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The effect of gravity during the water entry of two-dimensional and axisymmetric bodies
is investigated analytically and numerically. An extension to the Wagner model of water
impact is proposed in order to take into account the effect of gravity. For this purpose,
the free-surface condition is modified. The pressure is computed using the modified
Logvinovich model of Korobkin (Eur. J. Appl. Maths, vol. 6, 2004, pp. 821–838). The
model has been implemented and validated through comparisons with fully nonlinear
potential flow simulations of different two-dimensional and axisymmetric water entry
problems. Our investigation shows that it is equally important to account for gravity when
computing the pressure distribution and to account for gravity when computing the size
of the wetted surface in order to obtain accurate force results with the Wagner model.
Simulations of wedges and cones with different values of deadrise angle (β) entering
water at constant speed (V) demonstrate the accuracy of the semi-analytical model and
show that the effect of gravity in such water impacts is governed by the effective Froude
number defined as Fr∗ = V/(

√
gh

√
tanβ), with g the acceleration due to gravity and h

the penetration depth. The accuracy of the semi-analytical model for decelerated water
entries is also demonstrated by investigating the water entry of a wedge and a cone with
a 15◦ deadrise angle with deceleration until full stop. The semi-analytical model is able
to accurately predict the effect of gravity during both two-dimensional and axisymmetric
water entry problems with deceleration.
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1. Introduction

Water impacts are responsible for extreme hydrodynamic forces on structures entering
water. The critical loads relevant to the design of these structures in order to ensure their
integrity arise at the highest water entry velocities. In these regimes, the flow is dominated
by the fluid inertia. It is therefore common practice to neglect the other parameters of
the water entry problem (e.g. surface tension, viscosity and gravity) when computing the
loads arising in such harsh conditions with numerical models (e.g. Battistin & Iafrati 2003;
Oger et al. 2006; Piro & Maki 2011) or analytical models of water impact (Wagner 1932).
In softer conditions, i.e. at lower entry velocity, but at a sufficiently small time scale such
that the effect of viscosity and surface tension is still marginal, gravity may start affecting
the results. Although not directly critical to the integrity of its structure, ‘soft’ slamming
events may affect the motion of a falling (respectively floating) body subject to full
(respectively partial) water entry. For example, floating marine structures may experience
large amplitude motions and undergo slamming events induced by the relative motion
between the body and the free surface, which in turn may affect the body motion. Kim
et al. (2015) and de Lauzon, Derbanne & Malenica (2019) have shown that the coupling
of a water impact model (a generalized Wagner model) with the rigid-body motion of
a container ship affected (limited) the pitch motion and, as a consequence, limited the
whipping vibrations of the structure. The motion of wave energy converters (WEC)
may also be affected by slamming loads. Babarit et al. (2009) observed experimentally
slamming events on the SEAREV WEC concept as soon as the pitch motion amplitude
reached a value of 10◦ and reported that slamming forces limited the pitch motion of
the device. Given the primary role played by gravity in the leading-order response of
floating bodies to wave excitation loads, one may anticipate that gravity will also affect
the slamming loads in these conditions. These kind of fluid–structure interactions may be
seen as an intermediate regime between strongly nonlinear wave-structure interaction and
pure slamming (when the effect of gravity is negligible).

Another field of application where gravity plays an important role during water impact
events is the emergency landing on water of aircrafts. Indeed, despite very large horizontal
velocity magnitudes, the hydrostatic term due to gravity in Bernoulli’s equation is taken
into account in the hydrodynamic models used to predict the motion of an aircraft during
emergency landing on water, adding the term [−ρg(z − z0)] when computing the pressure
acting on the body (see Bensch et al. 2001; Khabakhpasheva et al. 2016; Martin, Jacques
& Paul 2018), where ρ is the liquid density and z is the vertical coordinate of a point on
the body surface. Formally speaking, for a two-dimensional body impacting a flat water
surface located at z = 0 (figure 1), the reference level z0 should be set to 0. Note however
that such a value leads to a suction effect (a negative contribution to the pressure) for
z > 0. Khabakhpasheva et al. (2016) obtained better force predictions for the water entry of
a wedge with constant deceleration by setting z0 = η(c(t), t)/2, with z = η(x, t) defining
the free-surface elevation and c(t) the half-width of the wetted surface within the Wagner
model (see figure 1).

In the generalized Wagner model (GWM) (see Helmers & Skeie 2015; Kim et al.
2015; de Lauzon et al. 2015), which is commonly used to perform coupled slamming and
hydroelastic sea-keeping computations, gravity is often neglected. In this context, adding
the effect of gravity into the GWM is more challenging because gravity is already at play
in the sea-keeping model and the coupling of the two models must be consistent.

Numerical approaches such as computational fluid dynamics (CFD) and fully nonlinear
potential flow (FNPF) solvers may offer a more readily usable means of simulating water
impacts affected by gravity as the introduction of gravity does not necessitate additional
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Figure 1. Water entry of a two-dimensional symmetric body.

developments. In high-fidelity CFD approaches, the effect of gravity may be easily taken
into account by adding a volumic force in the liquid domain. In FNPF solvers, taking into
account gravity reduces to a modification of the free-surface boundary condition. Fully
nonlinear potential flow solvers are less computationally demanding than CFD solvers
while remaining at a high level of accuracy as the boundary conditions on the body and
on the free surface are fully nonlinear. This approach has been used to investigate different
water entry problems affected by gravity (Sun, Sun & Wu 2015; Yu et al. 2018; Wang,
Faltinsen & Lugni 2019).

Despite the progress of high performance computing and CFD approaches, analytical
and semi-analytical models (SAMs) of water impact remain highly valuable and under
constant improvement. Indeed, they offer means of validation for numerical approaches
through reference case studies within their domain of validity (i.e. small deadrise-angle
wedge). Analytical and SAMs are used by industry not only because of their attractive
computing performance but also because of their ability to deal with practical problems.
Analytical models provide insights on complex flow physics such as the role of the
longitudinal body curvature on the suction during oblique impacts and the possible
appearance of cavitation (e.g. Bensch et al. 2001; Tassin et al. 2013; Martin et al. 2018).
In that context, developing a consistent analytical model based on the Wagner approach
but taking into account also the effect of gravity is of great interest. The difficulty resides
in the fact that gravity not only changes the equation which gives the pressure acting
on the body surface but it also changes the linearised free-surface boundary condition
satisfied by the velocity potential (ϕ) from ϕ(|x| > c(t), z = 0) = 0 to ϕ,t(|x| > c(t), z =
0) = −gη(x, t). So one may ask whether it is legitimate to neglect the effect of gravity in
the free-surface condition when the hydrostatic contribution to the pressure acting on the
body becomes of importance. In order to answer this question, it is necessary to retain the
gravity terms in the free-surface condition of the Wagner model and see how these terms
affect the solution in terms of wetted surface width and pressure distribution. With the
modified free-surface condition, the water entry problem becomes more difficult to solve
because function η(x, t), which describes the shape of the free surface, appears in the
free-surface condition and becomes part of the unknowns of the problem. Moreover, with
the modified free-surface condition, the velocity potential boundary condition at the free
surface involves a time integral of function η(x, t). As a consequence, the evaluation of
the hydrodynamic load with the modified free-surface condition (with gravity) requires
the knowledge of the time history of the wetted surface width, whereas the original
Wagner model (without gravity) allows the evaluation of the wetted surface width and
hydrodynamic load at any time independently from the previous time instants. It is only
until very recently that a consistent Wagner model with gravity was proposed by Zekri,
Korobkin & Cooker (2021) (see also Zekri 2016) for the water entry of a two-dimensional
parabolic body using this modified free-surface condition and a perturbation method.
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In the present article we present a more general approach for the derivation of a solution
to the two-dimensional Wagner problem with gravity and we extend the theory to the
axisymmetric water entry problem with gravity. This approach is used to investigate
the water entry of wedges and cones of different deadrise angles but can be used to
study the water entry of more general body shapes. The modified free-surface condition
with gravity is taken into account when computing the contact point position, x = c(t),
and when computing the velocity potential (and its partial derivatives) on the body
surface. The so-called ‘Wagner problem’ which consists in determining the width of
the wetted surface is rederived using the displacement potential approach with the new
free-surface condition. The resolution of the Wagner problem is simplified by introducing
an approximation of the free-surface condition which avoids the computation of the exact
shape of the free surface with gravity. The two-dimensional Wagner problem is solved
using analytical function theory and the axisymmetric Wagner problem is solved using the
boundary element method (BEM) in a similar way as in Tassin et al. (2012). The pressure
acting on the body is computed according to the modified Logvinovich model (MLM)
of Korobkin (2004). The semi-analytical approach is validated through comparisons with
numerical results obtained from the FNPF solver presented in Battistin & Iafrati (2004)
and recently extended to deal with water impacts with varying speed and gravity (Del
Buono et al. 2021). For this purpose, we investigate the effect of gravity during the
water entry at constant speed of wedges and cones for different values of deadrise angle,
β, ranging from 10◦ to 30◦. The comparisons between the two approaches are in very
good agreement, hence demonstrating the accuracy of the semi-analytical approach. Our
investigations show that accurately predicting the hydrodynamic force and the pressure
distribution on the body requires us to account for gravity both in the modification of
the wetted surface width and in the modification of the velocity potential. For the wedge
entering water at constant speed, V , we show that the contribution of gravity to the
non-dimensional force coefficient (the force multiplied by tan2 β/(ρV3t)) is governed by
the effective Froude number, F∗

r = Fr/
√

tanβ, where Fr = V/
√

gh(t) is the instantaneous
Froude number based on the penetration depth, h(t), taken as a reference length scale. The
accuracy of the semi-analytical approach for the water entry of a body with a varying
speed is also demonstrated through the simulation of a wedge and a cone entering water
with deceleration (up to full stop). The motion imposed to the body in these simulations is
similar to the one imposed in the experiments by Breton, Tassin & Jacques (2020) which
were used in Del Buono et al. (2021) to validate the FNPF solver. The simulations are run
with and without gravity to show the capability of the SAM to accurately predict the effect
of gravity on the force and the width of the wetted surface.

