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Abstract
Properties of solutions of

(I) xM + H(t,x) = Q(t), neven,

are studied in the case uH(/, «) > 0 for « # 0. It is shown that two inequalities
may always be associated with (I) in such a way that if one of these
inequalities has a small positive solution and the other inequality has a small
negative solution, then (I) is oscillatory. Further asymptotic properties of
(I) are studied under assumptions involving intermediate antiderivatives
PH){t), with P{n) = Q. Several results of this type ensure the non-existence of
positive solutions of (I).

Subject classification (Amer. Math. Soc. (MOS), 1970): primary 34 C 10

1. Introduction

Kartsatos (1971) initiated the study of oscillation criteria concerning the solutions
of forced equations of the form

(I) x™ + H(t, x) = Q(t), n even,

where xH{t,x)>0 for all (t,x), H is increasing in the second variable, the homo-
geneous (I) is oscillatory, and Q is oscillatory and "small" in a certain sense. Only
superlinear equations were considered in Kartsatos (1971), while in a later paper
(Kartsatos, 1972) the author considered periodic-like and oscillating forcings Q{t).
Some results were also given by Teufel (1972) but for n = 2. The above results of
the author were extended by Kusano and Onose (1974), True (1975), Foster
(1976a, b), Staikos and Sficas (1975a, b) and Onose (1973). Atkinson (1972/3) also
extended most of the above results of the author but for n = 2. The main oscillation
result of Atkinson was shown to hold in the general case by Kartsatos (to appear)
(cf. also Onose, 1975). Several results on forced or perturbed equations have also
been recently obtained by Kartsatos (1976a, b, c), Kartsatos and Manougian
(1974, 1976), Graef and Spikes (to appear) and Graef (to appear). For a recent
survey of results on the subject the reader is referred to Kartsatos (to appear).
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[2] Even order equations 235

The main purpose of the present paper is to study the behaviour of non-
oscillatory solutions of (I). For example, two inequalities are associated with (I),
and we show that if one of them has a small positive solution and the other one
has a small negative solution, then (I) is oscillatory if the homogeneous (I) is
oscillatory. In general, it is quite a difficult problem to find such solutions of both
these inequalities. As a side-result, we obtain that if only one of these inequalities
is satisfied, then the existence of one of the above kinds of nonoscillatory solutions
is excluded.

We should mention now that the existence of a small positive solution of a
differential equation (and hence inequality) could be suggested by physical
considerations like, for example, the ones in Nehari (1963).

Several other results are also obtained depending on further properties of the
forcing Q(t).

2. Preliminaries

In what follows, n will always be an even integer with «^4, T a nonnegative
number, RT = [r,oo), R — (—00,00) and R+ = [0,oo). By a solution of (I) we mean
any function x(t), t ̂  tx, which is n times continuously differentiable and satisfies
(I) on the interval [tx,co). Here tx^T depends on the particular solution under
consideration. A function/: [a,oo)->R, a^T, is said to be "oscillatory" if it has
an unbounded set of zeros on [a, 00). (I) is said to be "oscillatory" if every solution
of it is oscillatory. (I) is "5-oscillatory" if every bounded solution of it is oscillatory.

We now state an auxiliary lemma, a stronger version of which was established
by Kartsatos (1975).

LEMMA A. Consider the equation

and the inequality

(2.1)

where H: RTxR0-*R+ (R0=[u0,o6),u0>0) is continuous and increasing with
respect to x. Then the existence of a solution (bounded solution) x(t) of (2.1) with
xitj) = u1'^u0 for some t^T and x'(t)^0, te[tr,00), implies the existence of a
solution (bounded solution) of(IH) with y(t2) = ux andy'(t)^O, te[t2,00), for some

Now let us show that under the assumptions of this lemma, the existence of a

solution JC(O of the inequality

(2.2) xM + H(t,x)>0

with x(t)<0, x'(t)^O eventually, implies the same fact for (IH) i f /Hs sufficiently
defined for negative x. In fact, let u(t)= —x(t), t^tv Then u(t) is a positive solution
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236 Athanassios G. Kartsatos [3]

of the inequality

(2.3) u™-H(t, - K ) < 0 .

