all x ∈ Q.
_is implies that (ada)n(x − x∗) = 0 for all x ∈ Q. _us, (ada)n(z) = 0 for all
z ∈ K(Q/mQ) as Q/mQ is 2-torsion free. In view of_eorem 1.4, there exists λm ∈ C
such that (a − λm)[(n+1)/2]+1 = 0; that is, (a − λm)[(n+1)/2]+1 ∈mQ.

Case 2: m∗ /=m. As proved in Case 1, (ada)n(x − x∗) = 0 for all x ∈ Q. _en x = x −
x∗ ∈mQ +m∗Q/mQ for all x ∈m∗Q. _us, (ada)n(z) = 0 for z ∈mQ +m∗Q/mQ.
Note that mQ +m∗Q/mQ is a nonzero ideal of the prime ring Q/mQ. In view of
[1, _eorem 6.4.1] or [7, _eorem 2], mQ +m∗Q/mQ and Q/mQ satisfy the same
GPIs. _erefore, (ada)n(z) = 0 for z ∈ Q/mQ. In view of _eorem 1.3, there exists
λm ∈ C such that (a − λm)[ n+1

2 ] = 0; that is, (a − λm)[(n+1)/2] ∈ mQ. In particular,
(a − λm)[(n+1)/2]+1 ∈mQ.

In either case, ifm ∈ Spec(B), there exists λm ∈ C such that (a − λm)[(n+1)/2]+1 ∈
mQ. _at is,∑q

i=0 g i(λm)a i ∈mQ,where q ∶= [ n+1
2 ] + 1 and g i(t) ∶= (−1)q−i(q

i)t
q−i ∈

C[t] for 0 ≤ i ≤ q. In view of _eorem 2.2, ∑q
i=0 g i(λ)a i = 0 for some λ ∈ C, i.e.,

(a − λ)[ n+1
2 ]+1 = 0 for some λ ∈ C. Since a∗ = −a, we have (a + λ∗)[(n+1)/2]+1 = 0.

_us, λ∗ + λ is nilpotent as λ∗ + λ = (a + λ∗) − (a − λ). Hence, λ∗ = −λ by the
semiprimeness of Q.

Lemma 2.4 Let R be a semiprime ring with involution ∗ and λ ∈ C. _en C E[λ] =
Cλ and E[λ∗] = E[λ]∗. Moreover, if Cλ = Cλ∗, then E[λ]∗ = E[λ].

Proof Since C is a regular ring, λλ1λ = λ for some λ1 ∈ C. _en e ∶= λλ1 is a central
idempotent. We claim that e = E[λ]. Indeed, E[λ]e = E[λ]λλ1 = λλ1 = e, implying
e ≤ E[λ]. On the other hand, eλ = λλ1λ = λ, implying E[λ] ≤ e. _us, e = E[λ], as
asserted. Clearly, C E[λ] = Cλλ1 ⊆ Cλ. On the other hand, Cλ = Cλλ′λ ⊆ Cλλ′ =
C E[λ]. _us, C E[λ] = Cλ.

We have C E[λ]∗ = Cλ∗. However, Cλ∗ = C E[λ∗] and so C E[λ]∗ = C E[λ∗],
implying E[λ]∗ = E[λ∗], as asserted. Finally, suppose that Cλ = Cλ∗. _en C E[λ] =
C E[λ∗] and so E[λ] = E[λ∗] = E[λ]∗.

Let R be a semiprime ring with involution ∗. An ideal I of R is called a ∗-ideal if
I = I∗.
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Lemma 2.5 Let R be a semiprime ring with involution ∗. Suppose that (ada)n = 0
on K, where a ∈ K and n is a positive integer. If R is 2-torsion free, then (adλa)n = 0
and (adE[λ]a)n = 0 on Q for λ∗ = −λ ∈ C.

Proof Suppose that R is 2-torsion free. Choose an essential ∗-ideal I of R such that
λI ⊆ R. Let x ∈ I. _en 2x = s + k, where s = x + x∗ ∈ I and k = x − x∗ ∈ I. _en
λs ∈ K and so

2(adλa)n(x) = (adλa)n(s + k) = λn−1(ada)n(λs) + λn(ada)n(k) = 0.