The article is organized as follows. Section 2 presents the two-dimensional
semi-analytical water impact model. Section 3 describes the semi-analytical approach used
for the axisymmetric water entry problem and § 4 presents the FNPF solver. The results
obtained for the water entry at constant speed are presented in § 5 for the wedge case and in
§ 6 for the cone case. The results for a body entering water with deceleration are presented
in § 7. Conclusions are finally drawn in § 8.

2. Two-dimensional analytical water impact model

In this section we present the two-dimensional analytical model developed to account
for gravity. The original Wagner model without gravity is first recalled in § 2.1. The
modified mixed boundary value problem (MBVP) satisfied by the velocity potential in
the presence of gravity is presented and solved in § 2.2. In § 2.2.2 we derive the modified

944 A9-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.448


Gravity effects in water impact models

Wagner condition governing the evolution of the wetted surface and present the numerical
approach used to solve this equation. The computation of the pressure and force acting on
the body is detailed in § 2.2.3.

2.1. Two-dimensional Wagner model for a symmetric body
Within the Wagner model, the fluid is assumed to be inviscid and incompressible. Gravity
and surface tension effects are neglected. The flow is assumed to be irrotational and
can thus be fully described through a velocity potential ϕ. Let us consider the water
entry of a symmetric two-dimensional body into a semi-infinite liquid domain initially
at rest as described in figure 1. The position of the body contour is defined by the
equation z = f (x)− h(t), where f (x) is a function which describes the body shape and
h(t) corresponds to the depth of penetration after first contact with water. Variable c(t)
represents the half-width of the wetted surface, which is delimited by the turnover points
or the root of the jets. Under Wagner’s assumptions, the presence of the jet is neglected at
leading order. The width of the wetted surface is determined using the so-called Wagner
condition, which states that the displacement should be finite at |x| = c. Function η(x, t)
describes the elevation of the free surface induced by the water entry and the vertical
velocity of the body is denoted v(t). In the following, the upper-script notation (w) stands
for quantities derived from the original Wagner model, i.e. neglecting gravity. In the
original Wagner model, the velocity potential satisfies the following linear MBVP:

�ϕ(w) = 0, z < 0, (2.1a)

ϕ(w) = 0, z = 0, |x| � c(w)(t), (2.1b)

ϕ(w),z = −v(t), z = 0, |x| < c(w)(t), (2.1c)

ϕ(w) → 0, x2 + z2 → ∞. (2.1d)

The velocity potential solution of (2.1) is given by the following expression on the body
surface:

ϕ(w)(x, z, t) = −v(t)
√

c(w)(t)2 − x2, |x| < c(w)(t), z = 0. (2.2)

Note however that the half-width of the wetted surface, c(w), in (2.1) is a parameter which
must be determined using an additional condition, the so-called Wagner condition, which
can be formulated as (Korobkin 1996)∫ π/2

0
f (c(w) sin γ ) dγ = π

2
h(t). (2.3)

The free-surface elevation, η(x, t), can be obtained by integrating in time the vertical fluid
velocity, ϕ(w),z , at the free surface, (|x| > c(w)(t), z = 0), (Faltinsen 2005)

η(w)(x, t) =
∫ t

0
ϕ(w),z (x, 0, τ ) dτ =

∫ t

0

[
v(τ)x√

x2 − c(w)(τ )2
− v(τ)

]
dτ. (2.4)

For a number of body shapes (e.g. when f (x) is a polynomial function), a closed-form
expression of c(w) can be derived using (2.3). As shown later in § 5, this expression
can then be substituted into (2.4) to obtain a closed-form expression of the free-surface
elevation.
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2.2. Two-dimensional Wagner model with gravity
In the Wagner model the original nonlinear free-surface condition is first linearised
assuming that there is a small deflection of the free surface and performing a Taylor
expansion of the velocity potential in z = 0. This first step leads to the well-known
free-surface condition of linear surface gravity waves,

ϕ,t(x, z, t) = −gη(x, t), |x| > c(t), z = 0. (2.5)

Neglecting gravity and assuming that the fluid is initially at rest, i.e. ϕ(w)(x, z, t = 0),
one obtains the original free-surface condition ϕ(w) = 0 in (2.1). Retaining the terms
depending on gravity in the linear free-surface boundary condition, the MBVP satisfied
by the velocity potential becomes

�ϕ = 0, z < 0, (2.6a)

ϕ(x, t) = −g
∫ t

0
η(x, τ ) dτ, z = 0, |x| � c(t), (2.6b)

ϕ,z(x, t) = −v(t), z = 0, |x| < c(t), (2.6c)

ϕ → 0, x2 + z2 → ∞. (2.6d)

2.2.1. Derivation of the velocity potential accounting for gravity
Using the theory of analytic functions as detailed in Appendix A.1, the velocity potential
solution of (2.6) on the wetted surface may be expressed as

ϕ(x, z, t) =
√

c2 − x2
{
−v + 2

π

∫ +∞

c

τϕ(τ, t)√
τ 2 − c2(τ 2 − x2)

dτ
}
, |x| < c, z = 0. (2.7)

Note that the potential on the wetted surface depends on the potential on the free surface,
which itself depends on the unknown free-surface elevation. The integrand in (2.7) is
(weakly) singular at τ = c for x < c. In order to compute the velocity potential, and more
importantly the time derivative of the velocity potential close to |x| = c−, it is convenient
to rearrange (2.7) by performing an integration by parts, leading to

ϕ(x, z, t) = −v
√

c2 − x2 + 2
πx

{
sgn(x)

cϕ(c+, t)π
2

+
∫ +∞

c
arctan

τ
√

c2 − x2

x
√
τ 2 − c2

(ϕ(τ, t)+ τϕ,x(τ, t)) dτ

}
, |x| < c, z = 0.

(2.8)

The time derivative of the velocity potential is obtained by differentiating (2.8) with
respect to t, leading to

ϕ,t(x, z, t) = 1√
c2 − x2

{
−vcċ +

∫ +∞

c

2τ ċ

πc
√
τ 2 − c2

(ϕ(τ, t)+ τϕ,x(τ, t)) dτ
}

+ cϕ,t(c+, t)
|x| + 2

πx

∫ +∞

c
arctan

τ
√

c2 − x2

x
√
τ 2 − c2

(ϕ,t(τ, t)+ τϕ,tx(τ, t)) dτ

− v̇
√

c2 − x2, |x| < c, z = 0, (2.9)
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Gravity effects in water impact models

where the overdot symbol stands for the total derivative with respect to t. The x-derivative
of the velocity potential is obtained by solving the MBVP satisfied by the complex velocity
(ϕ,x − iϕ,z) using the theory of analytic functions as detailed in Appendix A.2. It yields

ϕ,x(x, t) = xv√
c2 − x2

− 2x

π
√

c2 − x2

∫ +∞

c

√
τ 2 − c2

τ 2 − x2 ϕ,x(τ, t) dτ, |x| < c. (2.10)

Equations (2.7) to (2.10) all involve the unknown free-surface elevation through the
velocity potential on the free surface. Although gravity may affect the free-surface
elevation, one may expect that the deviation of the free-surface elevation from the
free-surface elevation obtained with the original Wagner model remains small as far as
the effect of gravity remains reasonably small. As a consequence, it seems reasonable to
assume that the leading-order terms of the velocity potential on the free surface can be
computed using the free-surface elevation obtained with the original Wagner model. Note
however that, as observed in Zekri et al. (2021), gravity will tend to reduce the size of
the wetted surface; therefore, we suggest to assume that for a similar size of the wetted
surface, the free surface obtained with gravity is approximately similar to the free-surface
elevation obtained with the original Wagner model. In other words, at time t, the half-width
of the wetted surface with gravity, c(t), is such that c(t) = c(w)(t∗), with t∗ < t. The
free-surface elevation which must be considered is thus η(x, t) = η(w)(x, t∗). Denoting

c(w)−1 the inverse function of c(w), we have t∗ = c(w)−1
(c(t)). The velocity potential on

the free surface thus reads as

ϕ(x, t) = −g
∫ t

0
η(x, τ ) dτ ≈ −g

∫ t

0
η(w)(x, c(w)

−1
[c(τ )]) dτ, |x| > c, (2.11)

The formal asymptotic analysis of Zekri et al. (2021) confirms that this approximation is
reasonable. In Zekri et al. (2021) the free-surface shape is stretched to fit the new size of
the wetted surface, but the idea is rather similar as the free-surface shape is assumed to be
similar to the free-surface elevation given by the original Wagner model (in the stretched
coordinates).