However, applying Lemma A to the function —H(t, —x) we obtain that the
equation

(2.4) »«»>-#(*,-p) = 0

has a solution v(t) such that v(t)>0,v'(t)^0 eventually. Letting w(t)s —v(t) in
(2.4) we have our assertion.

In what follows the functions Q: RT-*R, H: RTxR->R will be assumed
continuous. Moreover, H will be increasing in the second variable and such that
uH(t, u) > 0 for all (t, u)eRTxR with

3. Main results
We shall say that the function H satisfies Hypothesis (S) if H(t, u) is strictly

increasing in u and such that for every teRT and every /x^/^eU with

where A: is a constant depending on /^i,/x2 and such that

THEOREM 3.1. Let H satisfy Hypothesis (S). Moreover, let the equation

(3.1) xin)+fiH(t,x) = 0

be oscillatory (B-oscillatory) for every /x>0.
Let the inequality

(3.2) X™+H(t,x)^Q(t)

have an eventually positive solution x^t), and the inequality

(3.3) X™+H(t,x)>Q(t)

have an eventually negative solution xz(t) such that

(3.4) lim Xj(i) = lim x2(t) = 0.
t-KO f-WO

Then (I) is oscillatory (B-oscillatory).

PROOF. Let x2(t)<0, t^t^T, satisfy (3.3), and let (3.1) be oscillatory. Then
the function u(t)=x(t)—x^it), t^tx, for some positive solution x(t) of (I), satisfies

(3.5) «<»>(*)+H(t, u(t)+x2(t)) - H(t, xa(0) ̂  0.

Let us assume that «(0>0> t^t^t^ Then H(n)(0<0 for /5=f2, and since « is
even, it follows that «'(?)>0 for all large /, say for t^t3^tz. Now choose e>0 so
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[4] Even order equations 237

that e < u(t<d/2, and | x2(t) | < e for every t > (some) f4 > t3. Then from (3.5) we obtain

(3.6) *»>«) +H{t,u(t)-*)-H(t,e)

< «<»>(/) + H{t, u(t)+x2(t)) - H(t, x2{t)) < 0, t> h.

Moreover, u(t)—2e>u(Q-2e>0 for all f*5f4. Consequently,

(3.7) H(t,u(0-s)-H(t,e)>0, t>tt.
Now letting u(t)=u(t)—e in (3.6) we obtain that v(t), f > f4, is a positive solution

to the inequality

(3.8) v™+H(t,v)-H(t,e)^0, t>tb

and such that v'(t) > 0, t > f4 and i>(/) > e for every t^tA. From Lemma A it follows
now that this is also true (say for t > ̂  for the equation

(3.9) z(m>+if(/, z) - H{t, e) = 0.

Let z(t) be such a solution of (3.9) with z(t), z'(t)>0 for t^tt and z(/4)>£.
Then, since H(t, x) is strictly increasing in x, letting /* = 1 - k(e, z(tj) < 1 we obtain
that the equation

(3.10) w<»> + [1 - [H{t, e)/H(t, z(t))]] H(t, w) = 0

has a positive solution z(t), t ̂  tit with the coefficient of H(t, w(t)) bounded below
by the constant /x. Since (3.1) is oscillatory for every /i>0, an application of the
comparison theorem in Kartsatos (1975), Theorem 2.1 (cf. also Kartsatos, to
appear) yields that (3.10) must also be oscillatory, which is a contradiction. It
follows that there exists a sequence {?„,}, m= 1,2,..., such that h'mm^00tm = oo
and x(tnd<xi(tm)<0, m= 1,2,..., which contradicts the positiveness of x(t). A
similar proof covers the case of a positive solution xt(t), and the case of (3.1)
being JS-oscillatory. We omit these arguments.

As pointed out in the introduction, it is usually difficult to find both functions
Xi(t),x2(t). However, finding only one of these functions is a much easier task,
and this would of course ensure the nonexistence of positive or negative solutions
of (I). Let us consider an example to illustrate this last assertion:

(3.11) x(4m) + r°< | x Y sgn x = (J+sin /) *~r.

Here m is a positive integer, l<a<4m— 1,J9>1 and 1 < y < Am +1. It turns out
that the function

satisfies the inequality

(3.12) Jc1
(4"l)(0 + <~a*?(0<£+sin*)'~/' for all large t.

