6. OPTICAL POLARIZATION OBSERVATIONS

A. Behr

7. RADIO POLARIZATION OBSERVATIONS; FARADAY ROTATION

F. R. Shakeshaft

Three lines of work are covered: i. Faraday rotation of the plane of polarized radiation from extra-galactic radio sources, 2. Linearly polarized radiation from the Galaxy, 3. Zeeman splitting of $21-\mathrm{cm}$ absorption lines.
I. It is found that the radiation from extra-galactic radio sources is to some extent linearly polarized at microwave frequencies, a fact which is entirely consistent with the radiation being due to the synchrotron mechanism. In most cases the position angle of the electric vector varies as λ^{2}, implying that the rotation is due to the Faraday effect. For this:

$$
\theta=0.8 \mathrm{r} \lambda^{2} \int N B_{\|} \mathrm{d} L
$$

where $\theta=$ angle of rotation (radians)
$\lambda=$ wavelength (metres)
$N=$ electron density $\left(\mathrm{cm}^{-3}\right)$
$B_{\mathrm{il}}=$ longitudinal component of magnetic field (microgauss)
$\mathrm{d} L=$ path length (parsecs).
The quantity θ / λ^{2} measures a property of the medium and is termed (\mathbf{r}) 'rotation measure' (RM). Sources lying near the galactic plane tend to have large RM's (particularly if $|b|<10^{\circ}$), indicating that much of the rotation occurs in our Galaxy ($\mathbf{I}, \mathbf{2}$). A typical RM of $40 \mathrm{rad} \mathrm{m}^{-2}$ requires, for example, $L=10^{4} \mathrm{pc}, B_{\|}=5 \mu \mathrm{~g}$ and $N=10^{-2} \mathrm{~cm}^{-3}$. Morris and Berge (2) have also noted a grouping of sources with RM's of the same sign (Fig. i) in such a manner that

Fig. 1. Variation of the sign of the rotation measure with galactic co-ordinates. Crosses indicate positive RM; dots, negative RM. (Morris and Berge (2)). Positive RM means that the field is towards the observer.