2.2.2. Modification of the wetted surface due to gravity
In order to take into account the effect of gravity on the wetted surface, it is convenient to
reformulate the Wagner problem in terms of the displacement potential, φ, defined as the
time integral of the velocity potential,

φ(x, z, t) =
∫ t

0
ϕ(x, z, τ ) dτ. (2.12)

The displacement potential satisfies the following MBVP:

�φ = 0, z < 0, (2.13a)

φ =
∫ t

0
ϕ(x, τ ) dτ, z = 0, |x| � c(t), (2.13b)

φ,z = f (x)− h(t), z = 0, |x| < c(t), (2.13c)

φ → 0, x2 + z2 → ∞. (2.13d)

This MBVP, in which the displacement potential is not equal to zero on the free surface,
is solved in Moore, Ockendon & Oliver (2013). A more detailed derivation of the solution
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is presented in Appendix B. Making a slightly different change of variable, the Wagner
condition becomes

∫ π/2

0

⎛
⎜⎜⎝f (c sin γ )− h(t)+

φ,x

(
c

sin γ
, t
)

sin γ

⎞
⎟⎟⎠ dγ = 0. (2.14)

In the general case, c(t) cannot be extracted from the last term in (2.14) to express c as
a function of the other parameters because the term φ,x on the free surface derives from
successive integrals with respect to time. In order to solve this equation, it is convenient to
differentiate (2.14) with respect to time, which leads to the following first-order differential
equation:

ċ = −

∫ π/2

0

(
−v(t)+ φ,xt

(
c

sin γ
, t
)/

sin γ
)

dγ∫ π/2

0

(
f,x(c sin γ ) sin γ + φ,xx

(
c

sin γ
, t
)/

sin2 γ

)
dγ
. (2.15)

In the following this equation is solved numerically using the first-order explicit Euler
method. Note that the wetted surface at a time instant t is fully determined by the position
of the body h(t) at this time instant through (2.3) when gravity is ignored. However, this
is no longer true when gravity is considered because the displacement potential which
appears in the second term of (2.14) is defined by a double integral over time. Similarly to
§ 2.2, we suggest using the free-surface elevation obtained from the original Wagner model
in order to simplify the computation of the displacement potential in (2.15) as follows:

φ(x, t) = −g
∫ t

0

∫ ν

0
η(x, τ ) dτ dν

≈ −g
∫ t

0

∫ ν

0
η(w)(x, c(w)

−1
(c(τ )) dτ dν, |x| > c. (2.16)

Once the wetted surface and the partial derivatives of the velocity potential with respect to
t and x are known, it is possible to compute the pressure acting on the body.

2.2.3. Computation of the pressure and force acting on the body
In the following the pressure distribution is obtained using the MLM proposed by
Korobkin (2004). This model allows us to take into account the shape of the body and
was shown to be accurate in terms of hydrodynamic force prediction (Tassin et al. 2010).
Writing the MLM under the form given in Tassin et al. (2013) and adding the hydrostatic
component of Bernoulli’s equation, the pressure acting on the body surface, P, can be
expressed as

P(x, t) = −ρ
(
ϕ,t + ϕ2

,x

2(1 + f 2
,x)

+ ( f − h)v̇ + v2

2
+ ( f − h)g

)
, (2.17)

where ϕ,t and ϕ,x are given by (2.9) and (2.10), respectively. This equation presents a
non-integrable singularity at |x| = c(t)−. In order to compute the force acting on the body,
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Gravity effects in water impact models

we follow the procedure proposed by Tassin et al. (2013) which consists in splitting (2.17)
into two terms, Pv and Pa, in the integration

F(t) =
∫ c∗(t)

−c∗(t)
Pv(x, t) dx +

∫ c(t)

−c(t)
Pa(x, t) dx, (2.18)

where c∗(t) corresponds to the closest point x to c(t) where Pv(x, t) is positive and Pa
comprises only terms depending on acceleration,

Pa = −ρ(v̇
√

c2 − x2 + ( f − h)v̇). (2.19)

Here Pv comprises the remaining pressure terms and includes all the terms resulting from
the action of gravity.

3. Axisymmetric analytical model

In this section the approach presented in the previous section in order to take into account
the effect of gravity in the Wagner model is extended to the axisymmetric case. The
axisymmetric model follows the same assumptions as the two-dimensional model, but the
solution method differs because there is no equivalent theory to analytic function theory
in three dimensions.

3.1. Axisymmetric Wagner model without gravity
The Wagner model also applies to the case of an axisymmetric body penetrating water
where the problem is now expressed in the cylindrical coordinates (r, θ, z). In the original
axisymmetric Wagner problem, the velocity potential satisfies the following MBVP:

�ϕ(w) = 0, z < 0, (3.1a)

ϕ(w) = 0, z = 0, r � c(w)(t), (3.1b)

ϕ(w),z = −v(t), z = 0, r < c(w)(t), (3.1c)

ϕ(w) → 0, r2 + z2 → ∞. (3.1d)

The velocity potential solution of (3.1) is given by the following expression on the body
surface:

ϕ(w)(r, θ, z, t) = −2v
π

√
c(w)2 − r2, z = 0. (3.2)

The radius of the wetted surface is governed by the Wagner condition which may be
expressed as (see Korobkin & Scolan 2006)∫ π/2

0
sin γ ·f (c(w)(t) sin γ ) dγ = h(t). (3.3)

The vertical velocity at the free surface is given by Scolan & Korobkin (2001) and reads
as

ϕ(w),z (r, θ, z, t) = −2v(t)
π

{
arcsin

(
c(w)(t)

r

)
− c(w)(t)√

r2 − c(w)(t)2

}
, z = 0. (3.4)

The free-surface elevation, η(r, t), can be obtained by integrating (3.4) with respect to
time.
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3.2. Axisymmetric Wagner model with gravity
Taking into account the effect of gravity in the axisymmetric Wagner problem, the velocity
potential satisfies the following MBVP:

�ϕ = 0, z < 0, (3.5a)

ϕ = −g
∫ t

0
η(r, τ ) dτ, z = 0, r � c(t), (3.5b)

ϕ,z = −v(t), z = 0, r < c(t), (3.5c)

ϕ → 0, r2 + z2 → ∞. (3.5d)

As the Laplace equation is linear, the velocity potential, ϕ, solution of (3.5) may be sought
in the form ϕ = ϕ(w) + ϕ(g), with ϕ(g) solution of the following MBVP:

�ϕ(g) = 0, z < 0, (3.6a)

ϕ(g) = −g
∫ t

0
η(r, τ ) dτ, z = 0, r � c(t), (3.6b)

ϕ(g),z = 0, z = 0, r < c(t), (3.6c)

ϕ(g) → 0, r2 + z2 → ∞. (3.6d)

The normal derivative of the velocity potential being equal to zero over the disc r < c(t),
the velocity potential on the wetted surface can be computed using the following equation
given in Iafrati & Korobkin (2008) and referred to as Sneddon’s formula:

ϕ(g)(r, z, t) = 2
π

∫ +∞

0

ϕ(g)(
√
(c2 − r2)τ 2 + c2, z = 0, t)

τ 2 + 1
dτ, r < c, z = 0. (3.7)

Similarly to § 2, we suggest to approximate the free-surface elevation when computing the
velocity potential over the free surface on the right-hand side of (3.7) as

ϕ(g)(r, z, t) ≈ −g
∫ t

0
η(w)(r, c(w)

−1
(c(τ )) dτ, r > c, z = 0, (3.8)

where η(w)(r, t) is obtained by integrating (3.4) with respect to time.

3.3. Modification of the wetted surface due to gravity
Similarly to the two-dimensional case, it is necessary to take gravity into account when
computing the wetted surface radius (in the Wagner condition).

Moore & Oliver (2014) proposed an analytical formulation to derive the wetted surface
radius for an axisymmetric body considering a non-zero potential on the free surface.
However, this paper contains an error and, for this reason, the formulation was not applied
here. An erratum to the formulation should be published soon. Therefore, we suggest to
adapt the numerical method based on the BEM proposed in Tassin et al. (2012) in order to
solve the modified Wagner problem with gravity.
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3.3.1. Description of the method
The method presented here allows us to obtain the evolution of the wetted radius, c(t),
during the vertical water entry of an axisymmetric body. The computation is made on a
time interval, [0, T], subdivided into N subintervals. Time t = 0 corresponds to the instant
at which the body first touches the water. Similarly to the two-dimensional case, obtaining
the wetted radius at an instant tn necessitates to know the wetted radius at the previous
instants {t0, . . . , tn−1}. Thus, an initialization must be made at the smallest instants of the
impact for which no history has been computed. The Froude number, Fr = √

V/(gt), being
much greater than one during the very early stage of the water entry, c(tn) is set to the value
given by the Wagner theory at the first time instants (when the effect of gravity is marginal)
in order to initialize the numerical procedure. Once the Froude number exceeds a certain
threshold value, the wetted surface is determined numerically by an iterative procedure.
This procedure consists in computing the free-surface elevation along the contact line for
the successive values c(tn)m corresponding to the value of c(tn) at each iteration m and
adjusting the value of the wetted surface radius so as to minimize the difference between
the free-surface elevation and the body position along the contact line, i.e. the error on the
Wagner condition.

This algorithm necessitates the computation of the free-surface elevation for a certain
value of the wetted surface radius, c(tn)m, which is performed by a boundary element
model presented in § 3.3.2 below. In this computation the effect of gravity on the
free-surface condition is taken into account and, thus, the computed free-surface elevation
depends on the values taken by c(t) at the previous instants {t0, . . . , tn−1}. Once the error
on the Wagner condition has been computed, the estimate of c(tn) is updated following the
procedure detailed in § 3.3.3. This procedure is then iterated until the error on the Wagner
condition reaches a certain acceptable value.