Thus (3.11) does not have any negative solutions.
The oscillation of (3.1) here follows from known results (cf., for example

Kartsatos, 1971).
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238 Athanassios G. Kartsatos [5]

From the proof of the above theorem we can obtain now some other results
which we formulate here as corollaries but only for positive solutions of (I), leaving
to the reader the dual statements for negative solutions.

COROLLARY 3.1. Let the assumptions on H, Q of Theorem 3.1 be satisfied. Let
xt(t) be a solution of (3.2) with lim^^ xx{t) = 0. Then every eventually positive
{bounded and positive) solution x(t) of (I) satisfies lim,,^ inf x(t) = 0 if (3.1) is
oscillatory (B-oscillatory) for every ju>0.

COROLLARY 3.2. Let the assumptions on H, Q of Theorem (3.1) be satisfied. Let
xx(t) be an eventually positive solution o/(I) with Wm^^x-^t) = 0. Assume that jea(f)
is another solution of (I) with the same property. Then Xj(t) — x2(t) is an oscillatory
function provided that (3.1) is B-oscillatory for every /x>0.

The reader is referred to the paper of Kartsatos (1976b) where conditions are
imposed on H, Q so that the above function xx(t)—xd(t) is identically equal to
zero for all large t. The conclusion there is that (I) can have at most one positive
solution.

In the following two theorems upper or lower appraisals are obtained for
positive solutions of (I). The reader should keep in mind that, under dual hypotheses,
similar results hold for the negative solutions.

THEOREM 3.2. Let P: RT->R+be continuous and such that P(i)(t)s Q(t), where j
is an odd positive integer with l^j^n—1. Moreover, let P(t) have an antiderivative
Pi(t)> t^T, such that lim^^ P^/t = 0. Then every eventually positive solution
*(0 °/(I) *'* increasing and such that xln~i)(t)> P(t) for all large t.

PROOF. Let x(t) be a solution of (I) such that x(t) >O,t^t1^T. Then we have

(3.13) [x(»-'>(0 -P ( / ) ] w = - H{t, x(t)) < 0

for every t^tv Consequently, the function u{t)=x{n~}){t)—P{t) is either positive
or negative for all large t. Suppose the latter is true. Then since j is odd, we must
also have u'(t)<0 for all large t. Thus, there is t2^tx such that u(t)<u(Q<0 for
all t > t2. Integrating this last relation we find

for every t ̂  t2. This however, along with the fact that lim^o, P-^jt = 0, implies
= — oo, a contradiction to the positiveness of *(/)• Thus,
for all large t. Since, again, n-j is odd, it follows that x'(t)>0

for all large t, and this completes the proof.
Let us remark now that no conditions were placed on (IH) concerning its

oscillation. Actually, the above theorem concerns itself with the case x{n) < Q(t)
because we only used here the sign of H. However, its usefulness will become
apparent in Theorem 3.4. We present an example just for illustration purposes.
(3.14)
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[6] Even order equations 239

Here we have P(/)s2r»+[r4sinf]"r, pii0= - r » + [/-*sin/]'. P*(0=<2(0-
It follows from the above theorem that every positive solution x(t) of (3.14)
satisfies xm(t)>2t-3+tp(t) for all large t, where <p(t) = ait-4).

In the following theorem an even antiderivative of Q{t) is used to ensure upper
bounds.

THEOREM 3.3. Let (1H) be oscillatory. Moreover, letP:RT-+R satisfy Pik\t) = Q(t),
where k is an even integer with 2^k^n—2. Let lim^a,P(t) — 0 and assume the
existence of an antiderivative Px(?) of Pit) such that lim^^P^f) = oo. Then if x(t)
is an eventually positive solution of (I), it satisfies xln~k)(t)<P(t)for all large t, and

PROOF. Let x(t) be a solution of (I) such that xit)>0, t^t^T. Then as in
Theorem 3.2, the function ix(t)=xln-k(t)-P(t), t^tx, satisfies /*(*>(f)<0 for all
t>tv Thus n(t) is monotonic eventually. Let fi{t)>O,t^ti^t1. Then since k is even
and nlk)(t)<0, we must also have p'(t)>0 for all t> (sav)f2. Now let e be given
with 0<e<n(t^)l2. Then there exists t3^t2 such that [P(/)|<e for every t^t3.
It follows that