_us, (adλa)n(x) = 0. _is proves that (adλa)n = 0 on I. In view of [2,_eorem1.4.1],
I and Q satisfy the same ∗-GPIs with coeõcients in Q. _us, (adλa)n = 0 on Q. By
Lemma 2.4, E[λ] = λλ1 for some λ1 ∈ C. _en (adE[λ]a)n = λn

1 (adλa)n = 0 on Q.

Proof of_eorem 1.5 In view of [22,_eorem 2.2], there exists an idempotent e ∈ C
such that (1−e)Q is an S4-ring and eQ is a faithful S4-free ring. Moreover, R∩(1−e)Q
is the largest ideal of R satisfying S4 (see [22,_eorem 2.2(3)]). Since (1−e)Q satisûes
S4, so does (1− e∗)Q. _us, R∩ (1− e∗)Q ⊆ R∩ (1− e)Q, implying that e(1− e∗) = 0
and so e = e∗.

_us, ea ∈ K(eQ). Since (ada)n = 0 on K(Q) (see the proof of Lemma 2.3), we
have (adea)n = 0 on K(eQ). But eQ is an n!-torsion free, faithful S4-free semiprime
ring. By Lemma 2.3, there exists λ ∈ eC ⊆ C such that (ea − λ)[(n+1)/2]+1 = 0. Since
(ea)∗ = −ea,we have (ea+λ∗)[(n+1)/2]+1 = 0,which implies that λ+λ∗ is a nilpotent
element in C. By the semiprimeness of Q, we get λ∗ = −λ.
By Lemma 2.4, we have Cλ = C E[λ] and E[λ]∗ = E[λ]. In view of Lemma 2.5,

(adE[λ]a)n = 0 on Q. By _eorem 1.3, there exists µ ∈ C such that

(E[λ]ea−µ) [
n+1
2 ] = 0 and ((1−E[λ])ea) [

n+1
2 ]+1 = ( 1−E[λ])(ea−λ)[ n+1

2 ]+1 = 0,

as (1−E[λ])λ = 0. Since (ea−λ)[(n+1)/2]+1 = 0, it follows that (E[λ]ea−λ)[ n+1
2 ]+1 = 0

as E[λ]λ = λ. _is implies that λ = µ. _at is, (E[λ]ea − λ)[(n+1)/2] = 0.

We now turn to the proof of_eorem 1.6. Given an ideal I of R, for q ∈ R we have
qI = 0 if and only if Iq = 0. _us, AnnR(I) ∶= {q ∈ R ∣ qI = 0} is an ideal of R. An
ideal J of R is called essential if AnnR(J) = 0. An ideal J of R is called an annihilator
ideal of R if J = AnnR(I) for some ideal I of R. _e following is well known in the
literature (see, for instance, [17, Lemma 2.10]).

Lemma 2.6 Let R be a semiprime ring. _en every annihilator ideal ofQ is generated
by one central idempotent.

Given additive subgroups A, B of R, let AB (resp. [A, B]) denote the additive sub-
group of R generated by all ab (resp. [a, b]) for a ∈ A and b ∈ B. If A is generated by
one element, say a, we write aB (resp. [a, B]) to stand for AB (resp. [A, B]).

_eorem 2.7 Let R be a semiprime ring, a i ∈ Q and g i(t) ∈ C[t] for 1 ≤ i ≤ n. Sup-
pose that, given anym ∈ Spec(B), there exists λm ∈ C such that [∑n

i=1 g i(λm)a i ,Q] ⊆
mQ. _en∑n

i=1 g i(λ)a i ∈ C for some λ ∈ C.
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Proof _e proof is analogous to that of_eorem 2.2. We only sketch it. Let

Σ ∶= { e ∈ B ∣ e(
n

∑
i=1

g i(β)a i) ∈ C for some β ∈ C} .

Applying an analogous argument as given in the proof of_eorem 2.2, we get that Σ
is an ideal of the complete Boolean algebra B. If 1 ∈ Σ, then we are done. Suppose on
the contrary that 1 ∉ Σ. _en there exists a maximal ideal m of B such that Σ ⊆ m.
By hypothesis, there exists λm ∈ C such that [∑n

i=1 g i(λm)a i ,Q] ⊆ mQ. Note that
[∑n

i=1 g i(λm)a i ,Q] is an orthogonally complete subset of Q. In view of [1, Proposi-
tion 3.1.11], there exists e ∈ B ∖m such that e[∑n

i=1 g i(λm)a i ,Q] = 0. _is implies
that e∑n

i=1 g i(λm)a i ∈ C and so e ∈ Σ, contradicting to the fact that Σ ⊆m.