3.3.2. Computation of the free-surface elevation
In order to calculate the free-surface elevation for a given value of the wetted surface
radius, c(t), it is convenient to reformulate the Wagner problem in terms of the
displacement potential, φ, defined as the time integral of the velocity potential and which
satisfies the following MBVP:

�φ = 0, z < 0, (3.9a)

φ =
∫ t

0
ϕ(r, τ ) dτ, z = 0, r � c(t), (3.9b)

φ,z = f (r)− h(t), z = 0, r < c(t), (3.9c)

φ → 0, r2 + z2 → ∞. (3.9d)

Following Tassin et al. (2012), the displacement potential at a point p located at z = 0 may
be expressed as follows using Green’s third identity:

1
2φ(p, t) =

∫∫
WS
φ,z(q, t)G(p, q) dSq +

∫∫
FS
φ,z(q, t)G(p, q) dSq. (3.10)

Here G(p, q) is the free-space Green function defined as G(p, q) = [4π|p − q|]−1, q
is a point located at z = 0, WS denotes the wetted surface and FS denotes the free
surface. Similarly to Tassin et al. (2012), we use (3.10) and a collocation method to
compute numerically the free-surface elevation, η = φ,z. The collocation method consists
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in enforcing (3.10) in a number of points pi located on the free surface. The free surface is
discretized in Ne intervals over which the free-surface elevation is assumed to be piecewise
linear,

η(ξ) = η(ξk+1)− η(ξk)

ξk+1 − ξk
(ξ − ξk)+ η(ξk), ξ ∈ [ξk, ξk+1], (3.11)

where ξ = r/c(t). The free-surface elevation is assumed to be small enough beyond a
threshold value ξmax = 5 so that it has a marginal contribution to the second integral on
the right-hand side of (3.10). Making use of this discretization, the integral on the free
surface in (3.10) is split into Ne + 1 terms corresponding to the coefficient of influence
of each unknown, ηk = η(ξk). The evaluation of (3.10) at Ne + 1 collocation points (pi)
allows us to write the following linear system of equations:

AX = B + B(g). (3.12)

Here X = (η1, . . . , ηNe+1)
T, A results from the integral over the free surface in (3.10)

and B results from the integration over the wetted surface. Their expression can be found
in Tassin et al. (2012). In contrast to Tassin et al. (2012), an additional term B(g) =
1/2[φ(p1), . . . , φ(pNe+1)]

T appears because the displacement potential is not equal to
0 over the free surface when gravity is included. Similarly to (2.16), the displacement
potential on the free surface may be approximated as

φ(pi, t) = −
∫ t

0

∫ ν

0
gη(ξpi c(τ ), τ ) dτ dν ≈ −

∫ t

0

∫ ν

0
gη(w)(ξpi c(τ ), c(w)

−1
(c(τ ))) dτ dν,

(3.13)

where η(w) is obtained as the time integral of the vertical velocity (3.4). With this
approximation, the ith coefficient of B(g) at a time instant tn+1 reads as

B(g)i (tn+1) = −1
2

∫ tn

0

∫ ν

0
gη(w)(ξpi c(τ ), c(w)

−1
(c(τ ))) dτ dν, (3.14)

where we only integrate with respect to time until tn to avoid numerical issues at the
first iteration (the free-surface elevation becomes singular when we set c(tn+1) = c(tn)).
The term B(g) could be evaluated using the time history of the wetted surface elevation
computed through the BEM. However, in order to obtain results valid under the same
assumptions as in the two-dimensional case, it is evaluated using the analytical expression
of the free-surface elevation, which also simplifies the computation. The resolution of the
linear system (3.12) allows us to obtain the free-surface elevation at time tn+1 assuming
that c(tn+1) = c(tn+1)m.

3.3.3. Enforcing the Wagner condition
Once the free-surface elevation has been computed, its value at the contact point is known
and the corresponding error on the Wagner condition can be computed as

e(c(tn+1)m) = η(ξ0, tn+1)m − f (c(tn+1)m)+ h(tn+1). (3.15)

For the next iteration, the value of c(tn+1)m is updated as

c(tn+1)m+1 = c(tn+1)m + αm e(c(tn+1)m), (3.16)

where αm is a dynamic relaxation coefficient which is initialized and updated in a similar
way as in Tassin et al. (2012). The error resulting from the updated value c(tn+1)m+1 can
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Gravity effects in water impact models

now be computed. This process is repeated until the error reaches an acceptable value.
In our simulations, this procedure was initialized with c(tn+1)0 = c(tn), c(tn) being the
converged value of c(t) at t = tn.

4. Fully nonlinear potential flow solver

In this section we present the FNPF model used to calculate the reference results for the
validation of the two-dimensional and axisymmetric semi-analytical Wagner models with
gravity. The FNPF model has been proposed and validated in Battistin & Iafrati (2003) and
Battistin & Iafrati (2004) for the water entry case with constant velocity and extended in
Del Buono et al. (2021) to deal with the water impacts with varying speed and to include
the effect of gravity. The solver is based on a hybrid BEM approach where the BEM is
coupled with a harmonic polynomial expansion to describe the thinnest part of the jet.

4.1. Hybrid BEM approach
Similarly to the Wagner theory, the water impact problem is here faced under the
assumptions of an inviscid and incompressible fluid. The flow is assumed irrotational,
which allows us to formulate the problem in terms of the velocity potential ϕ. The
governing equations, written in an earth-fixed frame of reference, with y the horizontal
axis coinciding with the still water level, and z the vertical axis oriented upwards, are

∇2ϕ = 0, Ω, (4.1a)

ϕ,n = −v · n, WS, (4.1b)

Dϕ
Dt

= |∇ϕ|2
2

− gz, FS, (4.1c)

Dx
Dt

= u, FS, (4.1d)

where v is the body vertical velocity (positive downwards),Ω is the fluid domain, WS and
FS are the wetted surface and the free surface, respectively, n is the unit vector normal
to the boundary of the fluid domain oriented inwards, D/Dt is the total derivative with
respect to time t, x is the position of a particle lying at the free surface and u is the
fluid velocity at x. The problem is solved through a mixed Eulerian–Lagrangian approach
inspired from Longuet-Higgins & Cokelet (1976) and the velocity potential is written in
terms of a boundary integral representation. Enforcing it at the boundary of the fluid
domain, a boundary integral equation of mixed first and second kind, for the velocity
potential and its normal derivative on the free surface is obtained,

1
2
ϕ(p) =

∫
WS

⋃
FS

(
∂ϕ(p)
∂n

G(p, q)− ϕ(q)
∂G(p, q)
∂n

)
dSq, (4.2)

where G is the free-space Green function for the Laplace operator. In two dimensions,
the Green function is defined by G(p, q) = log(|p − q|)/2π, and in three dimensions
G(p, q) = [4π|p − q|]−1. The solution is arranged in two steps. First, the boundary value
problem formed by (4.1a), (4.1b) and the current value of the velocity potential at the
free surface is solved. This provides the velocity potential on the wetted surface and its
normal derivative on the free surface, along with the tangential velocity which is obtained
through differentiation of the velocity potential along the boundary. Once the velocity field
along the free surface is completely determined, the second step of the solution scheme
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is performed: the dynamic and kinematic free-surface conditions, (4.1c) and (4.1d), are
integrated in time to compute the new free-surface shape and the velocity potential on
it. The solution is achieved numerically through a zero-order discretization in space, thus
approximating the variables with a piecewise constant distribution on straight panels, and
a second-order Runge–Kutta scheme for the integration in time.

The hydrodynamic load acting on the impacting body is computed through the
integration of the pressure distribution over the wetted surface, which is calculated by
using the unsteady Bernoulli equation,

p − pinf = −ρ
(
ϕ,t + |∇ϕ|2

2
+ gz

)
, (4.3)

where pinf is the pressure on the undisturbed fluid. In (4.3) the time derivative of the
velocity potential along the body, ϕ,t, is unknown and it is evaluated by formulating a
boundary value problem similar to (4.1) which is solved numerically by the BEM (see
Battistin & Iafrati 2003).

4.2. Jet model
During the impact, the water rises along the body and a thin jet is formed due to the flow
singularity at the intersection between the free surface and the body surface (Greenhow
1987). An accurate modelling of this thin jet with the BEM approach would require a very
fine local discretization and, owing to the local high speed of the fluid, a quite small time
step would be necessary to guarantee the stability and the accuracy of the time integration
scheme. Consequently, the computational effort would increase substantially. Commonly,
for limiting the computational effort, the jet is cutoff and replaced by a panel orthogonal
to the body contour where appropriate boundary conditions are applied. This procedure
allows us to obtain, despite the approximation, an accurate estimation of the hydrodynamic
load (Zhao & Faltinsen 1993; Battistin & Iafrati 2003). However, an evident drawback is
the loss of details in the description of the fluid motion inside the thin jet, which are
important in some phenomena (e.g. flow separation). The jet model presented in Battistin
& Iafrati (2004) is adopted here to preserve a detailed description of the flow in the jet.
This model is based on the discretization of a part of the jet region in control volumes,
which are bounded by the wetted surface and the free surface (see figure 2), where the
velocity potential is written in the form of a harmonic polynomial series, up to second
order, about the corresponding centroid (x∗, z∗),

ϕ
j
i (x, z) = Ai + Bi(x − x∗)+ Ci(z − z∗)+ 1

2 Di[(x − x∗)2 − (z − z∗)2]

+ Ei(x − x∗)(z − z∗). (4.4)

The coefficients Ai, . . . ,Ei are additional unknowns, so five additional equations, for
each control volume, are required. As the vertices of each volume correspond to the panel
centroids (P̄i−1, P̄i on the body side, and P̂i−1, P̂i on the free-surface side), four of them
are derived by enforcing the boundary conditions at the body and free-surface sides,

ϕ
j
i,n(P̄i−1) = ϕ,n(P̄i−1), ϕ

j
i,n(P̄i) = ϕ,n(P̄i), ϕ

j
i (P̂i−1) = ϕ(P̂i−1), ϕ

j
i (P̂i) = ϕ(P̂i),

(4.5a–d)

where ϕ j
i,n is the normal derivative of the velocity potential provided by the harmonic

expression. The right-hand side of the first two equations of (4.5a–d) are known from
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Figure 2. Sketch of the jet region.

the body boundary condition (4.1b), whereas the right-hand side of the last two equations
of (4.5a–d) are known from the time integration of the dynamic boundary condition (4.1c),
as explained in § 4.1. The fifth condition is the following matching condition which ensures
the continuity of the normal derivative of the velocity potential (on the free-surface side)
at adjacent control volumes,

ϕ
j
i,n(P̂i−1) = ϕ

j
(i−1),n(P̂i−1). (4.6)

It is worth noting that at the first edge on the free-surface side of the first control volume,
the condition (4.6) enforces the matching of the normal derivative of the velocity potential
computed by the simplified model with that resulting from the solution of the boundary
integral problem.