(3.15)

Now integrating the function fj.(t)=xin~k)(t)~P(t) n—k times we obtain

(3.16) x(t) = p(/)+ ( ( l . . . ("'"lHs)+P(s)]dSdsn_k.1...dsx,
.'(4 '(4 J t

where t^t3 has been chosen so that JCW >(0>0 for all t^tt and O^j^n—k— 1.
This is possible because Ura^^P^t) = +00. In (3.16) y>(<) is given by

(3.17) p(0 = "lT1[0- '4)3 / / ! ]^ ) ( '4)^0) *>r4.

Thus, x(f) in (3.16) is properly bounded below by the multiple integral for all
t~& tt. Now inserting fi(t) in (I) and taking into consideration (3.15) we obtain

(3.18) /*<*>(*)+ # ( ' .

for all tsiti. Now let w(f) be the multiple integral above. Then

(3.19) w<»»(/) + H{t, w(f)) < 0

with w(t) increasing and positive for every t ̂  t4.
Lemma A, however, implies now the existence of a positive solution of (1H),

a contradiction. Thus, xln~k)(t)~P(t) < 0 for all large t. Now let l im,^ /*(;) = L < 0.
Then we can show as in Theorem (3.2) that one integration of fi(t) and the property
lim,.,,,, ̂ (0/* = 0 imply the contradiction ]imt^a>x(t) = -00. Thus L = 0 and the
theorem is proved.
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Let us show now how the lower bounds for the possible eventually positive
solutions in Theorem 3.2 can be employed to formulate criteria for the nonexistence
of positive solutions.

THEOREM 3.4. Let the assumptions of Theorem 3.2 be satisfied with P1(t)->+co
as t->+co.

Then the conditions

[' Q(s) ds^L, [ ™H(t, ktn~^) dt = + oo
J T J T

for every k>0 and some constant L, imply that (I) cannot have an eventually
positive solution.

PROOF. Let x(t) be a solution of (I) such that x(t) >O,t^t1^T. Then Theorem 3.2
implies the existence of t^tx such that xln~i)(t)>P(t). Thus,

for every t ̂  t2. It follows that given k > 0, there exists tz > t2 such that x{n-j~X)(t) ^ k
for every t>t3. Continuing the same way, we obtain x(f) ̂ /*f""'--1 for some
and every t^tt^t3. Thus from (I) we obtain

"-"(O-^—MCO = - f'H(s,x(s))ds+ [l(3.20) ^"-"(O-^—MCO = - f'H(s,x(s))ds+ [lQ{s)ds
J J

where Ly is some positive constant. Obviously, the desired contradiction:
lim^a, x(t) = — oo follows from (3.20) by taking limits as f->oo.

COROLLARY 3.3. Let the assumption of Theorem 3.2 be satisfied. Moreover, let

rH(t,k)dt = +oo, f' Q(s)ds^L
J T J T

for some constant L and every k>0. Then (I) does not have any positive solution.
The proof follows the steps of Theorem 3.3 with the only difference that x(t)

is now bounded below by a positive constant for all large t.

COROLLARY 3.4. Let the assumptions of Corollary 3.1 and Theorem 3.2 be satisfied
with (3.1) oscillatory (B-oscillatory). Then there is no eventually positive (bounded
and positive) solution of equation (I).

In fact, Corollary 3.1 ensures that lim^^ inf x(t) = 0 for any eventually positive
(bounded and positive) x(t), and Theorem 3.2 says that ^(n~3)(f)^0 eventually.
This last inequality implies x'(t)^0 for all large t, a contradiction.
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Let us now make the rather interesting remark that if lim^00P(/) = 0 in Theorem
3.2, then we do not need to add the hypothesis lim,.^ J\(f )/* = 0. In fact, if u(t^) < 0
for some t2, with u(t) as in the proof of Theorem 3.2, then

for all t^t2, which implies x(m-J>(0 < u{Q + e < 0 for all /Ss (some)f3^f2, and
some £>0. This implies again lim,^ JC(/) = — oo, a contradiction.