Let R be a semiprime S2n-ring. Recall that R and Q satisfy the same GPIs with
coeõcients in Q. _us, Q is also a semiprime S2n-ring. It is known that every nilpo-
tent element in a semiprime S2n-ring has nilpotence index ≤ n. _us, an = 0 for any
nilpotent element a ∈ Q. We will use this fact in the proof below.

Proof of_eorem 1.6 By Lemma 2.6, AnnQ(Q[a,K]Q) = e1Q for some e1 ∈ B.
Since a is a skew element, Q[a,K]Q is a ∗-ideal of Q and so e∗1 = e1. _is implies
that [e1a, e1K] = 0; that is, e1a ∈ Z(e1K). Let e2 ∶= 1 − e1. For simplicity of notation,
let R2 ∶= e2Q ∩ R, a2 ∶= e2a and Q2 ∶= e2Q. _en Q2 is equal to the Martindale
symmetric ring of quotients of R2 (see [1, Proposition 2.3.14]). By assumption, we
have (ade2a)n(K(R2)) = 0, implying (ade2a)n(K(Q2)) = 0 (see [2,_eorem 1.4.1]).
By a direct computation, we get
(2.1) (ade2a)2n−1(K(Q2)2) = 0.

LetB2 ∶= e2B. Letm ∈ Spec(B2). Note thatQ2 is a (2n−1)!-torsion free semiprime
S4-ring with involution ∗. By Lemma 2.1, char(Q2/mQ2) = 0 or a prime p > 2n − 1.
Case 1: m = m∗. _en ∗ canonically induces an involution, denoted by ∗ also, on
the prime ring Q2/mQ2. _at is, x∗ ∶= x∗ for x ∈ Q. We claim that K(Q2/mQ2) =
(K(Q2)+mQ2)/mQ2. Clearly, (K(Q2)+mQ2)/mQ2 ⊆ K(Q2/mQ2). For the reverse
inclusion, let y ∈ K(Q2/mQ2), where y ∈ Q2. Since 1

2 ∈ (Ce2 +mQ2)/mQ2, there
exists z ∈ K(Q2/mQ2), where z ∈ Q2, such that

y = 2z = z − z∗ = z − z∗ ∈ (K(Q2) +mQ2)/mQ2 .
_us, K(Q2/mQ2) ⊆ (K(Q2) +mQ2)/mQ2, as asserted. By (2.1), we get

(ada2)2n−1(K(Q2)
2
) = 0.

Note that K(Q2)
2
is a Lie ideal of Q2 (see [14, Lemma 2.1]). Suppose ûrst that

K(Q2)
2
is noncentral. In view of [6,_eorem], (ada2)2n−1(Q2) = 0. By _eorem 1.1,

there exists λ ∈ e2C such that (a2 − λ)n = 0. But Q2/mQ2 is a prime S4-ring. _is
implies that (a2 − λ)2 = 0. _at is, (a2 − λ)2 ∈ mQ2. Suppose next that K(Q2)

2
is a

central Lie ideal. In particular, a2
2 ∈ Ce2.

Case 2:m /=m∗. _enm∗Q2+mQ2/mQ2,which is contained inK(Q2)+mQ2/mQ2,
is a nonzero ideal of the prime ring Q2/mQ2. _us, by (2.1),

(ada2)2n−1(m∗Q2
2) = 0,
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wherem∗Q2 is a nonzero ideal ofQ2/mQ2. Note thatm∗Q2
2 andQ2/mQ2 satisfy the

same GPIs (see [1,_eorem 6.4.1] or [7,_eorem 2]). _erefore, (ada2)2n−1(Q2) = 0
(see also [9, _eorem]). Since char(Q2/mQ2) = 0 or a prime p > 2n − 1. By _e-
orem 1.1, there exists λm ∈ Ce2 such that (a2 − λm)n = 0. But Q2/mQ2 is a prime
S4-ring. We have (a2 − λm)2 = 0. _at is, (a2 − λm)2 ∈mQ2.