By introducing the jet model, i.e. when the thin jet has already developed, the
discretizated form of the boundary integral equation (4.2), used in the remaining part of
the fluid domain, is coupled with the set of (4.5a–d) and (4.6). In this way, the unknown
coefficients of the expansions and the unknown velocity potential and its normal derivative
are computed simultaneously. This hybrid BEM approach is also adopted to compute
numerically the time derivative of the velocity potential ϕ,t which is needed to evaluate
the pressure acting on the body contour.

5. Validation of the two-dimensional analytical model with gravity for a constant
entry velocity

In this section we use the two-dimensional water impact model presented in § 2 to simulate
the water entry of a wedge at constant speed and with the inclusion of gravity. In § 5.1
the equations presented in § 2 are further developed by making use of the closed-form
solution provided by the original Wagner model in terms of wetted surface width and
free-surface elevation. The results obtained for a 15◦ deadrise-angle wedge are presented
and compared with the FNPF results in § 5.2. In § 5.3 a non-dimensional analysis of the
problem is proposed to illustrate how the effect of gravity is governed by the effective
Froude number defined as Fr∗ = Fr/

√
tanβ.

5.1. Expression of the problem for the case of a wedge
The body shape of an infinite wedge is defined by the function

f (x) = tanβ|x|. (5.1)
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Substituting (5.1) into (2.3), the expression of the half-width of the wetted surface is
obtained as

c(w)(t) = πh(t)
2 tanβ

. (5.2)

Substituting (5.2) into (2.4) and integrating with respect to t, we obtain the following
expression for the free-surface elevation under the assumptions of the original Wagner
model,

η(w)(x, t) = 2 tanβ
π

[
x arcsin

c(w)(t)
x

− c(w)(t)

]
. (5.3)

Substituting (5.3) into (2.11), one obtains the following approximation for the velocity
potential on the free surface:

ϕ(x, z, t) ≈ −2g tanβ
π

∫ t

0

(
x arcsin

c(τ )
x

− c(τ )
)

dτ, |x| > c, z = 0. (5.4)

The expression of the velocity potential and its derivatives at the free surface can now be
substituted into (2.9) and (2.10) in order to compute the pressure on the wetted surface and
into (2.15) in order to compute the width of the wetted surface.

5.2. Water entry of a 15◦ deadrise-angle wedge at constant velocity and with gravity
In this section we investigate the water entry of a wedge with a deadrise angle of 15◦.
The wedge enters water at a constant vertical velocity v = 0.5 m s−1. The evolution of
the wetted surface half-width obtained from the SAM and the FNPF solver is depicted
in figure 3(a). The results obtained from the two approaches neglecting gravity (g =
0 m s−2) are also depicted for comparison. One can see that gravity tends to reduce
the size of the wetted surface and that the results obtained from the two approaches
are in very good agreement. The latter is confirmed by the relative difference between
the two approaches shown in figure 3(b). In the first instants, the relative difference is
high because the FNPF simulation starts with a non-zero initial penetration depth which
induces a short transitory stage at the beginning of the simulation. Then, the relative
difference between the two approaches quickly decreases to 0.01 % for the case without
gravity and to 0.5 % for the case with gravity. The pressure distributions obtained for
different Froude numbers are depicted in figure 4(a). Note that the Froude number is
defined as Fr = V/

√
gh(t) and, therefore, the different instantaneous Froude numbers

correspond to different time instants. Owing to the effect of gravity, the pressure is no
longer self-similar. In fact, the peak pressure decreases in time (i.e. when the Froude
number decreases) and its position changes. For small values of Fr, the maximum value
of the pressure is no longer at the jet root but at the centre of the wedge where the
hydrostatic contribution is maximum. The pressure distribution obtained by adding the
term ‘−ρgz’ to the original MLM formulation, i.e. neglecting the effect of gravity on the
wetted surface width and on the velocity potential, is also depicted in figure 4(a). This
latter comparison shows how the new semi-analytical formulation improves the prediction
of the pressure distribution compared with the more simplistic approach consisting in
adding the hydrostatic contribution to the original MLM pressure model.

In order to illustrate the consequences of the wetted surface reduction under the action
of gravity on the pressure distribution, the pressure distribution obtained at the same
time instants with the SAM but neglecting the effect of gravity on the wetted surface
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Figure 3. Comparison of the wetted surface half-width predicted by the SAM and the FNPF solver for a 15◦
deadrise-angle wedge entering water at constant velocity with and without gravity. (a) Evolution of the wetted
surface half-width as a function of time. (b) Evolution of the relative difference between the two approaches,
(cFNPF − cSAM)/cFNPF , as a function of time.
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Figure 4. Comparison of the pressure coefficient, Cp = 2p/(ρv2), distribution along a 15◦ deadrise-angle
wedge entering water at constant speed. (a) Semi-analytical results accounting for the modification of the
wetted surface due to gravity. (b) Semi-analytical results obtained using the wetted surface predicted by the
original Wagner model. For comparison purposes, a dashed-dotted line computed as the sum of the hydrostatic
term and the MLM has been added.

are plotted in figure 4(b). This comparison clearly shows that taking into account gravity
in the Wagner condition not only improves the prediction of the wetted surface width
but also improves the overall prediction of the pressure distribution, and, in particular,
the prediction of the pressure peak value. The force coefficient predictions obtained from
the two approaches are depicted in figure 5(a). The relative difference between the two
approaches is depicted in figure 5(b). A good agreement between the two models is
obtained in terms of force, the relative difference remaining under 4 %. Most importantly,
it is very interesting to note that the SAM remains very accurate in terms of force
prediction even when the gravity contribution to the total force becomes of the same
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Figure 5. Non-dimensional force acting on a wedge represented as a function of the inverse of the
Froude number squared. (a) Force coefficient. (b) Relative difference (FSAM − FFNPF)/FFNPF between the
semi-analytical results and the numerical results.

order of magnitude as the slamming force at infinite Froude number (figure 5a). The
force prediction obtained by adding the hydrostatic force to the original MLM, which
is also depicted in figure 5(a), is less accurate than the SAM with gravity. Note that adding
the hydrostatic pressure term to the original MLM model leads to an underestimation of
the pressure in the centre of the wedge and to an overestimation of the wetted surface
(see figure 4), but by integrating the pressure over the wetted surface these two errors
of opposite sign compensate partially each other and the force prediction appears to be
reasonably good (see figure 5a).

The results presented in this section showed that the SAM proposed in § 2 gives accurate
results, both in terms of force and pressure distribution, for a wedge with a deadrise angle
of 15◦ penetrating water vertically with a constant velocity. It appears that it is important to
take into account the effect of gravity on the wetted surface to obtain an accurate prediction
of both the pressure distribution and the resulting force. In the next section the effect of
gravity during the water entry of wedges with different deadrise angles is investigated.

5.3. Relative influence of gravity during the water entry of a wedge at constant speed
depending on the deadrise angle

In the previous section we observed that the action of gravity on the water entry of a 15◦
deadrise-angle wedge increased as the Froude number decreased. However, as shown by
Yan & Liu (2011) in the case of a cone, one may expect that the importance of gravity
at a given value of Fr will differ for wedges of different deadrise angles. Indeed, based
on the developments presented in Appendix C, we expect that the effect of gravity on
the non-dimensional force coefficient and on the non-dimensional wetted surface width is
governed by the non-dimensional parameter Fr∗ = Fr/

√
tanβ, which we may refer to as

the ‘effective Froude number’. Simulations of wedges entering water at constant velocity
have been performed for deadrise-angle values ranging from 10 to 30◦ with the SAM in
order to confirm the primary role played by this parameter. The evolution of the force
coefficient and of the gravity contribution to the non-dimensional force coefficient as a
function of the inverse of the effective Froude number squared are depicted in figures 6(a)
and 6(b), respectively. Comparisons with numerical results obtained from the FNPF
solver for β = 10, 15, 20 and 30◦ are also shown. One can see that the semi-analytical
results almost overlap and that the numerical results are in very good agreement with the
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Figure 6. Evolution of the non-dimensional force coefficient during the water entry of a wedge at constant
velocity as a function of the inverse effective Froude number squared for different deadrise angles. (a) Total
force coefficient and (b) gravitational component of the force coefficient. Here F∞ denotes the force computed
without including gravity, which is to say that the Froude number is infinite.
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Figure 7. Evolution of the non-dimensional half-width of the wetted surface during the water entry of a
wedge at constant velocity as a function of the inverse effective Froude number squared for different deadrise
angles. (a) Non-dimensional half-width and (b) gravitational component of the half-width. Here c∞ denotes the
half-width of the wetted surface computed without including gravity, which is to say that the Froude number is
infinite. The analytical results are so close that they are indistinguishable.

semi-analytical ones, hence demonstrating that the importance of gravity during the water
entry of a wedge is governed by the effective Froude number, Fr∗. The evolution of the
non-dimensional half-width of the wetted surface is depicted in figure 7 as a function of
the inverse of the effective Froude number squared. One can see that almost all the results
overlap, hence confirming that the modification of the non-dimensional wetted surface
half-width due to gravity is governed by the effective Froude number. Considering the
effective Froude number thus allows us to account for the geometry of the impactor when
estimating the relative effect of gravity.
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6. Validation of the axisymmetric model with gravity for a constant entry velocity

In this section we consider the water entry of a cone at constant velocity and with the
inclusion of gravity. The axisymmetric model presented in § 3 is applied to this case. First,
the wetted surface width is evaluated using the BEM presented in § 3. Then the potential
on the wetted surface is computed analytically. In order to do so, it is necessary to compute
the free-surface elevation obtained with the Wagner model which appears in (3.13). Within
the original Wagner model, the wetted surface radius during the water entry of a cone is
obtained by solving (3.3), which leads to

c(w)(t) = 4h(t)
π tan(β)

. (6.1)

Substituting (6.1) into (3.4) and integrating with respect to time, we obtain the free-surface
elevation corresponding to the original Wagner model (without gravity),

η(w)(r, t) = − tanβ
2

{
c(w)(t) arcsin

c(w)(t)
r

+ 2
(√

r2 − c(w)(t)2 − r
)}
, r > c. (6.2)