Now we apply these considerations to a second-order problem ensuring the
nonexistence of positive solutions of the equation

(3.21) [p(t)x']'+H(t,x) = Q(t).

This result is related to a theorem of Hammett (1971) and is not contained in
any of the results of Atkinson (1972/3).

THEOREM 3.5. For the equation (3.21) assume that p: RT^-R+\{0}, continuous
and such that

I. [ds/p(s)] = +oo.
T

Moreover, let for every k>0 and t^T,

(3.22) f"Hit, k) dt = + oo, - f °°0(s)ds > 0
JT Jl

where the second integral is assumed to converge.
Then (3.21) does not have any eventually positive solution.

PROOF. Let us first note that under the above conditions the homogeneous (3.21)
is oscillatory. This follows as in the second theorem of Bhatia (1966). Bhatia
assumed that g'(x) > Of, but this assumption can be dropped by use of suitable
Reimann-Stieltjes integrals. Now let the second integral in (3.22) be positive, and
let x(t) be a solution of (3.21) such that x(t)>0, t^t^T. Then we have

(3.23) [/>(') At) + j™Q(s) dsj = - H(t, x(t)) < 0

for t^tv Consequently, the function v(t) inside the brackets is decreasing for
t > tv Let t2 ̂  tx be such that v(Q < 0 and let e be such that

- Q(sds)<e<-v(t2)

for all t^tz^t2. Then we have

(3.24) x'(t) < WO + e]/p(t) < [»&) + e]/p(t),

t Bhatia considered the case H=q(t)g(x) wit
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242 Athanassios G. Kartsatos [9]

One integration of (3.24) from t3 to t^ta yields the contradiction x(t)->—co
as t-+co. It follows that

(3.25) x'(t)>-[l/p(t)]j™Q(s)ds>0, t>tx.

Thus x(t)>x(tJ>0 for t^tv Now integrate (3.21) from tx to t^tx to obtain

(3.26) p(t)xXi)^p{tJx'(tJ- (tH(s,x(t1))ds+ ('<2(s)ds.
Jh Jh

Taking limits above as t->co we obtain lim,^ p(t)x'(t) = — oo, which leads to
a contradiction as in (3.24). A similar proof covers the case of an eventually
negative solution, and is therefore omitted.

The proof of the above theorem indicates clearly that its conclusion can be
immediately obtained for equations of the form

[Pn-liO 1-lpJit) [Pl(t)x
l]'...]']' + H{t,x) = (3(0,

wherepf RT->R+\{0}, continuous, and such that

I. j)] = +oo , j= 1,2, . . . , n - l .
T

This is actually the reason for presenting its proof because (3.21) can be put back
into the form (I) for n = 2 by letting

JT

4. Discussion

It is evident from Theorem 3.1 that a certain amount of information about
equation (I) can be obtained from suitable solutions of the inequalities (3.2), (3.3).
It turns out that much more information has already been and can be obtained
from the study of an «th antiderivative of Q(t). However, this simple consideration
of a function P(t) with Pln)(t)=Q(t) is balanced in the case of the inequalities
(3.2), (3.3) by the fact that in many cases we can exhibit solutions of either one of
these inequalities, whose behaviour resembles that of solutions of (I) much more
than the behaviour of P(t). Thus, it seems that it is worthwhile looking further
into the inequalities (3.2), (3.3).

If we take a closer look at the types of forcings Q(t) in Theorem 3.2 and its
corollaries we will realize that Q(t) should be an oscillatory function if (JH) is
oscillatory. In fact, since j is odd, Q(t) cannot be a positive function. If this was
true, then P(t) should be increasing and positive, which contradicts lim,_>00P(/) = 0
and lim^^ P1(/)/f = 0. On the other hand, if Q(t) is negative and (IH) is oscillatory,
then (I) does not have any positive solutions. This follows trivially from Lemma A.

https://doi.org/10.1017/S1446788700020231 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020231


[10] Even order equations 243

The nth antiderivative of Q(t) was used by Kartsatos (1971, 1972, 1975) and for
n = 2 by Atkinson (1972/3). It would be very interesting to know any oscillation
criteria based on the intermediate antiderivatives of Q(t). It would also be very
interesting to obtain some criteria ensuring the monotonicity of all nonoscillatory
solutions of (I).