In either case, we have proved that given an m ∈ Spec(B2), there exists λm ∈ Ce2
such that [(a2 − λm)2 ,Q2] ⊆mQ2. In view of_eorem 2.7, there exists λ ∈ Ce2 such
that (a2 − λ)2 ∈ Ce2.

We claim that (a2 − λ)2 = 0. Suppose not. Let b ∶= a2 − λ and β ∶= b2. _en
0 /= β ∈ Ce2. Note that (adb)n = (ada2)n = 0 on K2. Given any k ∈ K2, we expand
(adb)n(k) = 0 to get 2n−1βqk = 2n−1βq−1bkb if n = 2q and 2n−1βqbk = 2n−1βqkb if
n = 2q + 1 for some positive integer q, where we have used the fact that

1 + (n
2
) + (n

4
) + ⋅ ⋅ ⋅ = (n

1
) + (n

3
) + (n

5
) + ⋅ ⋅ ⋅ = 2n−1 .

Since Q2 is 2-torsion free, we see that either βqk = βq−1bkb or βqbk = βqkb. Since
β = b2 ∈ C,we get βq(bk−kb) = 0 for all k ∈ K2. By [2,_eorem1.4.1], βq(bk−kb) = 0
for all k ∈ K(Q2).

Let m ∈ Spec(B2). _en β
q[b,K(Q2)] = 0, where Q2 ∶= Q2/mQ2. _is implies

that either β ∈ mQ2 or [b,K2] ⊆ mQ2. _us, βQ2[b,K2]Q2 ⊆ mQ2. Note that
⋂m∈Spec(B2)mQ2 = 0. _erefore, βQ2[b,K2]Q2 = 0. _at is, (e2a−λ)2Q[a,K]Q = 0,
implying that (e2a − λ)2 ∈ e1Q and so (e2a − λ)2 = 0, as asserted.

Lemma 2.8 Suppose that R is a faithful f -free semiprime ring. _en eR is also a
faithful f -free ring for any nonzero e ∈ B.

Proof Let N be a nonzero ideal of eR. Choose an essential ideal J of R such that
e J ⊆ R. _en e JR is a nonzero ideal of R contained in eR. _en JN = e JN , which
is a nonzero ideal of R. Since R is faithful f -free, JN does not satisfy f . Note that
JN = e JN ⊂ N . In particular, N does not satisfy f . _is proves that eR is a faithful
f -free ring.

Proof of_eorem 1.7 By [22, _eorem 2.2], there exists orthogonal idempotents
g1 , g2 ∈ C, g1+ g2 = 1, such that g1Q is faithful S4-free and g2Q is an S4-ring. Since the
ideal of Q generated by S4(x1 , . . . , x4) for all x i ∈ Q is a ∗-ideal, it follows that g1 and
g2 are symmetric. In view of_eorems 1.5 and 1.6, there exist orthogonal symmetric
idempotents f1 , . . . , f4 ∈ C, f1 , f2 ∈ g1C, f3 , f4 ∈ g2C, f1 + f2 = g1, f3 + f4 = g2, and
µ1 , µ2 ∈ C such that
(i) ( f1a − µ1)[

n+1
2 ] = 0;

(ii) ( f2a)[
n+1
2 ]+1 = 0 and ( f1 + f2)R is an faithful S4-free ring;

(iii) [ f3a,K] = 0;
(iv) ( f4a − µ2)2 = 0 and ( f3 + f4)R is an S4-ring.

It follows from Lemma 2.6 that AnnQ(QaQ) = (1 − e)Q for some symmetric
idempotent e ∈ C. _us, RaR ⊆ eR and AnneR(RaR) = 0. _at is, RaR is an essential
ideal of eR. Set e i = f i e for 1 ≤ i ≤ 4, e5 = 1 − e and λ i = e iµ i for i = 1, 2.
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_en (e1a − λ1)[
n+1
2 ] = 0, (e2a)[

n+1
2 ]+1 = 0, [e3a,K] = 0, (e4a − λ2)2 = 0, and

e5a = 0. Since (e1 + e2)R = (e1 + e2)( f1 + f2)R, it follows from Lemma 2.8 that
(e1 + e2)R is a faithful S4-free ring. Finally, it is obvious that (e3 + e4)R is an S4-ring
since (e3 + e4)R ⊆ ( f3 + f4)R and ( f3 + f4)R is an S4-ring. _is proves (i)–(v).
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