Equation (6.2) is substituted into (3.13) to compute the radius of the wetted surface and
into (3.8) to compute the velocity potential on the free surface. Within the computation
of the wetted radius, the number of segments on the free surface was set to Ne = 30
and ξmax was set equal to 10. The evolution of the radius of the wetted surface for a 15◦
deadrise-angle cone is depicted in figure 8(a). The results without gravity are also depicted
for the sake of comparison. Similarly to the two-dimensional case, the action of gravity
tends to reduce the radius of the wetted surface. Figure 8(b) shows the relative difference
between the semi-analytical results and the FNPF results. The models are in very good
agreement as the relative difference for the case with gravity is under 0.4 %. Once the
evolution of the wetted surface accounting for gravity is known, the potential on the free
surface is computed. This potential is then substituted into (3.7) to compute the velocity
potential on the wetted surface and then to compute the pressure distribution. The pressure
distributions obtained from the two approaches are depicted in figure 9(a). Figure 9(b)
presents the pressure distribution obtained without accounting for the modification of the
wetted surface in the SAM. The results obtained from the SAM are in good agreement with
those obtained from the FNPF solver. Similarly to the two-dimensional case, it appears that
not accounting for gravity in the wetted surface computation leads to an overestimation
of the pressure peak magnitude and of the wetted surface radius. The non-dimensional
force acting on the cone, which is obtained by integrating the pressure over the wetted
surface, is depicted in figure 10(a). The gravity contribution to the non-dimensional force
coefficient is depicted in figure 10(b), where the results obtained from the two approaches
overlap. This indicates that the differences between the results observed in figure 10(a)
are due to the intrinsic accuracy of the MLM in the axisymmetric case without gravity
and not to the approach used to take gravity into account in the SAM. Similarly to the
two-dimensional case, it is remarkable to see that the SAM remains very accurate in
terms of force prediction even when the gravity contribution to the total force becomes
of the same order of magnitude as the slamming force at infinite Froude number. The
results obtained by adding the hydrostatic term to the MLM are closer to the SAM and
FNPF results in the axisymmetric case than in the two-dimensional case, both in terms of
pressure and force (see figures 9 and 10).

Semi-analytical and numerical simulations have been also carried out for different
values of the cone deadrise angle. Figures 11(a) and 11(b) show the evolution of the
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Figure 8. (a) Evolution of the wetted surface radius for a 15◦ deadrise-angle cone as a function of time
obtained from the SAM and the FNPF solver with and without gravity. (b) Relative difference between the
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Figure 9. Comparison of the pressure coefficients, Cp = 2p/(ρv2), distribution along a 15◦ deadrise-angle
cone entering water at constant speed. (a) Semi-analytical results accounting for the modification of the wetted
surface due to gravity. (b) Semi-analytical results obtained using the wetted surface predicted by the original
Wagner model.

non-dimensional wetted surface radius for different values of deadrise angle. The close
agreement between the different curves shows that the wetted radius is mainly a function
of the effective Froude number. The non-dimensional force results plotted in figure 12(a)
and 12(b) confirm that the effect of gravity during the water entry of a cone is very well
predicted by the effective Froude number and that the SAM with gravity performs well on
a wide range of deadrise angles.

7. Results for a varying entry velocity

In this section we simulate the water entry of a 15◦ deadrise-angle wedge and a 15◦
deadrise-angle cone with a varying entry velocity. The motion imposed to the body is
similar to the motion of the water entry and exit experiments performed by Breton et al.
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Figure 11. Evolution of the non-dimensional half-radius of the wetted surface during the water entry of a cone
at constant velocity as a function of the inverse effective Froude number squared for different deadrise angles.
(a) Total half-radius and (b) gravitational component of the half-radius.

(2020) with a 15◦ deadrise-angle cone and is defined as

h(t) = H sin(2πt/T)− δz, (7.1)

where H = πcmax tanβ/4 is the maximum submergence depth, T = 2πH/Umax, cmax =
0.2 m is the maximum wetted surface half-width, Umax = 0.57 m s−1 is the maximum
velocity and δz = 3 mm. Note that the body touches the water slightly after t = 0 because
of the term δz which has been introduced to reproduce the conditions of the experiments of
Breton et al. (2020). A case with a smaller entry velocity has also been investigated in the
following sections. For this case, the maximum velocity is taken as Umax = 0.249 m s−1.
In the following sections we investigate first the case of the wedge and then the case of
the cone. Note that we focus on the entry stage in our investigations because the Wagner
model is only valid as far as the wetted surface is in expansion. All the simulations have
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Figure 12. Evolution of the non-dimensional force coefficient during the water entry of a cone at constant
velocity as a function of the inverse effective Froude number squared for different deadrise angles. (a) Total
force coefficient and (b) gravitational component of the force coefficient.

been carried out with and without gravity in order to highlight the effect of gravity in the
simulations.

7.1. Decelerated water entry of a 15◦ deadrise-angle wedge
The evolution of the wetted surface width during the water entry of the wedge,
which is computed using (2.15), is depicted in figure 13 for the higher entry velocity
Umax = 0.57m s−1. The results obtained from the FNPF solver are also depicted. The
results obtained from the two approaches without gravity are also plotted (blue lines) to
show the effect of gravity. The initial discontinuity in the wetted surface radius prediction
by the FNPF solver reflects the fact that the simulations start with a non-zero initial
penetration depth. After this short transitory phase, the results obtained from the SAM
and the FNPF solver without gravity are so close that it is hard to distinguish one from
another. In this case, gravity has only a rather small effect on the radius of the wetted
surface. Nevertheless, the reduction of the wetted surface radius under the action of gravity
is well captured by the SAM. In figure 13 the time instant when the wetted surface stops
expanding within the SAM is marked by a vertical dash-dotted line. In absence of gravity,
the wetted surface stops expanding when the body stops moving downward within the
Wagner model. However, both approaches (FNPF and SAM) predict that, under the action
of gravity, the wetted surface stops expanding while the body continues moving downward.
Gravity thus reduces the time during which the Wagner model can be applied. The pressure
distributions along the wedge are depicted in figure 14(a) for a water entry with gravity
and in figure 14(b) for a water entry without gravity. One can see that the semi-analytical
results are in good agreement with the numerical results and that the SAM is able to predict
the effect of gravity on the pressure distribution both when the pressure is positive (above
atmospheric pressure) all over the body surface and when the pressure is negative (under
atmospheric pressure). Note that the effect of gravity on the pressure distribution, which is
rather small at the beginning of the water entry, increases with time. The force predictions
resulting from these pressure distributions are depicted in figure 15(a). Consequently, the
effect of gravity on the force, which is negligible in the first part of the entry, increases
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Figure 13. Evolution of the wetted surface radius during the decelerated water entry of a 15◦ deadrise-angle
wedge (Umax = 0.57 ms−1). The end of the wetted surface (WS) expansion corresponds to the instant at which
the wetted surface width stops increasing. The Wagner model stops being valid at this instant.

in time and affects the suction load. In order to demonstrate the ability of the SAM
to accurately predict the effect of gravity on the force, the gravity contributions to the
total force are depicted in figure 15(b), hence confirming that the differences observed
between the semi-analytical and the numerical results in figure 15(a) are mainly due to
the intrinsic accuracy of the MLM and not to a poor prediction of the effect of gravity.
The results obtained using a lower entry velocity are depicted in figures 16 and 17 in
terms of wetted surface radius and force. The maximum entry velocity is here taken as
Umax = 0.249 m s−1. One can clearly see in figures 16 and 17 that the SAM is able to
accurately predict the reduction of the wetted surface width under the action of gravity
and the increase of the hydrodynamic force, respectively.

7.2. Decelerated water entry of a 15◦ deadrise-angle cone
The results obtained for the water entry of the 15◦ deadrise-angle cone for Umax =
0.57 m s−1 in terms of wetted surface radius, pressure distribution and force are presented
in figures 18, 19 and 20, respectively. The results obtained using a smaller entry velocity
are depicted in figures 21 and 22 in terms of wetted surface radius and force for Umax =
0.249 m s−1. The number of segments on the free surface, Ne, defined in § 3.3.2, was taken
equal to 40. We here took ξmax = 5. Similarly to the two-dimensional case, the wetted
surface radius predicted by the SAM is in good agreement with that predicted by the
numerical model. The differences between the approaches observed in terms of pressure
distribution are a bit more pronounced in the axisymmetric case than they were in the
two-dimensional case. The force results show that the SAM underestimates the maximum
(positive) force which appears at the beginning of the water entry. This difference, which
is already visible in the constant velocity entry case (figure 10a), is amplified in the
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Figure 14. Pressure distribution along a 15◦ deadrise-angle wedge at different time instants
(Umax = 0.57 m s−1). (a) Decelerated water entry with gravity. (b) Decelerated water entry without gravity.
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Figure 15. Force evolution during the decelerated water entry of a 15◦ deadrise-angle wedge
(Umax = 0.57 m s−1). (a) Force evolution as a function of time. (b) Gravity contribution to the force.

decelerated entry case. The gravity contribution to the force acting on the body predicted
by the two approaches, as depicted in figures 20(b) and 22(b), are however in very good
agreement.