Let us now notice that if there exists a positive function P(t) such thatP(n)=Q(t),
teRT, and

r r ... r
JT JUn-i Jui

for all t^T, then (I) has at least one positive solution x(t) denned on [T,co), and
satisfying x(i)<P(t), t^T. This fact follows as in Atkinson (1972/3), Lemma 2,
and we omit the proof.

References
F. V. Atkinson (1972/3), "On second order differential inequalities", Proc. Royal Soc. Edinburgh,

72, 109-127.
N. P. Bhatia (1966), "Some oscillation theorems for second order differential equations",

J. Math. Anal. Appl. 15, 442-^46.
K. Foster (1976a), "Oscillations of forced equations", / . Differential Equations 20, 115-132.
K. Foster (1976b), "Oscillations of forced sublinear differential equations of even order",

/ . Math. Anal. Appl 55, 634-643.
J. R. Graef (to appear), "Oscillation, nonoscillation, and growth of solutions of nonlinear

functional differential equations of arbitrary order".
J. R. Graef and P. W. Spikes (to appear), "Asymptotic properties of solutions of functional

differential equations of arbitrary order", / . Math. Anal. Appl.
M. E. Hammett (1971), "Nonoscillation properties of a nonlinear differential equation",

Proc. AMS, 30, 92-96.
A. G. Kartsatos (1971), "On the maintenance of oscillations of nth order equations under the

effect of a small forcing term", / . Diff. Equations 10, 355-363.
A. G. Kartsatos (1972), "Maintenance of oscillations under the effect of a periodic forcing

term", Proc. AMS, 34, 377-383.
A. G. Kartsatos (1975), "On nth order differential inequalities", J. Math. Anal. Appl. 52, 1-9.
A. G. Kartsatos (to appear), "Recent results on oscillation of solutions of forced and perturbed

nonlinear equations of even order", Proc. NSF-CBMS Reg. Conference, Stability of
Dynamical Systems, Mississippi State Univ., Mississippi, edited by J. R. Graef (Marcel
Dekker, New York).

A. G. Kartsatos (1976a), "Mh order oscillations with middle terms of order n—2", Pacific J.
Math. 67, 477-488.

A. G. Kartsatos (1976b), "Oscillation and existence of unique positive solutions for nonlinear
nth order equations with forcing term", Hiroshima Math. J. 6, 1-6.

A. G. Kartsatos (1976c), "On the oscillation problem of nonlinear equations", Hiroshima
Math. J. 6, 257-263.

A. G. Kartsatos and M. N. Manougian (1974), "Perturbations causing oscillations of functional
differential equations", Proc. AMS 43, 111-117.

A. G. Kartsatos and M. N. Manougian (1976), "Further results on oscillation of functional
differential equations", / . Math. Anal. Appl. 53, 28-37.

https://doi.org/10.1017/S1446788700020231 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020231


244 Athanassios G. Kartsatos [11]

T. Kusano and H. Onose (1974), "Oscillations of functional differential equations with retarded
argument", / . Diff. Equations 15, 269-277.

Z. Nehari (1963), "On a nonlinear differential equation arising in nuclear physics", Proc.
Royal Irish Acad. 62, 117-135.

H. Onose (1973), "Oscillation and asymptotic behaviour of solutions of retarded differential
equations of arbitrary order", Hiroshima Math. J. 3, 333-360.

H. Onose (1975), "A comparison theorem and the forced oscillation", Bull. Austral. Math.
Soc. 13, 13-19.

V. A. Staikos and Y. G. Sficas (1975a), "Forced oscillation for differential equations of arbitrary
order", / . Diff. Equations 17, 1-11.

V. A. Staikos and Y. G. Sficas (1975b), "Oscillations for forced second order nonlinear differ-
ential equations", Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 318-322.

H. Teufel, Jr. (1972), "Forced second order nonlinear oscillation", J. Math. Anal. Appl. 40,
148-152.

E. True (1975), "A comparison theorem for certain functional differential equations", Proc.
AMS, 47, 127-132.

Department of Mathematics
University of South Florida
Tampa Florida 33620
USA

https://doi.org/10.1017/S1446788700020231 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020231