8. Conclusions

We have presented an extension to the Wagner model in order to take into account the
effect of gravity during the water entry of two-dimensional and axisymmetric bodies.
For this purpose, the free-surface condition of the Wagner model has been modified
by retaining the terms due to gravity. In the model this modified condition affects both
the computation of the velocity potential (and its derivatives) and the size of the wetted
surface. In two-dimensions the problem is solved using the theory of analytic functions.
In particular, the Wagner problem is reformulated using the displacement potential. For
the axisymmetric case, we use the Sneddon formula derived by Iafrati & Korobkin (2008)
in order to solve the MBVP with non-zero potential at the free surface satisfied by the
velocity potential. The radius of the wetted surface is computed by a boundary element
model adapted from the approach presented in Tassin et al. (2012). In order to simplify

944 A9-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.448


F. Hulin and others

0.05 0.10 0.15 0.20 0.25 0.300

0.05

0.10

0.15

0.20

0.25

t (s)

c(
t) 

(m
)

FNPF, g = 0 m s–2

FNPF, g = 9.81 m s–2

SAM, g = 9.81 m s–2

Start of the exit phase for g = 0 m s–2

Start of the exit phase for g = 9.81 m s–2

SAM, g = 0 m s–2

Figure 16. Evolution of the wetted surface radius during the decelerated water entry of a 15◦ deadrise-angle
wedge (Umax = 0.249 m s−1). The end of the wetted surface (WS) expansion corresponds to the instant at
which the wetted surface width stops increasing. The Wagner model stops being valid at this instant.
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Figure 17. Force evolution during the decelerated water entry of a 15◦ deadrise-angle wedge
(Umax = 0.249 m s−1). (a) Force evolution as a function of time. (b) Gravity contribution to the force.

the computation of the free-surface condition, i.e. the potential at the free surface, we
have proposed an approximation of the free-surface elevation with gravity based on the
free-surface elevation derived from the original Wagner model (without gravity), which
can be computed beforehand for a certain value of the wetted surface width (or radius).
The semi-analytical approach has been implemented for a wedge and a cone, which makes
it possible to develop further the expressions of the free-surface condition. The approach
can however be generalized to arbitrary body shapes (including discretized body shapes),
for example, by computing tabulated values of the free-surface elevation by the Wagner
model for given values of the wetted surface width or radius.
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Figure 18. Evolution of the wetted surface radius during the decelerated water entry of a 15◦ deadrise-angle
cone (Umax = 0.57 ms−1). The end of the wetted surface (WS) expansion corresponds to the instant at which
the wetted surface radius stops increasing. The Wagner model stops being valid at this instant.
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Figure 19. Pressure distribution along a 15◦ deadrise-angle cone at different time instants
(Umax = 0.57 m s−1). (a) Decelerated water entry with gravity. (b) Decelerated water entry without gravity.

Two-dimensional and axisymmetric FNPF simulations have been carried out to validate
the SAM of water impact with gravity. All the simulations have been carried out with
and without gravity in order to highlight the effect of gravity in the simulations. These
comparisons demonstrate that the SAM performs well in terms of pressure distribution
and force predictions on a wide range of wedge and cone water entry cases at constant
velocity (β = 10◦ to 30◦). Our simulations show that it is both important to take gravity
into account when computing the velocity potential and the wetted surface width/radius
in order to compute accurately the pressure distribution and the force. The gravity
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Figure 20. Force evolution during the decelerated water entry of a 15◦ deadrise-angle cone
(Umax = 0.57 m s−1). (a) Force evolution as a function of time. (b) Gravity contribution to the force.
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Figure 21. Evolution of the wetted surface radius during the decelerated water entry of a 15◦ deadrise-angle
cone (Umax = 0.249 ms−1). The end of the wetted surface (WS) expansion corresponds to the instant at which
the wetted surface width stops increasing. The Wagner model stops being valid at this instant.

contribution to the force coefficient for wedges of different deadrise angles has been shown
to be governed by the effective Froude number defined as Fr∗ = Fr/

√
tanβ. The results

obtained for a 15◦ deadrise-angle cone entering water at constant velocity are also very
satisfactory.

The SAM has been also used to investigate the decelerated water entry of a 15◦
deadrise-angle wedge and a 15◦ deadrise-angle cone with gravity, until full stop. The
results show that the SAM is able to predict accurately the effect of gravity during a
decelerated water entry. In particular, similarly to the numerical model, the SAM predicts
that, under the action of gravity, the wetted surface stops expanding while the body is
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Figure 22. Force evolution during the decelerated water entry of a 15◦ deadrise-angle cone
(Umax = 0.249 m s−1). (a) Force evolution as a function of time. (b) Gravity contribution to the force.

still moving downward. The results obtained from the SAM are less accurate for the cone
than for the wedge. In particular, our results show that the maximum (positive) force at
the beginning of the decelerated cone water entry is underestimated by the SAM, both
with and without gravity. The gravity contribution to the force coefficient is however well
captured by the SAM, both in the two-dimensional and axisymmetric cases.
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Appendix A. Derivation of the velocity potential and of its x-derivative

A.1. Derivation of the velocity potential accounting for gravity (2.7)
In order to solve (2.6), let us introduce the complex potential Φ1 defined as

Φ1(ξ) = ϕ(x, z)+ iψ(x, z), (A1)

where ϕ is the velocity potential solution of (2.6) and ψ is the streamfunction defined such
that ϕ and ψ satisfy the Cauchy–Riemann equations. Potential Φ1 is therefore analytic
and the results on analytic functions can be applied to Φ1. Let us now introduce the new
unknown analytic function H1 defined as

H1(ξ) = Φ1(ξ)√
ξ2 − c2

, (A2)
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where ξ = x + iz. The values of the characteristic function
√
ξ2 − c2 on the real axis (z =

0) are given by √
ξ2 − c2 = −

√
x2 − c2, x < −c, z = 0, (A3a)√

ξ2 − c2 =
√

x2 − c2, x > c, z = 0, (A3b)√
ξ2 − c2 = −i

√
c2 − x2, |x| < c, z = 0−, (A3c)√

ξ2 − c2 = i
√

c2 − x2, |x| < c, z = 0+. (A3d)

The real part of H1 on the real axis is given by

Re[H1(x + i0−)] = −ϕ(x, 0)√
x2 − c2

, x < −c, (A4a)

Re[H1(x + i0−)] = −ψ(x, 0)√
c2 − x2

, |x| < c, (A4b)

Re[H1(x + i0−)] = ϕ(x, 0)√
x2 − c2

, x > c. (A4c)

Moreover, H1 = O(|ξ |−2) as |ξ | → ∞. Thus, H1 satisfies a MBVP whose solution is given
by Hilbert’s formula as

H1(ξ) = i
π

∫ +∞

−∞
Re[H1(τ + i0−)]

τ − ξ
dτ. (A5)

By applying the Sokhotsky–Plemelj’s formula, one obtains the limit of H1 at z = 0− as

H1(x + i0−) = Re[H1(x + i0−)] + i
π

−
∫ +∞

−∞
Re[H1(τ + i0−)]

τ − x
dτ, (A6)

where the dashed integral sign denotes the Cauchy principal value. Using (A3) and (A2),
H1 can also be written as

H1(x, 0−) = iϕ(x, 0−)√
c2 − x2

− ψ(x, 0−)√
c2 − x2

, |x| < c. (A7)

By identifying the real and imaginary parts, one obtains

ϕ(x, 0−) =
√

c2 − x2

π
−
∫ +∞

−∞
Re[H1(τ + i0−)]

τ − x
dτ

=
√

c2 − x2

π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ −c

−∞
−ϕ(τ)√

τ 2 − c2(τ − x)
dτ︸ ︷︷ ︸

I1(x)

+−
∫ c

−c

−ψ(τ)√
c2 − τ 2(τ − x)

dτ︸ ︷︷ ︸
I2(x)

+
∫ +∞

c

ϕ(τ)√
τ 2 − c2(τ − x)

dτ︸ ︷︷ ︸
I3(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (A8)
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where I2(x) = −πv/2. Rearranging I1 and I3, one obtains the velocity potential in the
form of (2.7).

A.2. Derivation of the x-derivative of the velocity potential accounting for gravity
Let us introduce the complex velocity potential φ2 defined as

φ2 = ϕ,x(x, z)− iϕ,z(x, z) (A9)

and function H2 defined as

H2(ξ) = φ2(ξ)

√
ξ2 − c2. (A10)

The real part of H2 on the real axis is

Re[H2(x + i0−)] = ϕ,x

√
x2 − c2, x > c, (A11a)

Re[H2(x + i0−)] = −ϕ,x
√

x2 − c2, x < −c, (A11b)

Re[H2(x + i0−)] = −ϕ,z
√

c2 − x2, |x| < c. (A11c)

Using Hilbert’s formula and Sokhotsky–Plemelj’s formula as in the previous section, we
obtain ϕ,x on the wetted surface,

ϕ,x(x, z) = −1

π
√

c2 − x2

∫ +∞

−∞
Re[H2(τ + i0−)]

τ − x
dτ

= −1

π
√

c2 − x2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ −c

−∞
−√

τ 2 − c2ϕ,x(τ )

τ − x
dτ︸ ︷︷ ︸

I1(x)

+−
∫ c

−c

−√
c2 − τ 2ϕ,z(τ )

τ − x
dτ︸ ︷︷ ︸

I2(x)

+
∫ +∞

c

√
τ 2 − c2ϕ,x(τ )

τ − x
dτ︸ ︷︷ ︸

I3(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , x < c, z = 0, (A12)

with I2(x) = −πxv for a rigid body. Rearranging I1(x)+ I3(x) leads to

ϕ,x(x, z) = xV√
c2 − x2

− 2x

π
√

c2 − x2

∫ +∞

c

√
τ 2 − c2

τ 2 − x2 ϕ,x(τ ) dτ, |x| < c, z = 0.

(A13)
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Appendix B. Modified Wagner condition with gravity in two dimensions

In order to derive the modified Wagner condition, let us introduce the new unknown
analytic function H4 defined as

H4(ξ) =
√
ξ2 − c2[φ,x(ξ)− iφ,z(ξ)], (B1)

where φ is the displacement potential solution of (2.13). Using (A3), one obtains the real
part of H4 on the real axis,

Re[H4(x + i0−)] = −φ,x
√

x2 − c2, x < −c, (B2a)

Re[H4(x + i0−)] = −φ,z
√

c2 − x2, |x| < c, (B2b)

Re[H4(x + i0−)] = φ,x

√
x2 − c2, x > c. (B2c)

Given that φ,x(ξ) = O(|x2 + z2|−1), we have H4(ξ) →
ξ→∞

0. The imaginary part of H4 on

the x-axis is given by

Im[H4(x + i0−)] =
√

x2 − c2φ,z(x, 0), x < −c, (B3a)

Im[H4(x + i0−)] = −
√

x2 − c2φ,z(x, 0), x > c. (B3b)

The solution of this MBVP on the x-axis is

H4(x + i0−) = Re[H4(x + i0−)] + i
π

∫ +∞

−∞
Re[H4(τ + i0−)]

τ − x
dτ. (B4)

By identifying the imaginary part of the potential on both sides of (B4), the vertical
displacement can be expressed as

φ,z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
x2 − c2

1
π

∫ +∞

−∞
Re[H4(τ + i0−)]

τ − x
dτ, x < −c,

− 1√
x2 − c2

1
π

∫ +∞

−∞
Re[H4(τ + i0−)]

τ − x
dτ, x > c.

(B5)

Enforcing the condition that the displacement must be finite in x = c−, which is equivalent
to the Wagner condition, one gets the following condition:∫ +∞

−∞
Re[H4(τ + i0−)]

τ − c
dτ = 0. (B6)

This integral can be rearranged in the following form:∫ +∞

−∞
Re[H4(τ + i0−)]

τ − c
dτ =

∫ −c

−∞
−φ,x(τ )

√
τ 2 − c2

τ − c
dτ︸ ︷︷ ︸

J1

+
∫ c

−c

−φ,z(τ )
√

c2 − τ 2

τ − c
dτ︸ ︷︷ ︸

J2

+
∫ +∞

c

φ,x(τ )
√
τ 2 − c2

τ − c
dτ︸ ︷︷ ︸

J3

. (B7)
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Rearranging the sum J1 + J3 into one integral from c to +∞ and making the substitution
τ = c/ sin(γ ), one obtains

J1 + J3 = 2c
∫ π/2

0

φ,x

(
c

sin γ

)
sin γ

dγ. (B8)

Rearranging J2 into an integral from 0 to c and making the substitution τ = sin γ , one
obtains

J2 = 2c
∫ π/2

0
( f (c sin γ )− h(t)) dγ. (B9)

The Wagner condition accounting for gravity (2.14) is obtained.

Appendix C. Derivation of the effective Froude number

In order to evaluate the relative importance of gravity on the force acting on a wedge
entering water with a constant velocity, it is convenient to have a closed-form expression
for the wetted surface width and the force acting on the wedge. In this appendix two
fully analytical equations are given to express these quantities. These equations rely on
the earlier assumption that the wetted surface elevation, η, can be approximated by its
analytical expression when gravity is not considered. Moreover, a new approximation
is made regarding the time history of the wetted surface. We here compute the velocity
potential on the free surface by assuming that the wetted surface is equal to that provided
by the original Wagner model, i.e. c(t) = c(w)(t).

C.1. Non-dimensionalization of the force
Making use of these two assumptions, the velocity potential on the free surface can be
written as

ϕ(x, t) ≈ −2g tanβ
π

∫ t

0
η(w)(x, τ ) dτ

= −2g tanβ
π

∫ t

0

⎛
⎝arcsin

c(w)(τ )
x

− c(w)(τ )√
x2 − c(w)2

⎞
⎠ dτ, |x| > c

= −2g tanβ
πċ(w)

(
x
√

x2 − c(w)2 − c(w)2

2
+ c(w)x arcsin

(
c(w)

x

)
− x2

)
. (C1)

The velocity potential is now rewritten as the sum of a gravitational and a non-gravitational
potential: ϕ = ϕ(w) + ϕ(g). The gravitational part, ϕ(g), which is given by (2.7), can be
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written on the wetted surface as

ϕ(g)(x, t) = 2
π

√
c2 − x2

∫ +∞

c

ξϕ(ξ, t)√
ξ 2 − c2(ξ 2 − x2)

dξ

= −4gc2 tanβ
ċπ2

√
1 −

(x
c

)2
∫ 1

0

(√
1 − ζ 2 − ζ 2

2
+ ζ arcsin ζ − 1

)

ζ 2
√

1 − ζ 2

(
1 − x2ζ 2

c2

) dζ

︸ ︷︷ ︸
f1(x/c)

, |x| < c,

(C2)

where ζ = c/ξ and f1 is a non-dimensional function independent of β and gravity. The
time derivative of the gravitational part of the velocity potential can thus be written as

ϕ
(g)
,t (x, t) = −4gc tanβ

π2

(
2f1(x/c)− x

c
f ′
1(x/c)

)
︸ ︷︷ ︸

g1(x/c)

, |x| < c. (C3)

The x-derivative of the gravitational part of the velocity potential reads as

ϕ(g),x (x, t) = −4gc tanβ
ċπ2 f ′

1(x/c), |x| < c. (C4)

Making use of the MLM under the form given in Tassin et al. (2013), the contribution of
gravity to the force acting on the body can be written as

F(g)/ρ = −2
∫ c(w)

0

⎛
⎝ϕ(g),t + ϕ

(g)
,x

2

2(1 + tan2 β)
+ ϕ

(g)
,x ϕ

(w)
,x

1 + tan2 β
+ gz

⎞
⎠ dx

= −8gc(w) tanβ
π2

∫ c(w)

0
g1(x/c(w)) dx

− (4gc(w) tanβ)2

(ċ(w)π2)2(1 + tan2 β)

∫ c(w)

0
f ′2
1 (x/c

(w))︸ ︷︷ ︸
g2(x/c(w))

dx

+ 8gc(w) tanβv
ċ(w)π2(1 + tan2 β)

∫ c(w)

0

x/c(w)√
1 − x2/c(w)2

f ′
1(x/c

(w))

︸ ︷︷ ︸
g3(x/c(w))

dx

− 2g
∫ c(w)

0
(x tanβ − h) dx, (C5)

F(g)/ρ = −2gv2t2

tanβ

∫ 1

0
g1( y) dy − 16g2t3v tanβ

π3(1 + tan2 β)

∫ 1

0
g2( y) dy

+ 4gv2t2

π(1 + tan2 β)

∫ 1

0
g3( y) dy − g

v2t2

tanβ

(
π − π2

4

)
. (C6)
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Thus, the contribution of gravity to the non-dimensional force coefficient F̄(g) =
F(g) tan2 β/(ρv3t) reads as

F̄(g) = −2 tanβ
Fr2

∫ 1

0
g1( y) dy − 16

π3
tan3 β

Fr4(1 + tan2 β)

∫ 1

0
g2( y) dy

+ 4
π

tan2 β

Fr2(1 + tan2 β)

∫ 1

0
g3( y) dy − π2

4
tanβ
Fr2 . (C7)

The leading-order terms of F̄(g), which are the first and last ones in (C7), appear to
be proportional to (Fr∗)−2. The gravity contribution to the force coefficient computed
numerically and analytically is represented as a function of (Fr∗)−2 in figure 6(b). The
curves are close to a straight line which is consistent with the fact that the leading-order
terms are proportional to (Fr∗)−2.

C.2. Non-dimensionalization of the wetted surface
We now derive an approximate analytical expression for the wetted surface width
accounting for gravity. This allows us to obtain the non-dimensional wetted surface
half-width as a function of the effective Froude number only and to show that the wetted
surface half-width for wedges of different deadrise angles is governed by the effective
Froude number. In order to do so, we approximate the x-derivative of the displacement
potential, φ,x, which appears in the Wagner condition (2.14), by assuming that the wetted
surface elevation is not altered under the effect of gravity. Integrating the velocity potential
obtained in (C1) with respect to time, the displacement potential on the free surface is
obtained as

φ,x(x, z, t) ≈ −8g tan3 β

π3v2

(
arcsin

(
c(w)

x

)(
c(w)2

2
+ 3

4
x2

)

+5
4

c(w)
√

x2 − c(w)2 − 2c(w)x

)
, |x| > c(w), z = 0. (C8)

The Wagner condition leads to (2.14) which can be written as

∫ π/2

0
(f (c sin γ )− h(t)) dγ +

∫ π/2

0

φ,x

(
c

sin γ
, t
)

sin γ
dγ = 0. (C9)

Substituting (C8) into the second term of this last equation, this term can be rewritten as

∫ π/2

0

φ,x

(
c

sin γ
, t
)

sin γ
dγ =

∫ +∞

c

φ,x(x, t)√
x2 − c2

dx

= −c2 8g tan3 β

π3v2

∫ 1

0
ξ3

(
3/4 + ξ2/2

)
arcsin ξ + 5ξ

√
1 − ξ2/4 − ξ√

1 − ξ2
dξ︸ ︷︷ ︸

I

. (C10)
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Figure 23. Evolution of the wetted surface half-width on a wedge with a 15◦ deadrise angle penetrating water
at constant velocity.

The first term in (C9) is simply

∫ π/2

0
( f (c sin γ )− h(t)) dγ = c tanβ − π

2
h(t). (C11)

We are now able to express (C9) as an equation on the current value of c solely,

− 8gI tan3 β

π3v2 c2 + tanβc − πh(t)
2

= 0. (C12)

Solving this equation thus leads to an approximate expression for the half-wetted surface
accounting for gravity. The solution to this quadratic equation writes as follows:

c ≈
1 −

√
1 − 16I

π2Fr∗2

16Ig tan2 β

π3v2

. (C13)

The evolution of c obtained with this equation is plotted in figure 23 for a constant entry
velocity and a deadrise angle of 15◦. The accuracy of (C13) is lower than the accuracy
obtained with the numerical resolution of (2.15). However, (C13) suggests that the wetted
surface non-dimensionalized by v2/(g tan2 β) should depend only on the effective Froude
number, which was verified in figure 7 (§ 5.3). For illustration, the half-wetted surface
obtained through (C13) is compared in figure 23 to the evolutions with and without gravity
obtained with the SAM and the FNPF solver.
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